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ELLIPTIC AND PARABOLIC
DIFFERENTIAL INEQUALITIES

1. Introduction

The maximum principles or the Gronwall-type inequalities are powerful
instruments in the theory of differential equations (uniqueness or a-priori
boundedness of the solutions can be obtained, for example).

The aim of this work is to establish this kind of results for semilinear
elliptic and parabolic problems. Usually, these are called comparison results
(see [4, 13]).

In section 2 we consider the following semilinear elliptic inequality.

1) {—Auwu < fo), aazeQ

u € H} (), Au e LE(Q).

Throughout this paper, 2 will be a bounded domain in R".

In Theorem 1 below, f is monotone increasing and Lipschitz with respect
to the last variable, with a constant which satisfies a — w < A;, (where
w > 0 and A is the first eigenvalue of the Laplace operator). A more general
comparison result is Corollary 1, where f satisfies only condition (9) below,

flz,ur) — fz,ug) < g(z,u; —ug), a.a. ¢ € Q,u; > uy,

with ¢ fulfilling the hypothesis of Theorem 1 (in particular, f can be mono-
tone decreasing). In section 3 we consider parabolic problems of the following
forms.
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% —Au < f(z,t,u), aa.z €, forallt >0
u(z,0) < up(z), aa.z€0

2
(2) u(,t) € H (Q), Au(-,t) € L*(Q) forallt >0
%u ¢ LY(0,T; L3(Q)).
‘?3_1: ~-Au < f(z,t,u), aa.z € R*, forallt>0
< .a. R™
@) u(z,0) < up(z), a.a.z €

u(-,t) € H2(R™) forallt>0
Qu e LY(0,T; L*(R™)).

The main result for these problems is Theorem 3, where the function f
satisfies the Caratheodory conditions, is monotone increasing and Lipschitz
with respect to the last variable (without any restriction for the Lipschitz
constant).

Mainly, we shall use the abstract Gronwall lemma of Rus ([8]).

LEMMA 1. Let X be an ordered metric space and A : X — X an order
preserving and a Picard operator (i.e. A has a unique fized point, u*, which
is the limit of the sequence (A™u)p>1 for everyu € X ).

If u < Au then u < u*.

If Au < u then u* < u.

Let us mention that Lemma 1 generalizes Proposition 7.15 from [15],
where is considered the case of a linear mapping A and, also, Lemma 1 from
[16] where the mapping A is linearly bounded. This lemma is a powerful
tool for obtaining Gronwall-type inequalities.

The existence results from this paper (i.e. the first part of Theorem 1, and
Theorem 2) are known. They are obtained by using the Banach contraction
mapping theorem. For completness, we shall present a sketch of the proof.
For the elliptic equation we have used [6] and [7]. In order to study existence
in [6, 11, 10], or stability in [5] for certain nonlinear evolution problems, some
fixed point theorems and the theory of semigroups were used. Using the same
ideas, we have stated and proved Theorem 2.

Similar comparison results for elliptic equations contain [13] and [4]. In
Corollary 1 we do not assume continuity and differentiability for the func-
tion f, as in Theorem 10.1, page 263 [4], where the theorem of the mean
is used. One of the conditions for the function f, used in the comparison
result from [13], Theorem 1, is

lim sup _f(:v, u)

lulooo U
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Let us mention the idea from [13] of using these results in order to obtain
that a sub-solution is less or equal than a super-solution of a certain elliptic
equation. The same fact can be obtained for parabolic problems using our
results. This is an essential claim in the method of sub- and super- solutions
([15]), an efficient tool for obtaining existence results for nonlinear equations.
This method was used, for example, in the periodic parabolic problems in [3].
In the end, let us notice that our results remain valid if the Laplace
operator, —A is replaced by a general elliptic differential operator,

n n
Lu= - Z Dj(ajkau) + Z a;Dju + apu,
Jk=1 Jj=1

with aji = ax; € CH(Q), aj,a0 € C(£2) and ap < 0 (see [1, 4]).

2. Main results in the elliptic case

In this section we investigate problems (1)= and (1). We denote by (1),
(1)> the coresponding problems obtained by replacing < with = and >,
respectively, in (1).

Let us list first the following hypothesis.
(H1) |f(z,u1) — f(z,u2)|] < alus —uz|, a.a. z € Q and for all uj,us € R.
(H2) f(,w) is measurable for all w € R, and f(-,0) € L?(f).
(H3) f(z,u1) < f(z,u2), a.a. z € Q and for all u;,us € R with u; < us.

