

Anna Szadkowska

THE CAUCHY PROBLEM FOR CERTAIN GENERALIZED
DIFFERENTIAL EQUATIONS OF SECOND ORDER
WITH SINGULARITY

1. Introduction

Let X, Y be Banach spaces over the field \mathbb{R} and let U and V be open subsets of X and Y , respectively.

Let h_1, h_2 be the mappings from U into X and F a mapping from $U \times V$ into Y .

We shall start with defining a directional derivative of second order of a function f in a direction of the pair of mappings h_1, h_2 on U , denoted by $(\nabla_{(h_2, h_1)}^2 f)(x)$ for $x \in U$, and generalizing the well known notion of the directional derivative of second order [3]. Then we consider the Cauchy problem

$$\begin{aligned} (\nabla_{(h_2, h_1)}^2 f)(x) + a(\nabla_{h_1} f)(x) &= F(x, f(x)) \\ f(0) = 0, \quad (\nabla_{h_1} f)(0) &= 0, \end{aligned}$$

where $a \geq 0$, for mappings from a subset of a Banach space into a Banach space, which are defined in class of continuous mappings C , with the assumption that 0 is a singular point (i.e. $h_1(0) = 0$ and $h_2(0) = 0$).

The subject matter refers to studies of generalized differential equations of first order introduced in [4] and continued in [5].

In lemmas and theorems presented in this paper the real Banach space X will be considered with a semi-inner product, defined as follows [2], [4], [5].

Let X^* be the dual space of Y and

$$T(x) = \{x^* \in X^*; \|x^*\| = 1, x^*(x) = \|x\|\}$$

for $x \in X$.

Let X_0 be a set of nonzero elements with norm equal to 1, chosen one by one from each line in X through zero.

Let \mathfrak{S}_0 be any (fixed in further considerations) mapping from X_0 into X^* such that $\mathfrak{S}_0(y) \in T(y)$ for $y \in X_0$. Let \mathfrak{S} be the homogenous extension of \mathfrak{S}_0 to the whole space X defined as follows

$$\mathfrak{S}(\lambda y) = \lambda \mathfrak{S}_0(y) \quad \text{for } y \in X_0, \lambda \in \mathbb{R}.$$

Now we define a semi-inner product by

$$\langle x, y \rangle = \mathfrak{S}(y)(x) \quad \text{for } x, y \in X.$$

This product has the following properties:

- (a) it maps $X \times X$ into \mathbb{R} ,
- (b) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$, $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$, $\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$ for $x, y, z \in X, \lambda \in \mathbb{R}$
- (c) $\langle x, x \rangle = \|x\|^2$ for $x \in X$
- (d) $|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle$ for $x, y \in X$.

Denote by B_ρ the open ball in X with radius ρ and centre zero, i. e., $B_\rho = \{x \in X : \|x\| < \rho\}$.

The following definitions, lemmas and theorem will be needed throughout the paper.

DEFINITION 1. A mapping $h : B_\rho \rightarrow X$ of the class C^1 will be called a regular mapping (in zero) if:

- (i) is bounded with its first derivative Dh in B_ρ ,
- (ii) $h(0) = 0$,
- (iii) there exists such a constant $C > 0$ that

$$(1) \quad y^*(Dh(0)y) \geq C$$

for $y^* \in T(y)$ and for every $y \in X$ such that $\|y\| = 1$.

LEMMA 1. If $h : B_\rho \rightarrow X$ is a regular mapping (in zero), then for every $\alpha \in (0, C)$ there exists a constant $r \in (0, \rho)$ such that a Cauchy problem

$$(2) \quad \frac{\partial}{\partial t} v(t, x) = -h(v(t, x)), \quad v(0, x) = x$$

has in the domain $[0, \infty) \times B_r$ exactly one continuously differentiable solution $v = v(t, x)$, having the properties

$$(3) \quad \|v(t, x)\| \leq e^{-\alpha t} \|x\| \quad \text{for } t \in [0, \infty), x \in B_r,$$

and

$$(4) \quad v(t, v(\tau, x)) = v(t + \tau, x) \quad \text{for } t, \tau \in [0, \infty), x \in B_r.$$

LEMMA 2. If $h : B_\rho \rightarrow X$ is a regular mapping (in zero) of class C^2 , then for every $\beta \in (0, C)$ there exists such $\tilde{r} \in (0, r]$ (where r denotes the constant from Lemma 1), that

$$(5) \quad \|D_2 v(t, x)\| \leq e^{-\beta t} \quad \text{for } t \in [0, \infty), x \in B_{\tilde{r}}.$$

The proofs of Lemma 1 and Lemma 2 are presented in [5].

