
DEMONSTRATIO MATHEMATICA 
Vol. XXXIII No 4 2000 

Nikolaos Matzakos, Nikolaos S. Papageorgiou 

E X I S T E N C E OF PERIODIC SOLUTIONS 
FOR Q U A S I L I N E A R O R D I N A R Y D I F F E R E N T I A L 

EQUATIONS W I T H D I S C O N T I N U I T I E S 

Abstract. We consider a quasilinear differential equation with discontinuous right 
hand side and periodic boundary conditions. To obtain an existence theory we pass to a 
relevant multivalued variant of the original problem, which we solve. Our approach is a 
mixture of the variational method (for nonsmooth locally Lipschitz functional) and of the 
method of upper and lower solutions. The mixing of these two techniques is made possible 
by a nonresonance condition below the first nonzero eigenvalue of the one-dimensional 
p-Laplacian with periodic boundary conditions. 

1. Introduction 
In this paper we study the following periodic problem for quasilinear 

differential equations 

(1) f - (Ix'(t)r2x'(t))' = f(t,x(t)) a .e. on T= [0,6] j 
1 x (0 ) = x(b), x'(0) = x'(b), a<p< oo J ' 

We do not assume f(t, •) to be continuous. So the problem (1) need 
not have a solution. In order to be able to develop a satisfactory existence 
theory, we have to pass to a multivalued problem, which is obtained by, 
roughly speaking, filling in the gaps at the discontinuity points of f(t, •). 
For this purpose we introduce the following two functions: 

fo(t, x) = limess inf f ( t , x') 
e|0 \x—x'\<e 

and fi{t, x) = l imess sup f(t,x'). 
ei-0 \x-x'\<e 
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Evidently f0(t,x) < h(t,x) for all (t,x) € T x R. Then instead of (1), 
we consider the following multivalued version of it: 

We prove the existence of a solution for problem (2) by combining the 
variational approach with the method of upper and lower solutions. The 
link between these two techniques is a nonresonance condition below the 
first nonzero eigenvalue of the one dimensional p-Laplacian with periodic 
boundary conditions. 

Quasilinear ordinary differential equations with Dirichlet boundary con-
ditions were studied by Boccardo-Drabek-Giachetti-Kucera [1], Drabek [7], 
DelPino-Elgueta-Manasevich [6] and De Coster [5]. Under homogeneous 
Dirichlet boundary conditions, the differential operator Ax = — {\x'\p~2x')' 
(the one dimensional p-Laplacian) is invertible (as a nonlinear map between 
appropriate spaces) and so classical Leray-Schauder degree techniques (like 
the Leray-Schauder principle) can be used. In contrast for the periodic prob-
lem, the corresponding operator has a nontrivial kernel and so a different 
aopproach is needed. This problem was examined by Guo [9], who con-
sidered a more general version of (1) by allowing / to depend also on x'. 
However he assumed / to be continuous in all three variables (including 
the time-variable). His approach was degree theoretic, based on Mawhin's 
coincidence degree theory. This forced him to introduce additional restric-
tive conditions on the function / (like growth condition, see hypothesis Hi , 
p. 710 in Guo [9]). Our method of proof here is completely different from 
that of Guo and is based on variational arguments mixed with ideas from 
the method of upper and lower solutions. 

2. Preliminaries 
Since the function f ( t , •) is discontinuous, our variational technique will 

be based on the critical point theory for nonsmooth locally Lipschitz energy 
functionals. For easy reference we recall here the basic aspects of that theory. 
For details we refer to Chang [3] and Clarke [4], 

Let A" be a Banach space and / : I - » R a function. We say that /(•) is 
locally Lipschitz, if for every x G X, there is a neighborhood U of x and a 
k > 0 depending on U such that 

- ( Ix ' ( t ) \ p - 2 x ' ( t )Y € [ /o ( i ,x( i ) ) , / i ( i ,x( i ) ) ] a.e. on T 
x(0) = x(b), x'(0) = x'(b), a<p< oo 

for all y, z € U. For every h € X, we define the generalized directional 
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derivative f°{x\ h) by 

fOf M — f ( x ' + X h ) - f ( x ' ) 
f (x\h) = lim . 

