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ON THE STABILITY OF A MEAN VALUE TYPE
FUNCTIONAL EQUATION

In this paper, we prove the stability results of a mean value type functional equation,
namely f(z) — g(y) = (z — y)h{z + y) which arises from the mean value theorem.

1. Introduction

The starting point of studying the stability problems of functional equa-
tions seems to be the famous talk of S. M. Ulam in 1940, in which he
discussed a number of important unsolved problems (see [11]). Among those
was the following question concerning the stability of group homomorphisms:

Let G; be a group and let G2 be a metric group with a metric d(-,-). Given
€ > 0, does there exist a 6 > 0 such that if a function h : G; — G satisfies
the inequality d(h(zy), h(z)h(y)) < § for all z,y € Gi, then there exists a
homomorphism H : G1 — G2 with d(h(z),H(z)) <€ forallz € G1 ?

In 1941, D. H. Hyers [4] affirmatively answered the question of Ulam for
the case of approximately additive functions under the assumption that G;
and G5 are Banach spaces.

Taking this historical backgrounds into account, we say that the additive
Cauchy equation f(z +y) = f(z) + f(y) is stable on (G1, G2), in the sense
of Hyers and Ulam. This terminology is also applied to the case of other
functional equations. For more detailed definitions of such terminologies, we
refer the reader to 2], [5], [6] and [7].

The functional equation

(1) f(@) - 9(y) = (¢ —y)h(z +y)
where z,y € R (the set of reals), arises from the mean value theorem and
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characterizes polynomials of degree one and two. This functional equation
was originally treated by J. Aczél in 1963 (see J. Aczél (1985)) and also inde-
pendently by Sh. Haruki (1979). A generalization of the functional equation
(1) was treated by Pl. Kannappan, P. K. Sahoo and M. S. Jacobson [8] (see
also [10, Theorem 2.5], [1] or [3]). We summarize the result of Aczél (1985)
regarding the equation (1) in the following theorem.

THEOREM 1. Let F be a field of characteristic different from two. The
functions f,g,h : F — F satisfy the functional equation (1) for all z,y € F
if and only if there ezist a,b,c € F such that f(z) = g(z) = az®? + bz + ¢
and h(z) =az +b for allz € F.

2. Stability of the functional equation (1)

Th. M. Rassias extended in [9] the stability result of Hyers for the ad-
ditive functions by considering the case that the Cauchy difference is not
bounded. By generalizing the idea of Rassias, we will prove a general theo-
rem for the stability of the functional equation (1).

First, assume that ¢ : F X F' — [0,00) is a symmetric function with
the property o(—z,y) = ¢(z,y) for all z and y in F where F' be a normed
algebra with a unit element 1 (or a normed field of characteristic different
from 2). We will use the following notation

T + z—y T+y T—y
2(z,) = 20(52,0) +4(0,25Y) + 20252, 25 Y)

+<,0($ Y m—_y) +3¢(0,0)

2 72
forall z,y € F.
THEOREM 2. Let F be a normed algebra with a unit element 1 (or a
normed field of characteristic different from 2). If functions f,g,h: F — F
satisfy the functional inequality

(2) 1f(z) — g(y) — (z — y)h(z + y)|| < ¢(z,v)

for allz,y € F, then there exist constants a,b,c,d € F with ||c—d|| < ¢(0,0)

such that )
|f(z) — az® — bz — c|| < p(z,0) + ||lz]|®(z, 1),

lg(z) — az? — bz — d|| < ¢(z,0) + ||z ®(z, 1),
|h(z) — az — b|| < ®(z, 1)

foralzeF.
Proof. If we put y = 0 in (2), then we have
®3) £ (=) — 9(0) — zh(z)|| < ¢(z,0).

Similarly, if we set = 0 in (2), we get
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(4) 1£(0) — 9(y) + yh(W)Il < (0, ).
By (2), (3) and (4), we obtain
(5) llzh(z) — yh(y) — (z — y)h(z + )|

< |l = f(z) +9(0) + zh(z)|| + lg(y) — £(0) — yh(y)|
+ (@) — 9(y) — (z — y)h(z + y)|| + [|£(0) — g(0)]]
< ¢(2,0) + ¢(0,9) + o(z,y) + ¢(0,0)
for all z,y € F. By replacing = by —y in (5), we obtain

(6) lI—yh(-y)—yh(y)+2yh(0)|| < ©(-y,0)+¢(0,y) +¢(-y,y)+(0,0)
and by substituting —y for y in (5), we have
(7) lzh(z) + yh(-y) — (z + y)h(z — Y|

< p(z,0) + (0, —y) + ¢(z, —y) + ¢(0,0)
for all z,y € F. By (5), (6) and (7), we obtain
(8) [(z - y)h(z + y) — (z + y)h(z — y) + 2yh(0)]
< Itz — y)h(z +y) — zh(z) + yh(y)ll
+ llzh(z) + yh(-y) — (z + y)h(z — )l
+ |l = yh(-y) — yh(y) + 2yR(0)||
< 2¢(x,0) + 40(0, ) + 20(z, y) + 9(y, ) + 3¢(0,0)
for any z and y in F. Substituting u =z +y and v =z — y in (8), we get
|vH(u) — uH (v)|| € ®(u,v) where we define H(u) = h(u) — h(0). Let v =1
and replace u by z to obtain ||h(z) — az — b|| < ®(z,1) where a = H(1) =
h(1) — h(0) and b = h(0). It follows from (3) that
1£(2) ~ az® = bz — ¢l| < ||f(z) — ¢ — zh(z)[| + |lzh(z) - az® - ba]|
< p(x,0) + [|z]|2(z, 1)
for any z in F, where we let ¢ = g(0). Analogously, by (4), we get
lg(z) - az® — bz — d|| < |lg(z) — d — zh(z)|| + |leh(z) - az® - ba|
< o(x,0) + ||z]|2(z, 1)
where we set d = f(0).

If we assume ¢(z,y) = € in Theorem 2, we see the stability (like the type
of Hyers and Ulam) of the functional equation (1) directly from Theorem 2.

COROLLARY 3. Let F be a normed algebra with a unit element 1 (or a
normed field of characteristic different from 2). If functions f,g,h: F — F
satisfy the functional inequality || f(z) — 9(y) — (z — y)h(z + y)|| < € for all
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z,y € F, then there exist constants a,b,c,d € F with ||c — d|| < ¢ such that

If(z) —az? — bz — || < e+ 12¢ ||z,
llg(z) — az? — bz — d|| < e + 12¢ ||z,
|h(z) —az — b]| < 12¢

forallz e F.
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