Let $C_*^{0,1}(B_{\tau_0}, Y)$ be the space of the continuous mappings $f : B_{\tau_0} \rightarrow Y$, $B_{\tau_0} \subset X$, such that for every mapping f there exists such a constant $C_* > 0$ that $\|f(x)\| \leq C_* \|x\|$ for $x \in B_{\tau_0}$.

Let

$$\|f\|_* = \inf\{C_* > 0; \|f(x)\| \leq C_* \|x\| \text{ for } x \in B_{\tau_0}\}.$$

This functional is a norm.

THEOREM 1. *The space $C_*^{0,1}(B_{\tau_0}, Y)$ with the norm $\|\cdot\|_*$ is the Banach space (compare [5]).*

Let X, Y be a real Banach spaces, U an open subset of X and $h : U \rightarrow X$ be a function of class C^1 , bounded together with its first derivative on U .

Lemma 1 specifies the additional properties of the solution of the problem (2) for x in a neighbourhood of zero in the case of regular mapping h .

DEFINITION 2. *We say that a mapping $f : U \rightarrow Y$ has in a point $x \in U$ a derivative in a direction of the mapping h if there exists a limit*

$$(\nabla_h f)(x) := \lim_{t \rightarrow 0} \frac{f(v(0, x)) - f(v(t, x))}{t} \quad \text{for } t \in \mathbb{R},$$

where $v = v(t, x)$ is the solution of the problem (2) in a neighbourhood of a point $(0, x)$.

We can use in Definition 2 the natural transformation generated by the regular mapping h (for $t \geq 0$), since

$$(\nabla_h f)(x) = - \left[\frac{\partial}{\partial t} f(v(t, x)) \right]_{t=0}$$

in a neighbourhood of a point $x = 0$.

2. The Cauchy problem for the generalized differential equations of second order with singularity in a point zero

Let X, Y be real Banach spaces, U an open subset of X and $h_1, h_2 : U \rightarrow X$ be the functions of class C^1 , bounded together with their first derivatives on U .

DEFINITION 3. *Let $f : U \rightarrow Y$. A directional derivative of a function*

$$X \supset U \ni x \rightarrow (\nabla_{h_1} f)(x) \in Y$$

in a direction of a mapping h_2 (if it exists) we shall denote by the symbol $(\nabla_{(h_2, h_1)}^2 f)(x)$ and call the directional derivative of the second order of f in the direction of the pair of mappings (h_2, h_1) ,

$$(\nabla_{(h_2, h_1)}^2 f)(x) = (\nabla_{h_2} (\nabla_{h_1} f))(x) \quad \text{for } x \in U.$$

From Theorem 10.4.5 and Theorem 10.8.2 in [1] it follows that for any $x_0 \in U$ there exist the constants $s_0, t_0 > 0$ and a neighbourhood $U_0 \subset U$ of a point x_0 such that each of the following Cauchy problems

$$(2') \quad \begin{aligned} \frac{\partial}{\partial s} v_1(s, x) &= -h_1(v_1(s, x)) & \text{and} & \frac{\partial}{\partial t} v_2(t, x) = -h_2(v_2(t, x)) \\ v_1(0, x) &= x & & v_2(0, x) = x \end{aligned}$$

has exactly one continuously differentiable solution, respectively: $v_1 = v_1(s, x)$ in the domain $(-s_0, s_0) \times U_0$ and $v_2 = v_2(t, x)$ in the domain $(-t_0, t_0) \times U_0$.

From the Definition 3 it follows that

$$(\nabla_{(h_2, h_1)}^2 f)(x) = \left[\frac{\partial}{\partial t} \left[\frac{\partial}{\partial s} f(v_1(s, v_2(t, x))) \right]_{s=0} \right]_{t=0},$$

where $v_1 = v_1(s, x)$, $v_2 = v_2(t, x)$ are the solutions of the Cauchy problems (2') for $s \in (-s_0, s_0)$, $t \in (-t_0, t_0)$ and $x \in U_0$. The above equality is true for the natural transformations generated by the regular mappings h_1, h_2 in a neighbourhood of a point $x = 0$ (for $s, t \geq 0$).