x —>x A 
A|0 

It is easy to check that h —• f°(x;h) is sublinear, \ f°(x]h)\ < and 
h —• f°(x; h) is continuous. So /°(x; •) is the support function of a nonempty, 
convex and w*-compact set 

d f ( x ) = { x * G X* : (x*,h) < / ° ( x ; h) f o r a l l h € X } 

known as the "generalized subdifferential of /(•) at x" (see Clarke [4]). 
For every x* € d f ( x ) , we have ||x*|| < k. Also if f , g : X —> M are locally 

Lipschitz functions, then d(f + g)(x) C d f ( x ) + dg(x) and d ( \ f ) ( x ) = 

X d f ( x ) for all A 6 K. If / : X —• R is convex, then it is well-known 
from convex analysis that /(•) is locally Lipschitz and its subdifferential 
in the sense of convex analysis coincides with the generalized subdifferential 
described above. 

Let / : X —> R be locally Lipschitz on the Banach space x. A point 
X is said to be a "critical point" of /(•) if 0 G d f ( x ) . It is easy to see 
that if x G X is a local extremum of /(•), then x is a critical point of /(•). 
We say that /(•) satisfies the "(PS)-condition" (Palais-Smale condition), 
if any sequence {xn}n>i C X along which {/ (x n )} n >i is bounded and 

= infill^*!! : x* £ d f ( x n ) } —• 0 as n —> oo, has a strongly convergent 
subsequence. Since for / € C1(X, R), d f ( x ) ~ { f ' ( x ) } , we see that for a 
smooth /(•), the above version of the (PS)-condition coincides with the 
classical one (see Rabinowitz [12]). 

In our analysis of problem (2), we will need the following theorem, which 
is due to Chang [3] and extends to a nonsmooth setting the well-known 
mountain path theorem of Ambrosetti and Rabinowitz [12]. 

T H E O R E M 1. Assume that: 

X is a reflexive Banach space, X — X\ ©X2 with dimXi < 00, / : X —> 

R is a locally Lipschitz function which satisfies the (PS)-condition and 

there exist constants Pi < 02 and a neighborhood U of 0 in X\ such that 

f\du < Pi and f\x2 > 02-
Then / ( • ) has a critical point x and f ( x ) = c > 02-

3. Auxiliary results 
In this section we prove two auxiliary results which will allow us in 

Section 4 to use the method of upper and lower solutions together with 
theorem 1 in order to obtain a nontrivial solution for problem (2). In what 
follows W^P(T) = {x e W l j , ( T ) : x(0) = x(6)}. Recall that is 
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continuously embedded in C(T) and so the pointwise evaluations at t = 0 
and t = b make sense. 

First let us define what we mean by a solution of problem (2). 

DEFINITION : By a solution of (2) we mean a function x G Cl(T) such that 
|x'(-)|p~V(-) G W^ifJ)^ + i = 1) and there exists g G £9(T) such that 
f0(t,x(t)) < g(t) < h(t,x(t)) a.e. on T, - ( | x ' ( i ) | " -V( i ) ) ' = g(t) a.e. on T 
and x(0) = x(b), x'(0) = x'(b). 

Let A2 > 0 be the second eigenvalue of the one-dimensional p-Laplacian 
with periodic boundary conditions, i.e. 

f - ( I x ' ( t ) r V ( i ) ) ' = A 2 | * ( i ) r 2 *( i ) a.e. on T j 
U U ( 0 ) = x(b), x'(0) = x'(b) J ' 

Notice that Ai = 0 is the first eigenvalue. So A2 > 0 is the first nonzero 
eigenvalue of the p-Laplacian with periodic boundary conditions (see 
Showalter [13], Corollary 7.D, p. 78). 

Now we introduce our hypothesis for the function f(t,x). They will be in 
effect for the rest of this paper. Recall that a function h : T x R —> R is said 
to be "iV-measurable", if for every x : T —> R which is Borel measurable, we 
have that t —> h(t, x(t)) is Borel measurable (superpositional measurability). 
H(f): / : T x R — > R i s a Borel measurable function such that: 

(i) / 0 , / i are ^-measurable functions; 
(ii) for every M > 0, there exists 7M G Lq(T) such that for almost all 

t G T and all |x| < M, \ f{t,x)\ < 7 M { t ) \ 
(iii) limixi^oo < A2 uniformly for almost all t G T, 
(iv) for almost all t G T and all x G R \ {0} f(t, x)x > 0 (strict sign 

condition). 
By virtue of hypothesis H(f)(iii), we see that there exists e > 0 (with 

0 < A2 - e) and M > 0 such that 

(4) f(t,x) < (\2-e)\x\p-2x for almost all teT and all x > M > 0 
(5) and f(t,x) > (X2-£)\x\p~2x for almost alliG T and all x < -M<0. 