We consider the usual order relation on L2(f), i.e., v; < vq if and only
if v1(z) < va(zx) a.a. z € Q.

We shall denote by A; the first eigenvalue of (—A) : H}H(Q) — H~1()
and we shall use the weak maximum principle (see [6]).
LEMMA 2. Let v € L?(Q2) such that v > 0. If w > 0 then (—A +w) v > 0.
The following Theorem 1 and Corollary 1 are the main results of this section.

THEOREM 1. Let f : 2 x R — R be a function such that (H1), (H2) are sat-

isfied and w be a nonnegative real number. Let us suppose that the following

relation holds,

(4) a <A +w.

Then the Dirichlet problem (1)= has a unique weak solution u* € H} (§2).
If, in addition, (H3) is fulfilled, then every solution u of (1) satisfies

u(z) < u*(z) for almost all xz € Q.

Proof. Let us consider the following mapping,

(5) A:D(Q) = L(Q)  A@) = f(, (A +w)h).

As it is shown in [7], we have that the hypothesis for f assure that A is well
defined and is a contraction mapping with the Lipschitz constant
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a
(6) A tw
Then, by the contraction mapping theorem, A is a Picard mapping. We
denote by v* € L?(Q) the unique fixed point of A. Let v;,v2 € L%() be
such that v; < vy. Using Lemma 2 and (H3), it is easy to see that Av; < Avs.
Thus A is order preserving. By Lemma 1, every v € L%(Q) with v < Av is
such that

<1

(7) v <ot
Also, let us note that, via the equality
v = —Au+ wu,
the problem (1)= is equivalent with
v = A(v)
and the problem (1) consists in finding v such that
v < A(v).

Now, from (7) and Lemma 2, the conclusion follows.

COROLLARY 1. Let g : @ X R — R be a continuous function which satisfies
(H1) with a < A\ +w, (H3) and

(8) 9(z,0) =0, a.a.z€Q.

Let f: Q2 x R — R be a function such that

(9)  flz,u1) — f(z,u2) < g(z,u1 —uz), a.a. z €8, for all up > uy.

The following statements are valid.

(s1) If there exist u € C(Q) N C?(Q) a solution of (1) and w € C(Q) N
C%(Q2) a solution of (1)>, then u(z) < u(z), a.a. z € Q. _

(s2) The Dirichlet problem (1)= has at most one solution in C(2) N
C%(Q).

Proof. (sl1) Let us denote by @ = (u — )" (where u* = max{0, u}).

For every z1 € Q such that u(z1) > %(z1), from the continuity of (u —%)
it follows that there exists a neighborhood of z1, Vi C £ such that w(z) =
u(z) —u(z) > 0 for all z € V;i. The following relations hold for all z € V;
(using, also, condition (9)).

(10) - AY 4 wi(z) = (—Au + wu(z)) — (-AT + wi(z)) <

< fz,u(z)) — f(=z,0(z)) < g(z, d(x)).
For every z2 € Q such that u(zs) < T(z2), there exists a neighborhood of
zg, Va2 C Q such that w(z) = 0 for all z € V,. The following relations hold
for all x € V5.
(11) — AU+ w(z) = 0 = g(z, ).
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For every z3 € § such that u(z3) = @(z3), either there exists a neighborhood
of 23, V3 C 2 such that u(z) = w(z) for all z € V3, or there exists a sequence

zn, — z3 such that u(z,) < (>)u(zn). By the continuity of (v — ¥) and
A(u — @), and relations (10) and (11), we can deduce that

—Ab(z3) + wib(z3) < g(z3,¥(z3))-

Then w is a solution of the following problem

(12) { —Aw + ww < g(z,w), a.a. T €

we HY (Q), Aw e L2(Q).

Let us notice that w* = 0 is a solution of (12)~ (by (8)). In the case of this
problem the hypothesis of Theorem 1 are fulfilled. Then, w(z) < 0 for all
z €  and, by the definition of %, w = 0. Hence, the conclusion holds.

(s2) Let us denote by u; and ug two solutions of (1)=. We apply twice
(s1) and obtain that u; < ug and, also, ug < u;. Then u; = us.

REMARK 1. Let w = 0, @ € R and f(z,u) = @u. The comparison result
(equivalently, the maximum principle for the Laplace operator), is valid if
and only if @ < A; (see [6]).

Let us make here a more detailed discussion concerning the relation
between this result and ours, given also a simple example on the real line.