COROLLARY 1. *If a mapping $f : U \rightarrow Y$ is twice differentiable at a point $x \in U$, then the following equality is true*

$$(\nabla_{(h_2, h_1)}^2 f)(x) = D^2 f(x)(h_2(x), h_1(x)) + Df(x)(Dh_1(x)(h_2(x))).$$

P r o o f. Since f is twice differentiable, by Definition 3, we obtain

$$\begin{aligned} (\nabla_{(h_2, h_1)}^2 f)(x) &= \left[\frac{\partial}{\partial t} \left[\frac{\partial}{\partial s} f(v_1(s, v_2(t, x))) \right]_{s=0} \right]_{t=0} \\ &= \left[\frac{\partial}{\partial t} \left[Df(v_1(s, v_2(t, x)))(-h_1(v_1(s, v_2(t, x)))) \right]_{s=0} \right]_{t=0} \\ &= - \left[\frac{\partial}{\partial t} \left[Df(v_2(t, x))(h_1(v_2(t, x))) \right]_{t=0} \right]_{t=0} \\ &= [D^2 f(v_2(t, x))(h_2(v_2(t, x)), h_1(v_2(t, x))) \\ &\quad - Df(v_2(t, x))(Dh_1(v_2(t, x))(-h_2(v_2(t, x))))]_{t=0} \\ &= D^2 f(x)(h_2(x), h_1(x)) + Df(x)(Dh_1(x)(h_2(x))). \blacksquare \end{aligned}$$

DEFINITION 4. *Let U and V be open subsets of Banach spaces X and Y , respectively. Let $h_1, h_2 : U \rightarrow X$ be mappings of class C^1 and F be any function from $U \times V$ into Y .*

Every function $f : U \rightarrow V$ which has a derivative of a second order in a direction of a pair of mappings (h_1, h_2) in U and fulfills the equation

$$(*) \quad (\nabla_{(h_2, h_1)}^2 f)(x) + a(\nabla_{h_1} f)(x) = F(x, f(x)) \quad \text{for } x \in U,$$

where $a \geq 0$, will be called a solution of $()$.*

We shall introduce the following assumption

ASSUMPTION 1. Let $h_i : B_{\rho_1} \rightarrow X$ ($i = 1, 2$), with $B_{\rho_1} \subset X$, be regular mappings and let $C_i > 0$ ($i = 1, 2$) be the constants such that the following conditions are fulfilled

$$(1') \quad y^*(Dh_i(0)(y)) \geq C_i \quad (i = 1, 2)$$

for $y^* \in T(y)$ and for every $y \in X$ such that $\|y\| = 1$. We shall assume that α_i are some constants from $(0, C_i)$, $v_i : [0, \infty) \times B_{r_1} \rightarrow X$, where $r_1 \in (0, \rho_1)$, are the natural transformations generated by the mappings h_i ($i = 1, 2$) and the following inequalities take places

$$(3') \quad \|v_i(s, x)\| \leq e^{-\alpha_i s} \|x\| \quad \text{for } s \in [0, \infty), x \in B_{r_1} \quad (i = 1, 2).$$

For the mapping $F : B_{\rho_1} \times B_{\rho_2} \rightarrow Y$, with $B_{\rho_1} \times B_{\rho_2} \subset X \times Y$, and for $a \geq 0$ we consider the Cauchy problem

$$(6) \quad \begin{aligned} (\nabla_{(h_2, h_1)}^2 f)(x) + a(\nabla_{h_1} f)(x) &= F(x, f(x)) \quad \text{for } x \in B_{\rho_1} \\ f(0) &= 0, \quad (\nabla_{h_1} f)(0) = 0, \end{aligned}$$

under Assumption 1.

LEMMA 3. Let $F : B_{\rho_1} \times B_{\rho_2} \rightarrow Y$, with $B_{\rho_1} \times B_{\rho_2} \subset X \times Y$, be a continuous mapping such that for certain constants $\tilde{\rho}_1 \in (0, \rho_1]$, $\tilde{\rho}_2 \in (0, \rho_2]$ and $K > 0$ we have

$$(i) \quad \|F(x, y)\| \leq K \|x\| \quad \text{for } (x, y) \in B_{\tilde{\rho}_1} \times B_{\tilde{\rho}_2}.$$

Then for $\tau_1 = \min(r_1, \tilde{\rho}_1)$ (where r_1 is a constant from Assumption 1) and for any continuous function $f : B_{\tau_1} \rightarrow B_{\tilde{\rho}_2}$ two following conditions are equivalent:

I. f is the solution of Cauchy problem (6) (in particular f is continuously differentiable in a direction of the mapping h_1 and twice differentiable in a direction of the pair of mappings (h_2, h_1)).