Moreover, from hypothesis H(f)(ii) we have that 

(6) | /( i , x) | < 7 M(t) for almost al i i G T and all |x| < M 
Combining (3), (4) and (5) above, we infer that for some e > 0 (with 

0 < A2 - e) and 7 6 Lq(T) 7 > 0, we have 

f(t, x) < (A2 - e) |x |p _ 2x + 7(t) for almost all t G T and all x > 0 
and f(t, x) > (A2 - e) |x |p _ 2x - 7(i)) for almost all t G T and all x < 0. 
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(7) 

and 

(8) 

We consider the following two auxiliary periodic problems: 

f - ( | ^ ( i ) r V ( i ) ) ' = ( A 2 - e ) k ( i ) r 2 0 ( i ) + 7 ( i ) a.e. on T 

U ( O ) = 0 ( 6 ) , <f>'(0) = 4>'{b) 

r - m t ) \ p ~ ' - v w r = (a 2 - £ ) i m r 2 m - t w a. e . o n t 

B y a solution of problem (6) (resp. of problem (7)), we mean a function 
<f) G Cl{T) (resp. V G Cl(T)) with \<j>'\p~24>' G W 1 > 9 ( T ) (resp. G 

W l i 9 ( T ) ) , which satisfies (6) (resp. (7)). 
In the next two propositions we prove that the two problems have solu-

tions <j> > 0 and ip < 0 respectively. 

P R O P O S I T I O N 2 . Problem, ( 6 ) has a solution <f> > 0 , 0 ^ 0 . 

P r o o f . Since 7 ( f ) > 0 a.e. on T, from Theorem 9.5, p. 210 of Gilbarg-
Trudinger [8], we 

know that if <p G C ^ T ) is a solution of (6), then (¡>{t) > 0 

for all t G T. 

So we have to show that a solution (f> exists. To this end let = 
Z ® Y", where Z is the space of constant functions (i.e. Z = R) and Y is 
the space of all functions in W^(T) with mean value zero (i.e. Y = {y G : Soy(t)dt = 0 } ) . Let R : W $ { T ) ^ R be defined by 

R(x) = -\\xTP ~ II? - \l(t)x(t)dt. 
P V 0 

If z G Z = R, then we have 

m = - ^ m s 
f 

So we infer that R(z) —• —00 as \z\ -
Next let y G Y. Using the Poincare-Wirtinger inequality, we have 

R(y) = -h'Wl - {-^1MpP - \ i ( t ) v { t ) d t 
P P Q 

=» R(y) +00 as ||y|| - > 0 0 , y G Y, 

(because ||y'||p is an equivalent norm on Y). 



758 N. M a t z a k o s , N. S. P a p a g e o r g i o u 

Finally we will show that R(-) satisfies (PS)-condition. To this end let 
{xn}n>i C W^P(T) such that |i2(®n)| < M and m(xn) —> 0 as n —> oo. Pick 
x* G dR(xn) such that m(xn) = ||cc* ||, n > 1. Such an element exists since 
dR(xn) is nonempty, tu-compact in Wp£(T)* and the norm of Wp£(T)* is 
weakly lower semicontinuous. Let Ji,J2,G: IR be defined by 

1 A — b 

J1(x) = -\\x'\\p
p, J2(x) = -^—^\\x\\p a n d G{x) = W t ) x { t ) dt. 

P P ¡J 

We have R(x) = J i — J2(x) — G(x). Hence 

dR(x) = d(Ji - J 2 - G)(x) C dJi(x) - dJ2{x) - dG(x) f o r a l l x G W^P{T). 

Let A : W^P(T) -» W^P{T)* be a nonlinear operator defined by 

b 

< A(x),y >= \ \x'(t)\p-2x'(t)y'{t)dt f o r a l l x,y G WX*{T). 
o 

Here by < •, • > we denote the duality brackets for the pair ( W ^ ( T ) , 
W^P(T)*). It is easy to verify that A(-) is monotone, demicontinuous and 
coercive (see for example Kourogenis-Papageorgiou [10]). Then dJ\{x) = 

A(x). Also if J2 : LP(T) —> R is defined by J2{x) = then J2 = 
J2\wi,P^Ty Since Wp£(T) is embedded continuously and densely in LP(T), 

using Theorem 2.2 of Chang [3], we have that dJ2(x) = (A2 - e ) | x ( - ) | p _ 2 x( - ) 
G Lq(T). So finally we have 

x*n = A(xn) - (A2 - e)\xn\p~2xn - 7 . 

