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1. Introduction 
The maximum principles or the Gronwall-type inequalities are powerful 

instruments in the theory of differential equations (uniqueness or a-priori 
boundedness of the solutions can be obtained, for example). 

The aim of this work is to establish this kind of results for semilinear 
elliptic and parabolic problems. Usually, these are called comparison results 

In section 2 we consider the following semilinear elliptic inequality. 

Throughout this paper, fi will be a bounded domain in Rn. 
In Theorem 1 below, / is monotone increasing and Lipschitz with respect 

to the last variable, with a constant which satisfies a — u < Ai, (where 
UJ > 0 and Ai is the first eigenvalue of the Laplace operator). A more general 
comparison result is Corollary 1, where / satisfies only condition (9) below, 

f(x, ui) - f(x, u2) < g(x, ui - u2), a.a. x e CI, m >u2, 

with g fulfilling the hypothesis of Theorem 1 (in particular, / can be mono-
tone decreasing). In section 3 we consider parabolic problems of the following 
forms. 

(see [4, 13]). 

( 1 ) 
—Au + urn < f(x, u), a.a. x E Si 

ueH^(Q), A a 6 L 2 ( i l ) . 
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T^f - A u < f(x,t,u), a.a. x € ft, for all t > 0 
u(x, 0) < uo(x), a.a. x € ft 

u{-, t) e Hi (f t) , A i ) € L2(ft) for all i > 0 
f e L ^ O . T j L ^ f t ) ) . 

- Au < / (x , i, u), a.o. 3 € for all t > 0 
u(x, 0) < uo(x), a.a. x 6 Rn 

u(-,t) e H2(Rn) for a l i i > 0 
f G L H O . T s L 2 ^ ) ) . 

The main result for these problems is Theorem 3, where the function / 
satisfies the Caratheodory conditions, is monotone increasing and Lipschitz 
with respect to the last variable (without any restriction for the Lipschitz 
constant). 

Mainly, we shall use the abstract Gronwall lemma of Rus ([8]). 

LEMMA 1. Let X be an ordered metric space and A : X —> X an order 
preserving and a Picard operator (i.e. A has a unique fixed point, u*, which 
is the limit of the sequence (Anu)n>i for every u E X). 

If u < Au then u < u*. 
If Au < u then u* < u. 

Let us mention that Lemma 1 generalizes Proposition 7.15 from [15], 
where is considered the case of a linear mapping A and, also, Lemma 1 from 
[16] where the mapping A is linearly bounded. This lemma is a powerful 
tool for obtaining Gronwall-type inequalities. 

The existence results from this paper (i.e. the first part of Theorem 1, and 
Theorem 2) are known. They are obtained by using the Banach contraction 
mapping theorem. For completness, we shall present a sketch of the proof. 
For the elliptic equation we have used [6] and [7]. In order to study existence 
in [6, 11, 10], or stability in [5] for certain nonlinear evolution problems, some 
fixed point theorems and the theory of semigroups were used. Using the same 
ideas, we have stated and proved Theorem 2. 

Similar comparison results for elliptic equations contain [13] and [4], In 
Corollary 1 we do not assume continuity and differentiability for the func-
tion / , as in Theorem 10.1, page 263 [4], where the theorem of the mean 
is used. One of the conditions for the function / , used in the comparison 
result from [13], Theorem 1, is 

f(x,u) 
limsup < a < Ai. 
M —oo u 

(2) 
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Let us mention the idea from [13] of using these results in order to obtain 
that a sub-solution is less or equal than a super-solution of a certain elliptic 
equation. The same fact can be obtained for parabolic problems using our 
results. This is an essential claim in the method of sub- and super- solutions 
([15]), an efficient tool for obtaining existence results for nonlinear equations. 
This method was used, for example, in the periodic parabolic problems in [3]. 

In the end, let us notice that our results remain valid if the Laplace 
operator, —A is replaced by a general elliptic differential operator, 

n n 
Lu = — ^ Dj(a,jkDku) + ^ o-jDjU + aou, 

3,k=1 j=i 

with ajk = akj G C1(i2), a,j,ao G C(fi) and ao < 0 (see [1, 4]). 

2. Main results in the elliptic case 
In this section we investigate problems (1) = and (1). We denote by (1)=, 

(1)> the coresponding problems obtained by replacing < with = and > , 
respectively, in (1). 

Let us list first the following hypothesis. 
(HI) | f(x, lii) — f(x, 1x2)| < a |ui — U2I, a.a. x G Q and for all U\,U2 G R. 
(H2) f(-,u) is measurable for all u G R , and /(•, 0) G L2(Q). 
(H3) f(x,ui) < f(x,U2), a.a. x G fi and for all ui,u2 G R with u\ < u2. 