II. f fulfills the equation

$$(7) \quad f(x) = \int_0^\infty \int_0^\infty e^{-at} F(v_2(t, v_1(s, x)), f(v_2(t, v_1(s, x)))) dt ds$$

for $x \in B_{\tau_1}$, where the above integral is absolutely convergent.

Proof. Let $\tau_1 = \min(r_1, \tilde{\rho}_1)$. By (i) and (3'), any function $f \in B_{\tilde{\rho}_2} \subset C(B_{\tau_1}, Y)$ fulfills the following inequalities

$$(8) \quad \|e^{-at} F(v_2(t, x), f(v_2(t, x)))\| \leq e^{-(\alpha_2+a)t} K \|x\|$$

and

$$(9) \quad \|e^{-at} F(v_2(t, v_1(s, x)), f(v_2(t, v_1(s, x))))\| \leq e^{-\alpha_1 s} e^{-(\alpha_2+a)t} K \|x\|$$

for $t, s \in [0, \infty)$, $x \in B_{\tau_1}$.

Let $f \in C(B_{\tau_1}, Y)$ be the solution of the problem (6). From Definition 3 it follows that

$$(\nabla_{h_2}(\nabla_{h_1}f))(x) + a(\nabla_{h_1}f)(x) = F(x, f(x)) \quad \text{for } x \in B_{\tau_1}.$$

Hence

$$-\frac{\partial}{\partial t}[e^{-at}(\nabla_{h_1}f)(v_2(t, x))] = e^{-at}F(v_2(t, x), f(v_2(t, x)))$$

for $t \in [0, \infty), x \in B_{\tau_1}.$

Integrating above equation with respect to t on the interval $[0, t]$, we obtain

$$(10) \quad -e^{-at}(\nabla_{h_1}f)(v_2(t, x)) + (\nabla_{h_1}f)(v_2(0, x))$$

$$= \int_0^t e^{-a\tau}F(v_2(\tau, x), f(v_2(\tau, x)))d\tau \quad \text{for } t \in [0, \infty), x \in B_{\tau_1}.$$

Since $\lim_{t \rightarrow \infty} v_2(t, x) = 0$ for every $x \in B_{\tau_1}$ by Lemma 1, from the continuity of the mapping $\nabla_{h_1}f$, due to the condition $(\nabla_{h_1}f)(0) = 0$, we conclude that

$$\lim_{t \rightarrow \infty} e^{-at}(\nabla_{h_1}f)(v_2(t, x)) = 0 \quad (a \geq 0).$$

Consequently, by (10), we obtain

$$(11) \quad (\nabla_{h_1}f)(x) = \int_0^\infty e^{-a\tau}F(v_2(\tau, x), f(v_2(\tau, x)))d\tau \quad \text{for } x \in B_{\tau_1},$$

where the above integral is absolutely convergent by (8). The following equation is true

$$-\frac{\partial}{\partial s}f(v_1(s, x)) = \int_0^\infty e^{-a\tau}F(v_2(\tau, v_1(s, x)), f(v_2(\tau, v_1(s, x))))d\tau$$

for $s \in [0, \infty), x \in B_{\tau_1}$. Integrating the above equation with respect to s on the interval $[0, s]$, we have

$$(12) \quad -f(v_1(s, x)) + f(v_1(0, x))$$

$$= \int_0^s \int_0^\infty e^{-a\tau}F(v_2(\tau, v_1(\sigma, x)), f(v_2(\tau, v_1(\sigma, x))))d\tau d\sigma$$

for $s \in [0, \infty), x \in B_{\tau_1}$.

Since $\lim_{t \rightarrow \infty} v_1(t, x) = 0$ for every $x \in B_{\tau_1}$ by Lemma 1, from the continuity of the mapping f and (12), we obtain

$$f(x) = \int_0^\infty \int_0^\infty e^{-a\tau}F(v_2(\tau, v_1(\sigma, x)), f(v_2(\tau, v_1(\sigma, x))))d\tau d\sigma \quad \text{for } x \in B_{\tau_1},$$

where the above integral is absolutely convergent by (9).