We claim that the sequence {xn}„>i C Wp,p.{T) is either uniformly (in 
t G T) bounded from above or from below. Suppose not. Then we can find 
a subsequence, still denoted by {xn}n>i such that 

Ln = max xn —• +oo and £n = min xn —> —oo as n —> oo. 
T T 

Extending periodically xn(-) on [0,26], for all n > 1 large we can find 
an,Pn,8n,r)n G [0,26] such that 

xn(an) = xn(Pn) = 0, xn(t) > 0 

f o r t G (an,(3n), m a x [ x n ( i ) : t G [an,(3n]\ = Ln 

a n d xn(9n) = xn(rjn) — 0 , xn(t) < 0 

f o r t G (0n,Vn), m i n [ x „ ( i ) : t G [0n,Vn]] = ¿n-
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We will show that there exists £1 > 0 or £2 > 0 such that 

Pn Pn Pn 

\ \x'n(t)\pdt-(X2-e) J \xn{t)\pdt > Z1 5 \x'n(t)\pdt 
a„ atn a„ 
Vn Vn Vn 

and 5 \x'n(t)\pdt- (A2 - e ) \ \xn(t)\p dt > J \x'n{t)\p dt. 
8n 0n 6 n 

Suppose not . T h e n at least for a subsequence, we will have 

Pn Pn Pn 

\ \x'n(t)\pdt-(\2-e) \ \xn(t)\pdt < J \x'n(t)\pdt 
"n OLn Q„ 
Vn Vn Vn 

and J \x'n{t)\pdt- (A2 - e ) J \xn(t)\p dt < 62n \ \x'n(t)\p dt 
6n 9„ 8n 

with <5*, i 0 as n —» 00. Also we may assume that an —» a, (3n —• ¡3,6n —> 9 
and rjn —> 77 

We will work with the first of the last two inequalities, since the argu-
ments for the second are similar. Using Poincare 's inequality on (an,(3n), 
we have 

Pn A Pn 

(\2-e) J \xn(t)\pdt<0
 2 J K(t)\pdt. 

<*„ Ax ((an,(3n)) 
o 

Here by Ai {(an, ¡3n)) > 0 we denote the first (principal) eigenvalue of the 
one dimensional p - L a p l a c i a n on ( a n , ¡3n) with Dirichlet boundary conditions 
(i.e. of (—A p , Wo (a n ,/?„ ) ) ) . From Otani [11] we know that 

Ai ( ( < * „ , & ) ) = 1 ' 
(.0n-an)p Pp \P q, 

where /3(x,y) is the b e t a function defined by f3(x,y) = Joix-1(l — i ) y _ 1 dt, 

x,y> 0. Note that (f3n - an) < |T| and so Ai ( T ) <Ai ( ( a n , /?„)). T h e n we 
have 

] \x'n(t)\p dt - 0 X2~€ ] \x'n(t)\pdt < \x'n(t)\pdt. 
an Al ( ( a n , f 3 n ) ) On an 

Dividing both sides by \x'n(t)\p dt, we obtain 

1 A2 - e . 
1 - "5 < <V 

Ai ((an,(3n)) 
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Passing to the limit as n —> oo, we have 

1 < ^ ^ < 1 (since Ai ( T ) <Ai ( { a , 0 ) ) ) 

Ai (T) V J 

a contradiction. Note that if a = 0, j3 = b then 0 = r] = b and vice versa. So 
we conclude that one of the inequalities (8) or (9) holds. 

Suppose that (8) holds (the argument is similar if (9) holds). Define the 
functions un : [0, 26] -> R as follows: 

( t ) i f t e [ a n , P n ] 

if i e [0,26] \ [ a n ,/?„]. 

Evidently u n E W o
1 , p ( 0 , 2 b ) . Also let w n ( t ) = u n ( t ) for all i e T if /?„ < b, 

while if (3n > b set wn(t) — un(t + b) for t E [0,/3n — 6] and wn(t) = un(t) 
for t E [pn — b,b]. Clearly then wn E and ||w„||i,p,r = IKI|i,P,[o,2f>] 
(hence by || • | | i ,p ,t (resp. || • ||i,p,[o,2fc]) we denote the norm of the Sobolev 
space W l l P (T) (resp. of W l iP(0,'26))). We have 

I < < , y > I < £ n \ \ y \ \ for a l l y E 2 b ) . 