We consider the usual order relation on L2(Cl), i.e., vi < V2 if and only 
if vi(x) < V2(x) a.a. x E CI. 

We shall denote by Ai the first eigenvalue of (—A) : Hq(CI) —> i i " - 1 (il) 
and we shall use the weak maximum principle (see [6]). 

LEMMA 2. Let v G L2(f2) such that v>0.Ifu>0 then (-A + u^v > 0. 

The following Theorem 1 and Corollary 1 are the main results of this section. 

THEOREM 1. Let f : tlx R R be a function such that (HI), (H2) are sat-
isfied, and u be a nonnegative real number. Let us suppose that the following 
relation holds, 
(4) a < A i + w . 

Then the Dirichlet problem (1)= has a unique weak solution u* G Hq (fI). 
I f , in addition, (H3) is fulfilled, then every solution u of (1) satisfies 

u(x) < u*(x) for almost all x G fl. 

Proof . Let us consider the following mapping, 

(5) A : L2(Q) -» L2{Q) A(v) = f(-,(-A + u^v). 

As it is shown in [7], we have that the hypothesis for / assure that A is well 
defined and is a contraction mapping with the Lipschitz constant 
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(6) Ai + uj 

Then, by the contraction mapping theorem, A is a Picard mapping. We 
denote by v* E L2(Cl) the unique fixed point of A. Let vi,v2 E L2(0.) be 
such that v\ <V2- Using Lemma 2 and (H3), it is easy to see that Av\ < Av2-
Thus A is order preserving. By Lemma 1, every v £ L 2 ( 0 ) with v < Av is 
such that 

Also, let us note that, via the equality 

v = —A u + LOU, 

the problem (1)= is equivalent with 

v = A(v) 

and the problem (1) consists in finding v such that 

v < A(v). 

Now, from (7) and Lemma 2, the conclusion follows. 

C O R O L L A R Y 1 . Let g : Q x R —> R be a continuous function which satisfies 

(HI) with a < A i + uj, (H3) and 

Let f : f i x R —• R be a function such that 

( 9 ) f ( x , u i ) — f ( x , u 2 ) < g ( x , u i — u2), a.a. x £ Q, f o r all u\ > U2-

The following statements are valid. 

( s i ) I f there exist u € C(i2) n C2(Q) a solution of (1) and u € C ( f 2 ) f l 

P r o o f , (si) Let us denote by w = (u — u)+ (where = max{0,u}) . 
For every x\ G ii such that n(xi) > u(xi), from the continuity of (u — u) 

it follows that there exists a neighborhood of x\, V\ C such that w(x) = 
u(x) — u(x) > 0 for all x E V\. The following relations hold for all x € V\ 
(using, also, condition (9)). 

( 1 0 ) - Aw + uw(x) = ( - A u + uu{x)) - (—Au + lou(x)) < 

< f ( x , u { x ) ) - f ( x , u ( x ) ) < g(x,w(x)). 

For every X2 S il such that u(x2) < u(x2), there exists a neighborhood of 
X2-, V2 C 0 such that w(x) = 0 for all x E V2. The following relations hold 
for all x € V2. 

( 1 1 ) — Aui + cuw(x) = 0 = g(x,w). 

(7) ^ * V < V . 

(8) g(x, 0 ) = 0, a.a. x E f l . 
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For every 13 £ fi such that u(x3) = u(x3), either there exists a neighborhood 
of £3, V3 C ii such that u(x) = u(x) for all a; G V3, or there exists a sequence 
xn —• X3 such that u(xn) < (>)u(xn). By the continuity of (u — u) and 
A(u — u), and relations (10) and (11), we can deduce that 

-Aw(X3) + ^ ( 2 : 3 ) < g(x3, w(x3)). 

Then w is a solution of the following problem 

J — Aw + LOW < g(x, w), a.a. x G fi 

^ { w G (f i ) , Aw 6 

Let us notice that w* = 0 is a solution of (12)= (by (8)). In the case of this 
problem the hypothesis of Theorem 1 are fulfilled. Then, w(x) < 0 for all 
x E CI and, by the definition of w, w = 0. Hence, the conclusion holds. 

(s2) Let us denote by u\ and 112 two solutions of (1)=. We apply twice 
(si) and obtain that u± < u2 and, also, U2 < u\. Then u^ = U2. 

R E M A R K 1. Let u = 0, a G R and f(x,u) = au. The comparison result 
(equivalently, the maximum principle for the Laplace operator), is valid if 
and only if a < Ai (see [6]). 

Let us make here a more detailed discussion concerning the relation 
between this result and ours, given also a simple example on the real line. 