Now we shall show that every solution $f \in \mathcal{B}_{\tilde{\rho}_2} \subset C(B_{\tau_1}, Y)$ of the above integral equation is the solution of the problem (6). Notice that

$$\begin{aligned} & f(v_1(s, v_2(t, x))) \\ &= \int_0^{\infty} \int_0^{\infty} e^{-a\tau} F(v_2(\tau, v_1(\sigma, v_1(s, v_2(t, x)))), f(v_2(\tau, v_1(\sigma, v_1(s, v_2(t, x)))))) d\tau d\sigma \end{aligned}$$

for $s, t \in [0, \infty)$, $x \in B_{\tau_1}$. By Lemma 1 we have $v_1(\sigma, v_1(s, x)) = v_1(\sigma + s, x)$ for $\sigma, s \in [0, \infty)$, $x \in B_{\tau_1}$. Hence

$$\begin{aligned} & f(v_1(s, v_2(t, x))) \\ &= \int_s^{\infty} \int_0^{\infty} e^{-a\tau} F(v_2(\tau, v_1(\sigma, v_2(t, x))), f(v_2(\tau, v_1(\sigma, v_2(t, x)))))) d\tau d\sigma \end{aligned}$$

for $s, t \in [0, \infty)$, $x \in B_{\tau_1}$.

Differentiating above equation with respect to s at a point $s = 0$, we obtain

$$\left[\frac{\partial}{\partial s} f(v_1(s, v_2(t, x))) \right]_{s=0} = - \int_0^{\infty} e^{-a\tau} F(v_2(\tau, v_2(t, x)), f(v_2(\tau, v_2(t, x)))) d\tau.$$

By Lemma 1 we have $v_2(\tau, v_2(t, x)) = v_2(\tau + t, x)$ for $\tau, t \in [0, \infty)$, $x \in B_{\tau_1}$. Hence

$$(13) \quad (\nabla_{h_1} f)(v_2(t, x)) = -e^{at} \int_t^{\infty} e^{-a\tau} F(v_2(\tau, x), f(v_2(\tau, x))) d\tau$$

for $t \in [0, \infty)$, $x \in B_{\tau_1}$. In particular

$$(\nabla_{h_1} f)(x) = \int_0^{\infty} e^{-a\tau} F(v_2(\tau, x), f(v_2(\tau, x))) d\tau \quad \text{for } x \in B_{\tau_1}$$

is a continuous function. Differentiating the equation (13) with respect to t , we obtain

$$\begin{aligned} \frac{\partial}{\partial t} (\nabla_{h_1} f)(v_2(t, x)) &= -ae^{at} \int_t^{\infty} e^{-a\tau} F(v_2(\tau, x), f(v_2(\tau, x))) d\tau \\ &+ F(v_2(t, x), f(v_2(t, x))) \quad \text{for } x \in B_{\tau_1}. \end{aligned}$$

Therefore, by (13), we have for $t = 0$

$$(\nabla_{h_2} (\nabla_{h_1} f))(x) = -a(\nabla_{h_1} f)(x) + F(x, f(x)) \quad \text{for } x \in B_{\tau_1}.$$

Now, it is sufficient to show that $f(0) = 0$ and $(\nabla_{h_1} f)(0) = 0$. Since $v_2(t, 0) = 0$ for $t \in [0, \infty)$, from the inequality (8) it follows that the condition $(\nabla_{h_1} f)(0) = 0$ is fulfilled. Moreover, since $v_1(s, 0) = 0$ for $s \in [0, \infty)$, from the inequality (9) it follows that the condition $f(0) = 0$ is fulfilled. ■

COROLLARY 2. *Let $F : B_{\rho_1} \rightarrow Y$, with $B_{\rho_1} \subset X$, be a continuous mapping such that for certain constants $\tilde{\rho}_1 \in (0, \rho_1]$ and $K > 0$ the following condition takes place*

$$(i) \|F(x)\| \leq K\|x\| \quad \text{for } x \in B_{\tilde{\rho}_1}.$$

If $a \geq 0$ than for $\tau_1 = \min(r_1, \tilde{\rho}_1)$ the problem (6) under the Assumption 1 has exactly one solution $f \in C(B_{\tau_1}, Y)$ of the form

$$f(x) = \int_0^\infty \int_0^\infty e^{-at} F(v_2(t, v_1(s, x))) dt ds \quad \text{for } x \in B_{\tau_1}.$$

This solution is in $C_^{0,1}(B_{\tau_1}, Y)$.*

Proof. This remark follows immediately from Lemma 3 and $f \in C_*^{0,1}(B_{\tau_1}, Y)$ by (9). ■

The following theorem presents the sufficient conditions for the existence of the solution of the problem (6) in the class C .