Take y = wn. We obtain 
fin Un Un 

^ \ x ' n ( t ) \ p d t - ( A 2 - e ) ^ \ x n ( t ) \ p d t - ^ j ( t ) x n ( t ) d t < e n \ \ u n \ \ l i P i [ 0 ! 2 b ] 

an &n o, 
fin fin 

\ \ x ' n { t ) \ p d t - \ n ( t ) x n ( t ) d t < £n\\un111,p,[0,2b] 
«n On 
Pn 

=> \ K W I ^ i ^ cill®n||i,?,(«„,/?„) for some cx > 0 
<*n 

(since un|(an,/3n) =xn). 

Using Poincare's inequality in the space WQ'p(an,f3n) we obtain that 
^ x n \ \ i , P , ( a n , p n ) < C2 for some C2 > 0 and all n > 1. So we have |xn(i) | d t 

< C3 for some C3 > 0 and all n > 1. Therefore 
t 

X n { t ) < J  d S - ° 3  f o r  3 , 1 1  t  6 V X n i P n ] 

OCn 

max{xn(i) : t E [ a n , P n ] } = L n < C3. 

However, by hypothesis Ln —> +00 as n —» 00 and so we have a contra-
diction. Thus we have proved that {xn}n>i is uniformly (in t E T) bounded 
from above or below. To fix things we will assume that it is bounded from 
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above. So xn(t) < C4 for all t 6 T and all n > 1. Recall that 

\<x*n,y>\< en||y|| for all y e W$(T), with en | 0. 

Take y = 1. We obtain 
b 

(A2 — e) ^ \xn(t)\p~2xn(t) dt\ < C5 for some C5 > 0 and all n > 1 

5 \xn(t)\p~2xn(t)dt + j |xn(i)|p-2a;n(i)iii 
{x„>0} {*„<o} 

< C6 ( c 6 = - C 5 . A2 - £ 

Since i n ( i ) < C4 for all i G T and all n > 1, then we see that 

\ \xn(t)\p~2xn(t) dt <C7 (C7 = C6+C^_1Ò) 
{ i n < 0 } 

5 I xn(t)\p~2{-xn{t))dt<c7 

{x„<0} 

sup J \xn{t)\p~ldt < c7 

- {x„<0> 
b 

sup J |xn(i)|p_1 di < c8 (c8 = c6 + 2c4_16); i.e. sup ||xn||p_1 < c8. 
n>l 0 n>l 

Now let xn — zn + yn, zn e Z = R and yn E Y, n > 1. We have 

(H) < xn,Vn > < EnhnW 
b b b 

=> S K( i )| p di - (A2 - e) 51xn{t)\p- lyn{t) dt - \ -y(t)yn(t) dt < Cl\\yn\\. 
0 0 0 

From the Poincaré-Wirtinger inequality we know that 

\\yn\\pp<y2\\y'Jpp-

Using this fact in (10) we obtain 

(12) \\y'Jp < (A2-£)||xn||p-1||yn||p + ||7||9||2/„||P+c9||y;||p for some c9 > 0 

< (A2 - e ) c 8 T ^ + hlli-TÄT + C9 
2 ' 

{y'n = <}n>i c Lp(T) is bounded. 

,1/p ' » "19 1/g Ao An 
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Finally recall that |i?(xn)| < M for all n > 1. So using the boundedness 
of « } n > i C Lp(T) we have 

- l-\\x'X + < M + | | 7 | | , | | X n | | p 

ll^nllp < cio(l + IMUIznllp) for some ci0 > 0 
=> {x„}n>i Q LP(T) is bounded. 

So by passing to a subsequence if necessary, we may assume that xn —• x 
in Wp^(T) and xn —> x in LP(T) as n —> oo. Therefore we have 

b 

- (A2 - e) S M t ) | p - 2 x „ ( t ) ( x n ( t ) - ®(i)) di 
o 

b 

- \ - y ( t ) ( x n ( t ) - x ( t ) ) d t 

o 
^ £n\\xn X ||. 

But J j |x n ( i ) |P- 2 x n ( i ) (x n ( i ) - s ( i ) ) dt -> 0 and i { t ) { x n { t ) - x ( t ) ) dt -> 

0 as n —> oo. Thus we obtain that 

lim < xn — x >< 0. 