The case a < —A1 is not covered by Theorem 1, but it is covered by
Corollary 1 (when (9) is fulfilled with g = 0). If & is one of the eigenvalues
of (—A), we can not talk about comparison, since problem (1)- does not
have either a minimal or a maximal solution.

If @ is strictly between two eigenvalues of (—A), then the solution is
unique, but the comparison result does not hold. This is the case of the
following example. For other interesting considerations of this type we rec-
ommend [9]. Let us consider the problem

(13) —u’" <2u , ze(0,m)
u(0) = u(n) = 0.
In this case Ay = 1, Ay = 4 and the unique solution of (13)= is u* = 0. We

have that )

1
u(@) = 2 2 cos my/2/2

is a solution of our problem. But, u(7/2) > 0.

cos(zv2 — 1v/2/2)

REMARK 2. For the equation —Au = g(z,u), if we add wu, the condition
for g(z,u) +wu to be nondecreasing in u (i.e., the hypothesis (H3)) becomes
(see, also, [1])
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9(z,u1) — g(z,u2) < —w(uy — ug), for all u1,us € R with u; < us.
EXAMPLE 1. Let B;(0) be the unit ball in R® withn=2orn=3.Ifuis
a solution of
(14) —Au < (n—|z]*)(u+ %) ,a.e. £ € B1(0)
u € Hj(By(0)) N H*(B1(0))
then |
1 2
<ezll
u(z) <e"2 7
This follows from Theorem 1. Let us notice that here w = 0.
Let f: B1(0)x R — R, f(z,u) = (n—|z|*)(u+ %) This is a continuous
function on the closure of its domain, so, (H2) is fulfilled. It is easy to see
that (H3) is valid. We also have,

1f(z,u1) — f(=z,u2)| S mfug — ual.
Thus, (H1) is satisfied with a = n, and relation (4) becomes
A1 > n,
which is true in this case (see [12]). The unique solution of
—Au=(n—|z/*)(u+ %) @€ Bi(0)
u=0, z¢€dB;(0)

is
~be? _ L

Ve

So, we can apply Theorem 1 and obtain the estimation.

u(z) =e

3. Main results in the parabolic case

In this section we study problems (2}, (3) and (2)=, (3)= (i.e. the core-
sponding Cauchy-Dirichlet problem of (2) and Cauchy problem of (3) for
the heat equation), using Lemma 1. To this purpose we interpret the evo-
lution problems as differential equations in Hilbert spaces and take advan-
tage of the theory of semigroups of nonexpansive operators and the Bielecki
norms technique. For inequalities, we also need the maximum principle for
parabolic differential operators.

3.1. The initial value problem in a Hilbert space
We consider the problem

(15) { du 4 By = f(t,u(t)), te[0,T]
u(0) = ug
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where H is a Hilbert space, B : D(B) C H — H is a linear m-accretive
operator, ug € H and f :[0,7] x H — H such that
(16) f(-,u) € LY(0,T ; H) for all u € H,

(17) f(t,-) e C(H;H) forallte][0,T]
We denote by {S(t)}+>0 the semigroup of nonexpansive operators generated
by B.

’ The function v € C([0,T]; H) given by

¢
u(t) = S(t)upg + S S(t— s)f(s)ds

0
is said to be a mild solution (see [2, 14]) for the IVP
du

&+ Bu= f(t), te|0,T
(18) dt+ U f()’ 6[1 ]
u(0) = uo.

THEOREM 2. If there exists a € L*(0,T) such that
(19) 1f(t,u) — f(t,)| < a(t)lu—7u| a.a.t€(0,T), forallu,we H,

then (15) has a unique mild solution u* € C([0,T); H) which can be obtained
by succesive approzimations starting from every u € C([0,T}; H).

Proof. Let us consider the operator

(20) A:C([0,T; H) — C([0,T]; H)
t
Au(t) = S(t)ug + S S(t —s)f(s,u(s))ds,
0
and the following Bielecki norm
[lull = max u(t)]e™* %,

t€(0,T]
Let u,w € C([0,T]; H) and ¢ € [0,T]. From the estimations
¢
| Au(t) — Au(t)] = || S(t = 5)[f(s,u(s)) = £(s, 2]z <
0
t

1 5t

< fa(s)[u(s) ~m(s)lds < 5e*H % |ju — )
0

we have

14w~ 43 < 2l ~ 7l

Thus, the mapping A is a contraction on C([0, T|; H), which yields that it has
a unique fixed point, v*, that can be obtained by succesive approximations.
Of course, u* is the unique solution of (15).
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3.2. Parabolic inequalities

In the study of problem (2) we shall use the results from the previous
section for the Hilbert space L?({2) and the linear m-accretive operator (see
[2])

B:D(B) c L*(Q) — L*(Q), Bu= —Au,
D(B) = {u € Hy(Q) ;Au € L*(Q)}.
For problem (3) we shall consider the Hilbert space L2(R™) and the linear
m-accretive operator
B:D(B) c L*(R") — L*(R™), Bu= —Au, D(B)= H*(R").