THEOREM 2. *Let $F : B_{\rho_1} \times B_{\rho_2} \rightarrow Y$, with $B_{\rho_1} \times B_{\rho_2}$, be the continuous mapping such that for certain constants $\tilde{\rho}_1 \in (0, \rho_1]$, $\tilde{\rho}_2 \in (0, \rho_2]$ and K_1, K_2 , $(K_1^2 + K_2^2 > 0)$, $L > 0$ the following conditions take places:*

- (i) $\|F(x, y)\| \leq K_1\|x\| + K_2\|y\| \quad \text{for } (x, y) \in B_{\tilde{\rho}_1} \times B_{\tilde{\rho}_2}$.
- (ii) $\|F(x, y_1) - F(x, y_2)\| \leq L\|y_1 - y_2\|\|x\| \text{ for } x \in B_{\tilde{\rho}_1} \text{ and } y_1, y_2 \in B_{\tilde{\rho}_2}$.

For $K_1 \neq 0$ let

$$\tau_2 = \begin{cases} \min(r_1, \tilde{\rho}_1, \gamma \frac{1}{L}) & \text{if } 0 \leq \frac{K_2}{a} \leq 1 - \frac{K_1/\tilde{\rho}_2}{L} \text{ and } a \neq 0 \\ \min(r_1, \tilde{\rho}_1, \gamma \frac{1-K_2/a}{K_1/\tilde{\rho}_2}) & \text{if } 1 - \frac{K_1/\tilde{\rho}_2}{L} \leq \frac{K_2}{a} \leq \frac{L}{K_1/\tilde{\rho}_2 + L} \text{ and } a \neq 0 \\ \min(r_1, \tilde{\rho}_1, \gamma \frac{1}{K_1/\tilde{\rho}_2 + L}) & \text{if } \frac{K_2}{a} \geq \frac{L}{K_1/\tilde{\rho}_2 + L} \text{ and } a \neq 0 \\ \min(r_1, \tilde{\rho}_1, \frac{\alpha_1 \alpha_2}{K_1/\tilde{\rho}_2 + L}) & \text{if } a = 0, \end{cases}$$

and for $K_1 = 0$ let $\tau_2 = \min(r_1, \tilde{\rho}_1, \gamma \frac{1}{L})$ (where $\gamma = \alpha_1(\alpha_2 + a)$ and α_1, α_2, r_1 denote constants from Assumption 1).

Then the problem (6) has exactly one solution f in the ball $B_{\tilde{\rho}_2} \subset C(B_{\tau_2}, Y)$. This solution is in $C_*^{0,1}(B_{\tau_2}, Y)$.

Proof. Let $\tau_1 = \min(r_1, \tilde{\rho}_1)$. From (i) and (ii) it follows that for every function $f \in B_{\tilde{\rho}_2} \subset C(B_{\tau_1}, Y)$ the inequalities are true:

$$(14) \|e^{-at} F(v_2(t, x), f(v_2(t, x)))\| \leq (K_1 + L\|f(v_2(t, x))\|) e^{-(\alpha_2 + a)t} \|x\|$$

for $t \in [0, \infty)$, $x \in B_\tau$ and

$$(15) \quad \begin{aligned} & \|e^{-at} F(v_2(t, v_1(s, x)), f(v_2(t, v_1(s, x))))\| \\ & \leq (K_1 + L\|f(v_2(t, v_1(s, x)))\|)e^{-\alpha_1 s} e^{-(\alpha_2+a)t}\|x\| \end{aligned}$$

for $s, t \in [0, \infty)$, $x \in B_\tau$.