Since .A(-) is maximal monotone (being monotone, democontinuous, ev-
erywhere defined, see Zeidler [14]) it has the generalized pseudomonotone 
property (see Browder-Hess [2]) and so 

< A ( x n ) , x n > >< A(x),x > a s n —> o o 

^ llxnllp I I X ' I I p as n —> oo. 

Because x'n —> x' in LP(T) and the latter space is uniformly convex (thus has 
the Kadec-Klee property), we conclude that xn —> x in W^(T) as n —> oo. 
Therefore R(-) satisfies the (PS)-condition. 

Apply Theorem 1 to obtain <j> G W^P(T), <j> ± 0 such that 0 G dR{<f>) = 

A{<f>) - (A2 - £)\4>\p~2(j) - 7. Then for all £ £ C£°(0, b) we have 
b b 

( 1 3 ) ( A 2 - £ ) 5 \ m p - 2 m m * t + \ 7 v m & =< A ^ , $ > 
0 0 

6 

= 51 ¿ ' ( t ) r v ( t ) £ ' ( t ) d i . 
0 
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Since \<f>(-)\p~2 </>(•) + 7(-) € Lq{T), then from the definition of the distri-
butional derivative, it follows that \<t>'{-)\p~2<j>'(•) G W^q(T) and 

( u ) f ~ ( | = (a2 - e ) \ m \ p - 2 m + 7 w a.e. o n r 
{ } \ m = m 

Also from Green's formula (integration by parts), we have 

b 

S ( i <t>'{t)r2<f>'{t))'y(t)dt = 
0 

b 

|*'{b)\p-2mv{b) - | ^ ( 0 ) | p - 2 ^ ( 0 ) y ( 0 ) -\\<t>'{t)r2<t>'{t)y'{t)dt 
0 

for a l l y G Wlpfr(T). 

Using (12) and (13) we obtain 

i 4 > ' ( o ) r V ( o M o ) = 10'(6)rV(&)i/(&). 

Let y G be such that y(0) = y(6) = 1. We have 

I 0 ' ( O ) R Y ( O ) = I ^ ' ( 6 ) R 2 0 ' ( 6 ) . 

But the map r —> ^ |r|p is strictly convex and differentiate on M. So 
its derivative r —> \r\p~2r is strictly monotone. Hence </>'(0) = (¡>'{b), i.e. 
(f) G C 1 (T ) is a nontrivial solution of (6) and from the beginning of the 
proof we know that <j> > 0. 

In a similar way we can prove the next proposition. 

PROPOSITION 3. Problem ( 7 ) has a solution ip < 0, ip ^ 0. 

4. Main result 
We start this section by introducing the notions of upper and lower 

solutions for problem (2). 
DEFINITION: 

(a) A function u G C 1 ( T ) is said to be an "upper solution" for problem 
( 2 ) i f \u'\p~2u' G W^(T) a n d - ( | u ' ( i ) l p ~ M * ) ) ' > fi(t,u(t)) a . e . o n 

T, u(0) = u(b), u'(0) < u'{b). 

(b) A function v G C 1 ( T ) is said to be an "lower solution" for problem 
(2) if \V'\P-2V' G WX«(T) and -(|i>'(t)|p -V(t)) ' < f0{t,v(t)) a-e- o n 

T, v ( 0 ) = v ( b ) , v ' ( 0 ) > v'(b). 
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Evidently the functions </> and ip obtained in Propositions 2 and 3 are 
upper and lower solutions respectively for problem (2). 

Now let r : T x R -»• R and /3 : T x M -> M be respectively the truncation 
and penalty functions defined by 

[ </>{t) if 4>{t) <x, C 1 if 4>{t) < x 

r ( t , x ) = < ® if ¿ ( i ) < x < <f>(t) and (3(t,x) = < 0 if îp(t) < x < <f>(t) 

iix<ip(t) [ - 1 if X<1p(t). 

Because <p > 0, <f) ̂  0 and by virtue of hypothesis H(f)(iv) we see 

that /( i , 4>{t)) > 0 a.e. on T and the inequality is strict on a set of pos-

itive Lebesque measure. So \b0f{t,(f>(t)) dt > 0. Similarly we obtain that 

ip(t)) dt < 0. Thus we can find A > 0 small enough so that \bQ f(t, <f>(t)) dt 

> Xb and J b 0 f ( t , i f i ( t ) )d t < —Xb. With A > 0 chosen this way, we de-
fine h(t,x) = g(t,x) — X(3(t,x) with g(t,x) — f(t,r(t,x)). Clearly h(-,-) 

is Borel measurable and for almost all t G T and all x € R, we have 
\h(t,x)\ < 7 ( i ) with 7 G Lq(T) (for example we can take 7 = 7m + A 
w i t h M = max{||0||oo>|H|oo}). 