The case a < —Ai is not covered by Theorem 1, but it is covered by 
Corollary 1 (when (9) is fulfilled with g = 0). If a is one of the eigenvalues 
of (—A), we can not talk about comparison, since problem (1) = does not 
have either a minimal or a maximal solution. 

If a is strictly between two eigenvalues of (—A), then the solution is 
unique, but the comparison result does not hold. This is the case of the 
following example. For other interesting considerations of this type we rec-
ommend [9]. Let us consider the problem 

f —u" <2u , x e (0,7r) 
\ u(0) = u(n) = 0. 

In this case Ai = 1 , A2 = 4 and the unique solution of (13)= is u* = 0. We 
have that 

u(x) = 1 cos(x\/2 - TT\/2/2) 
V ' 2 2COSTTV/2/2 V ' ' 

is a solution of our problem. But, u(ir/2) > 0. 

R E M A R K 2. For the equation —Au = g(x,u), if we add uju, the condition 
for g(x, u) + uu to be nondecreasing in u (i.e., the hypothesis (H3)) becomes 
(see, also, [1]) 
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g(x, ui) — g(x, U2) < —o>(ui — 112), for all u\, U2 € R with u\ < U2. 

EXAMPLE 1. Let # i (0) be the unit ball in Rn with n = 2 or n = 3. If u is 
a solution of 

This follows from Theorem 1. Let us notice that here UJ = 0. 
Let / : -Bi(O) x R —» R, f(x, u) ~ (n — |x|2)(u + This is a continuous 

function on the closure of its domain, so, (H2) is fulfilled. It is easy to see 
that (H3) is valid. We also have, 

So, we can apply Theorem 1 and obtain the estimation. 

3. Main results in the parabolic case 
In this section we study problems (2), (3) and (2)= , (3)= (i.e. the core-

sponding Cauchy-Dirichlet problem of (2) and Cauchy problem of (3) for 
the heat equation), using Lemma 1. To this purpose we interpret the evo-
lution problems as differential equations in Hilbert spaces and take advan-
tage of the theory of semigroups of nonexpansive operators and the Bielecki 
norms technique. For inequalities, we also need the maximum principle for 
parabolic differential operators. 

3.1. The initial value problem in a Hilbert space 
We consider the problem 

then 

(14) 

\f(x,ui) - f{x,u2)I < n\ui - u21. 

Thus, (HI) is satisfied with a — n, and relation (4) becomes 

Ai > n, 

which is true in this case (see [12]). The unique solution of 

(15) 
f + Bu = f(t,u(t)), t 6 [0, T] 

u ( 0 ) = UQ 



Elliptic and parabolic differential inequalities 789 

where H is a Hilbert space, B : D(B) C H —» H is a linear m-accretive 
operator, uq E H and / : [0, T] x H —> H such that 

(16) f(-,u) € Ll{0,T -H) for all u G H, 

(17) f(t,-) eC(H;H) for all t € [0,T], 

We denote by {S(t)}t>o the semigroup of nonexpansive operators generated 
by B. 

The function u € C([0,T]; H) given by 
t 

u(t) = S(t)u0 + \S(t- s)f(s)ds 
o 

is said to be a mild solution (see [2, 14]) for the IVP 

(18) i f + Bu = f(t), t e [0, T] 
\ n(0) = u0 . 

THEOREM 2. If there exists a e Ll{0,T) such that 

(19) \f{t,u) - f(t,u)\ <a(t)\u-u\ a.a. t £ (0 ,T) , for all u,ue H, 

then (15) has a unique mild solution u* € C([0, T];H) which can be obtained 
by succesive approximations starting from every u € C([0, T]; H). 

P r o o f . Let us consider the operator 

(20) A:C([0,T]-H)^C([0,T]-H) 
t 

Au(t) = S(t)u0 + \S(t- s)f(s,u(s))ds, 
o 

and the following Bielecki norm 

\\u\\ = max |u(i)|e-25oa(s)ds. 
te[o,n' 

Let u,u 6 C([0, T]\H) and t € [0,T]. From the estimations 
t 

\Au(t) - Au(t)| = | \S(t- s)[f(s,u(s)) - f(s,u(s))}\H < 
0 

t 
< 5 a(s)|u(s) - u(s)\ds < ie2&a{s)ds\\u - «11 

we have 

\\Au-Au\\<±\\u-u\\-

Thus, the mapping A is a contraction on C([0, T];H), which yields that it has 
a unique fixed point, u*, that can be obtained by succesive approximations. 
Of course, u* is the unique solution of (15). 
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3.2. Parabolic inequalities 

In the study of problem (2) we shall use the results from the previous 
section for the Hilbert space L2(f2) and the linear m-accretive operator (see 
[2]) 

B : D(B) C L2{VL) -> L2(ft), Bu=-Au, 

D(B) = HQ(CI) ; Au e L 2(ii)} . 