The analysis similar to that in the proof of Lemma 3 (when (14) replaces (8) and (15) replaces (9)) shows that the problem (6) in the ball $\mathcal{B}_{\tilde{\rho}_2} \subset C(B_\tau, Y)$, $\tau \leq \tau_1$, is equivalent to the equation

$$f(x) = \int_0^\infty e^{-at} F(v_2(t, v_1(s, x)), f(v_2(t, v_1(s, x)))) dt \quad \text{for } x \in B_\tau.$$

Let τ_2 be as assumed. For every $\tau < \tau_2$ we prove existence and uniqueness of the solution $f \in \mathcal{B}_{\tilde{\rho}_2} \subset C(B_\tau, Y)$ of the equation (7):

$$f(x) = \int_0^\infty \int_0^\infty e^{-at} F(v_2(t, v_1(s, x)), f(v_2(t, v_1(s, x)))) dt ds, \quad x \in B_\tau,$$

equivalent to the problem (6).

The condition (i) implies that for every function $f \in \mathcal{B}_{\tilde{\rho}_2} \subset C(B_\tau, Y)$ we have

$$(16) \quad \|e^{-at} F(v_2(t, x), f(v_2(t, x)))\| \leq K_1 e^{-(\alpha_2+a)t} \|x\| + K_2 \tilde{\rho}_2 e^{-at}$$

for $t \in [0, \infty)$, $x \in B_\tau$ and

$$(17) \quad \begin{aligned} & \|e^{-at} F(v_2(t, v_1(s, x)), f(v_2(t, v_1(s, x))))\| \\ & \leq K_1 e^{-\alpha_1 s} e^{-(\alpha_2+a)t} \|x\| + K_2 \tilde{\rho}_2 e^{-at} \end{aligned}$$

for $s, t \in [0, \infty)$, $x \in B_\tau$.

Using the Banach fixed point theorem ([3] Theorem VIII.1), consider a mapping S on the closed ball $\bar{\mathcal{B}}_{\tilde{\rho}_2} \subset C(B_\tau, Y)$ defined by

$$S(f)(x) = \int_0^\infty \int_0^\infty e^{-at} F(v_2(t, v_1(s, x)), f(v_2(t, v_1(s, x)))) dt ds$$

for $x \in B_\tau$, $f \in \bar{\mathcal{B}}_{\tilde{\rho}_2}$. From the inequality (15) we obtain

$$(18) \quad \begin{aligned} & \|S(f)(x)\| \leq \int_0^\infty \int_0^\infty (K_1 + L\|f(v_2(t, v_1(s, x)))\|) e^{-\alpha_1 s} e^{-(\alpha_2+a)t} \|x\| dt ds \\ & \leq \frac{(K_1 + L\tilde{\rho}_2)\|x\|}{\alpha_1(\alpha_2 + a)} \quad \text{for } x \in B_\tau, f \in \bar{\mathcal{B}}_{\tilde{\rho}_2}. \end{aligned}$$

We shall prove that S is a contraction. Let $f_1, f_2 \in \bar{\mathcal{B}}_{\tilde{\rho}_2} \subset C(B_\tau, Y)$. Then from the assumption (ii) we have

$$\begin{aligned}
(19) \quad & \|S(f_1)(x) - S(f_2)(x)\| \\
& \leq \int_0^\infty \int_0^\infty L e^{-\alpha_1 s} e^{-(\alpha_2+a)t} \|f_1(v_2(t, v_1(s, x))) - f_2(v_2(t, v_1(s, x)))\| \|x\| dt ds \\
& \leq \frac{L\|x\|}{\alpha_1(\alpha_2+a)} \|f_1 - f_2\| \quad \text{for } x \in B_\tau.
\end{aligned}$$

In the case of $K_1 \neq 0$ and $0 \leq \frac{K_2}{a} \leq \frac{L}{K_1/\tilde{\rho}_2+L}$, with $a \neq 0$ we have

$$\tau_2 = \min \left(r_1, \tilde{\rho}_1, \alpha_1(\alpha_2+a) \frac{1}{L}, \alpha_1(\alpha_2+a) \frac{1-K_2/a}{K_1/\tilde{\rho}_2} \right),$$

because the condition $\frac{K_2}{a} \geq 1 - \frac{K_1/\tilde{\rho}_2}{L}$ is equivalent to $\frac{1}{L} \geq \frac{1-K_2/a}{K_1/\tilde{\rho}_2}$ and from the condition $\frac{K_2}{a} \leq \frac{L}{K_1/\tilde{\rho}_2+L}$ it follows that $\frac{1}{K_1/\tilde{\rho}_2+L} \leq \frac{1-K_2/a}{K_1/\tilde{\rho}_2}$. By (17) and the condition $\tau_2 \leq \alpha_1(\alpha_2+a) \frac{1-K_2/a}{K_1/\tilde{\rho}_2}$ we obtain