Let J, H : W^(T) -> R be the fuctionals defined by 

bx(t) 

J{x) =-\\x'\\pp and H(x) = \ \ h(t,r)drdt. 
p 0 0 

Note that J G C ^ W ^ T ) ) with dJ{x) = J'{x) = A(x) (see the proof 
of Proposition 2) and H is locally Lipschitz (see Chang [3]). So if we set 
R(x) = J{x) - H(x), then R : W^(T) -> M is locally Lipschitz. In the 
next proposition we establish the existence of nontrivial critical points for 
the functional R(-). 

PROPOSITION 4. If hypotheses H(f ) hold, then R(-) has a nontrivial critical 

point x(-). 

P r o o f . Again consider the decomposition W^(T) = Z @Y with Z = R 

and Y = {y € W f f l T ) : \bQy{t) dt = 0 } . For z E Z = R we have 

b z b z b z 

R(z) = - J \ h(t, r)drdt = -\\ g{t, r)drdt + X\\ 0(t, r) dr dt. 

0 0 0 0 0 0 

First suppose that 2 > ||<̂||oo > 0. From the definitions of g(t,r) and 
(3(t, r ) we have 
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b<t>(.t) b z b z 

R(z)= - 5 j f(t,r)drdt-\ J f(t,4>(t))dt + X\ j drdt 

0 0 0 <t>(t) 0 </>(t) 
b b 

= - 5 F(t, 4>{t)) dt - \U(t, <p(t)) - X){z - m ) dt. 

0 0 

Note that | F(t, 4>{t)) dt\ < I M M H U and | \bQ(f(t, <f>(t)) - \)<fi(t) dt\ < 

|i + A6)||0||oo. Also \bo(f(t,<t>(t))-\)zdt = z(\bof(t,<t>(t))dt-\b)>0 
(recall the choice of A > 0). Thus we have 

R(z) —> —oo as z - > +oo. 

If 2 < - l l^l l oo < 0, we have 
bi>(t) b z b z 

R(z) = -\ \ f(t,r)drdt-\ \ f(t,ip(t))drdt-X\ \ drdt 

o o o v>(t) o v(t) 
b b 

= - \ F ( t , m ) dt -\u(t, m ) + a k z - m ) dt. 

0 0 

Again \ l h 0 F ( t , m ) d t \ < N i l M o o and | j J ( / ( i , ^ ( t ) ) + A)^(t) dt| < 

(||7||I + A6)||V'||OO- Also our choice of A > 0 implies that \bQ(f(t,ip(t)) + X)zdt 

= z($J f(t, i/>(t)) dt + Xb) < 0. Thus we have 

R(z) —> +oo as z —> —oo. 

Therefore we can say that R(z) —> —oo as \z\ —> oo. 
Next let y e Y. We have 

, b J/(t) 
R{y) = -||y' l lp- J J h{t>r) dr dt > -||j/'||p — ||t II1113/ II oo -

V " J J V F o o y 

Since Wp£{T) is embedded continuously in C(T) and by using the 
Poincare-Wirtinger inequality, we obtain 

R(y) > ^\\y'\\p - Ci\\y'\\v for some Ci > 0 

=>• R(y) -y +oo as ||y|| -> oo, y G Y. 

Finally let us check that R(-) satisfies the (PS)-condition. To this end 
let { x n } n > i C such that \R(xn)\ < M and m{xn) -> 0 as n > 
oo. Let x* G dR(xn) such that m(xn) = ||x*||, n > 1. We know that 
dR(xn) C dJ(xn) — dH(xn) ( s e e S e c t i o n 2 ) a n d dJ(xn) = A(xn). H e n c e 

x*n = A(xn) - 0n with 0n G dH(xn). Let H : LP(T) R be defined by 
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H(x) = \h
Q\l{t) h(t,r) dr dt. Evidently H = H\wI.P(t). Using Theorem 2.2 

of Chang [3], we have dH(xn) C dH(xn) C Lq(T). Moreover, by definition 
(see Section 2) 

b 
dH(xn) = {9 6 Lq(T) : \e{t)y(t) dt<H°{xn-,y) for all yeLp(T)}, 

where 

H"(xn-,y)- lini -a—o A 
AJO 

H(xn + a + Ay) - H(xn + a) 

6 (xn+a+Aj/)(t) 
= lim. —^ ^ h(t,r) dr dt. 