For problem (3) we shall consider the Hilbert space L2(Rn) and the linear 
m-accretive operator 

B : D(B) C L2(Rn) -» L2(Rn), Bu = -AM, D(B) = H2(Rn). 

We consider the usual order relations on C([0,T];L2(£l)) and L 1 (0 ,T ; 
L2(i2)). We suppose, in addition, that f2 is of class C 1 . 

Let us consider the operator 

C : L 2( i i ) x L1(0, T; L2(i))) -» C([0, T]; L2(ft)) 
t 

C{u0, f){t) = S(t)u0 + \S(t- s)f(s)ds, 
o 

and, in the coresponding form, when we replace ft by Rn. 
Here we give the weak maximum principle in the following form. 

LEMMA 3. For both, F2 a bounded domain, and Rn, UQ < UQ and f1 < f2 

imply that j C ^ J , / 1 ) 

Proof . It is sufficient to prove that UQ < 0 and / < 0 imply C(UQ, f ) < 0. 
(a) The case of a bounded domain. This follows by the positivity of the 

semigroup S(t) (see [1]) (i.e., S(t)v > 0 for all v € L2(tt)). Also, let us men-
tion that, for uq e with Au0 e L2(Q) and / € C1([0,T];L2{Q)), 
this is exactly the maximum principle for the heat equation, which is found 
in [6], 

(b) The case of Rn. This time we have that the operator S(t) : L2(Rn) 
L2(Rn) is given by the formula 

S ( t ) v ( x ) = j E(x-y,t)v{y)dy 
Rn 

for a.a. x £ Rn, for all v € L2(Rn) and t > 0. E is the fundamental solution 
of the heat operator 

E(x,t) = -—e-11^". 
V ' (2\pKt)n 

From this formulas we obtain the conclusion. 

REMARK. In what follows there is considered only the case of a bounded 
domain. But the results remain valid in the case of Rn (i.e. problem (3)). 
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We make the following assumptions. 

(H4) there exists a € L 1 ( 0 , T ) such that 

| f{x,t,z) - f{x,t,z)I < a(t) \z-z\, 

for a . a . x E f t , t £ ( 0 , T ) a n d for a l l z,zeR\ 

(H5) /(•, •, z) is measurable for all z £ R, and /(•, •, 0) £ L2(fl x (0, T)); 
(H6) for all z,~z £ R with z < z, we have that f(x,t,z) < f(x,t,z) a.a. 
x e n , t e (0, T). 

T H E O R E M 3 . Let ( H 4 ) and ( H 5 ) be satisfied. Then ( 2 ) = has a unique solution 
u* £ C ( [ 0 , T ] ; L2(Q)). I f , in addition, ( H 6 ) is fulfilled, then every solution u 
of ( 2 ) satisfies 

u(x,t) < u*(x,t) 

for almost all x £ Q and for all t £ [0, T]. 

P r o o f . Let us consider the mapping A given by (20) in the conditions of 
this section. The hypothesis assure that we can apply Theorem 2. Thus, A 
is a Picard operator and u* is its unique fixed point, which is the unique 
solution of (2)= . 

Let u be a solution of (2) and fi(x,t) = — A u , u\(x) = u(x, 0) 
and f2(x,t) = f(x,t,u(x,t)). We have that f\ < fi , U\ < UQ and, also 
u = C(ui, /i) , Au = C(uo, /2). Then, by Lemma 3, 

u < Au. 

Using (H6) and Lemma 3, -A is order preserving. 
Applying Lemma 1, 

u<u*. 

All these considerations assure that the conclusion holds. 

E X A M P L E 2. If u E C([0,oo);ii2(0,7r)) is such that: 

{f^ - 0 < f±f u, a.a. x e (0, TT) for all t > 0 
u(0, t) = U{TT, t) = 0 for all t > 0 

•u(x,0) < sin a; a.a. x £ (0,7r) 

then 
u(x,t) < (t + l ) s inx , a.a. x £ (0,-TT), for all t > 0. 

Let us consider an arbitrary constant T > 0 and / : [0,7r] X [0, T] x R —• R, 
f(x, t, z) — j^jz. This function is continuous and monotone increasing with 
respect to the last variable. It is easy to see that it satisfies the hypothe-
sis (H4), (H5) and (H6). Thus we can apply Theorem 3 and, noticing that 
u*(x,t) = (t + l ) s inx is the unique solution of (21)=, we deduce the con-
clusion. 
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