$$\begin{aligned}
\|S(f)(x)\| & \leq \int_0^\infty \int_0^\infty (K_1 e^{-\alpha_1 s} e^{-(\alpha_2+a)t} \|x\| + K_2 \tilde{\rho}_2 e^{-at}) dt ds \\
& < \int_0^\infty \int_0^\infty (K_1 e^{-\alpha_1 s} e^{-(\alpha_2+a)t} \tau + K_2 \tilde{\rho}_2 e^{-at}) dt ds \\
& \leq \int_0^\infty \int_0^\infty (K_1 e^{-\alpha_1 s} e^{-(\alpha_2+a)t} \alpha_1(\alpha_2+a) \frac{1-K_2/a}{K_1/\tilde{\rho}_2} + K_2 \tilde{\rho}_2 e^{-at}) dt ds \\
& = (1 - K_2/a) \tilde{\rho}_2 + \frac{K_2 \tilde{\rho}_2}{a} \\
& = \tilde{\rho}_2 \quad \text{for } x \in B_\tau, f \in \bar{\mathcal{B}}_{\tilde{\rho}_2}.
\end{aligned}$$

The inequality $\tau_2 \leq \alpha_1(\alpha_2+a) \frac{1}{L}$ is true, hence we conclude from (19) that the mapping S is a contraction.

Now let $\frac{K_2}{a} \geq \frac{L}{K_1/\tilde{\rho}_2+L}$ (and $a \neq 0$) or $a = 0$ or $K_1 = 0$. Then

$$\tau_2 = \min \left(r_1, \tilde{\rho}_1, \alpha_1(\alpha_2+a) \frac{1}{K_1/\tilde{\rho}_2+L} \right).$$

From (18) and the condition $\tau_2 \leq \alpha_1(\alpha_2+a) \frac{1}{K_1/\tilde{\rho}_2+L}$ it follows that

$$\|S(f)\| < \tilde{\rho}_2 \quad \text{for } f \in \bar{\mathcal{B}}_{\tilde{\rho}_2}.$$

Thus S is a well-defined mapping and $S : \bar{\mathcal{B}}_{\tilde{\rho}_2} \rightarrow \mathcal{B}_{\tilde{\rho}_2} \subset \bar{\mathcal{B}}_{\tilde{\rho}_2}$.

Since $\tau_2 \leq \frac{\alpha_1(\alpha_2+a)}{K_1/\tilde{\rho}_2+L} \leq \frac{\alpha_1(\alpha_2+a)}{L}$, then, from the inequality (19) it follows that S is a contraction. So, the assumptions of the Banach fixed point theorem hold. Therefore, there exists only one mapping $f_\tau \in \bar{\mathcal{B}}_{\tilde{\rho}_2} \subset C(B_\tau, Y)$ which is a fixed point of the mapping S and so it is the solution of the problem (6); in addition $f_\tau = S(f_\tau)$ belongs to the open ball $\mathcal{B}_{\tilde{\rho}_2}$. From

the uniqueness of the solution we obtain the equality $f_\tau = f_{\tau'} \mid B_\tau$ for $\tau < \tau' < \tau_2$. The searched solution $f \in \mathcal{B}_{\tilde{\rho}_2} \subset C(B_{\tau_2}, Y)$ coincide with the function f_τ on every ball B_τ , i.e.

$$f(x) = f_\tau(x) \quad \text{for } x \in B_\tau, \tau < \tau_2$$

By (18), $f \in C_*^{0,1}(B_{\tau_2}, Y)$ what completes our considerations.

References

- [1] J. Dieudonné, *Foundations of Modern Analysis*, New York 1960.
- [2] G. Lumer and R. S. Philips, *Dissipative operators in Banach space*, Pacific J. Math. (1961), 679–698.
- [3] K. Maurin, *Analiza t.I*, PWN, Warszawa 1976.
- [4] T. Poreda, *On generalized differential equations in Banach spaces*, Dissertationes Math. 1991.
- [5] A. Szadkowska, *The Cauchy problem for certain generalized differential equations of first order with singularity*, Demonstratio Math. 32 (2) (1999), 303–322.

INSTITUTE OF MATHEMATICS
 TECHNICAL UNIVERSITY OF ŁÓDŹ
 ul. Źwirki 36
 90-924 ŁÓDŹ, POLAND

Received April 3rd, 2000.