We consider the usual order relations on C([0,T]; L?(?)) and L*(0,T;
L?(2)). We suppose, in addition, that § is of class C?.

Let us consider the operator

L: L*(Q) x LY0,T; L*(Q)) — C([0, T); LA(R))
¢

L(uo, f)(t)=§ uo+SS t—s)f(s)ds

and, in the coresponding form, when we replace Q by R™.
Here we give the weak maximum principle in the following form.

LEMMA 3. For both, Q a bounded domain, and R", u} < u? and f' < f?
imply that L(ug, f*) < L(uf, f?).
Proof. It is sufficient to prove that ug < 0 and f < 0 imply L(ug, f) < 0.

(a) The case of a bounded domain. This follows by the positivity of the
semigroup S(t) (see [1]) (i.e., S(t)v > 0 for all v € L%(Q)). Also, let us men-
tion that, for ug € H}(Q) with Aug € L%(Q) and f € C([0,T); L3()),
this is exactly the maximum principle for the heat equation, which is found
in [6].

(b) The case of R™. This time we have that the operator S(t) : L%(R") —
L%(R™) is given by the formula

S)v(z) = | E(z - y,t)v(y)dy
Rn
for a.a. z € R", for all v € L?(R") and t > 0. E is the fundamental solution
of the heat operator
1 L=l
E ’t = — e 4
(m ) (2\/ﬁ)ne

From this formulas we obtain the conclusion.

REMARK. In what follows there is considered only the case of a bounded
domain. But the results remain valid in the case of R" (i.e. problem (3)).
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We make the following assumptions.
(H4) there exists a € L*(0,T) such that
]f(matv Z) - f(:E’t)E)l < a(t) |Z _EI ’

for a.a. 2 € Q,t € (0,T) and for all 2,z € R;

(H5) f(-,,2) is measurable for all z € R, and f(-,-,0) € L?(2 x (0,T));
(H6) for all 2,Z € R with z < Z, we have that f(z,t,z) < f(z,t,%) a.a.
zeQ,te(0,T).

THEOREM 3. Let (H4) and (H5) be satisfied. Then (2)= has a unique solution
u* € C([0,T); L2()). If, in addition, (H6) is fulfilled, then every solution u

of (2) satisfies
u(z,t) < u*(z,t)

for almost all z € Q and for all t € [0,T].

Proof. Let us consider the mapping A given by (20) in the conditions of
this section. The hypothesis assure that we can apply Theorem 2. Thus, A
is a Picard operator and «* is its unique fixed point, which is the unique
solution of (2)=.

Let u be a solution of (2) and fi(z,t) = at — Ay, wi(z) = u(z,0)
and fo(z,t) = f(z,t,u(z,t)). We have that f1 < fo, u3 < ug and, also
u = L(u1, f1) , Au = L(ug, f2). Then, by Lemma 3,

u < Au.

Using (H6) and Lemma 3, A is order preserving.
Applying Lemma 1,
u < u*.
All these considerations assure that the conclusion holds.
ExAMPLE 2. If u € C(]0,00); H?(0,7)) is such that:

%—%<:ﬁu aa.z € (0,7) foralt>0
(21) u(0,t) =u(m,t) =0 forallt>0

u(z,0) <sinz a.a.z € (0,7)

then
u(z,t) < (t+1)sinz, a.a.z € (0,7), forall¢t>0.

Let us consider an arbitrary constant 7" > 0 and f: [0,7] x [0,T] x R — R,
f(z,t,2) = ﬁ_ﬁz This function is continuous and monotone increasing with
respect to the last variable. It is easy to see that it satisfies the hypothe-
sis (H4), (H5) and (H6). Thus we can apply Theorem 3 and, noticing that
u*(z,t) = (t + 1)sinz is the unique solution of (21)=, we deduce the con-

clusion.
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