"To 0 (x„+a)(t) 

Performing a change of variables according to r(r]) = xn(t) + a(t) + rj\y(t) 
and using Fatou's lemma, we obtain 

b 1 
H°(xn-,y) < jTC"j/i(t,xn(t) + o(t) + 77Ay(t))dt7dt 

o aTO o 

< j h1(t,xn{t))y(t)dt+ ^ h0{t,xn{t))y(t)dt 
{y>0} {y<0} 

b 
=» \9n(t)y(t)dt < J /M(i,s„(i))»(i)di 

0 {y>0} 

+ j ho(t,xn(t))y(t)dt for all y e LP(T) 
{y< 0} 

h0(t,xn(t)) < 9n{t) < hiit,xn{t)) a.e. on T 

{9n}n>i Q LqiT) is bounded. 
Let xn = zn + yn with zn € Z = R and yn 6 Y, n > 1. We have 

<xn,yn> I = II y'Jp
p-\en(t)yn(t)dt — ^n lll/n || (en I 0) 

\\y'n\\Pp < (£n + \\8\\q)c2\\y'n\\p for some c2 > 0 
(here we have used the Poincare-Wirtinger inequality). Therefore 
\y'n = < } n > i C LP(T) is bounded. We claim that {x„}„>i C C(T) is 
bounded. Suppose not. Then because {x'n}n>i C LP(T) is bounded, we 
must have Ln = max^ xn —» —00 or ln = minx xn —* +00 a s n - > 00. Sup-
pose the first is true (the analysis being similar if the second holds). Then 
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we have 

|Ä(xn) | < M for all n > 1 
b Xn(t) 

" - | K l l p + S S h ( t , r ) d r d t < M 
P o o 

b Ln b Ln 

^-"IKII p
p + \ \ h { t , r ) d r d t - \ j h ( t , r ) d r d t < M. 

P oo oXn(t) 

Note that 
b Ln b 

j j h { t , r ) d r d t < \ y ( t ) ( L n - x n ( t ) ) d t < \ \ ' y \ \ 1 \ \ L n ^n||oo 

o ®„(t) 0 
b Ln 

= • - 5 J h ( t , r ) d r d t > - \ \ > y \ \ i \ \ L n - x n \ \ 0 0 . 

0xn(t) 

Choose t n 6 T such that Ln = x n ( t n ) , n > 1. We have 
t„ 

x n ( t n ) - x n ( t ) = \ x'n(s)ds, t e T 

t 

=> I I x n ( t n ) - X n ( i ) | | = ||Ln - x„(i)| | < sup < c3 n>l 

for some C3 > 0 and all t € T 

| | . L n - ^ n | | o o < C 3 . 

Thus it follows that for n > 1 large enough (so that Ln < —Halloo), we 
have 

b Ln ^ 

(15) 5 5 h ( t , r ) d r d t < M + s u p + | |tI |ic3 = c4 < +00 
0 0 
b Ln b*4>(t) b Ln b Ln 

\ \ h ( t , r ) d r d t = \ \ g ( t , r ) dr dt + \ \ g { t , r ) dr dt + \ \ \ dr dt 

0 0 0 0 0tl>(t) 0 i/>(i) 
b b b 

= 5 F(t, iP(t)) dt + 5 f ( t , m ) ( L n - m ) dt + \ \ { L n - i>(t)) dt 

0 0 0 
< C4. 

Note that from the choice of A > 0, we have y 0 ( f { t , i p { t ) ) + \ ) d t < 0. Also 
| F(t, i p ( t ) ) dt\, | f ( t , i p ( t ) ) i p ( t ) dt\ < C5 for some C5 > 0. since Ln —»• —00, 
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we have Ln\b
Q(f(t, ip(t))+A) dt —» +00 as n —> 00 and we have a contradiction 

to (14). So indeed {xn}n>i Ç C(T) is bounded and this together with the 
boundedness of {x'n = y'n}n> 1 Ç L?(T) implies that {x„}„>i Ç Wl*{T) 
is bounded. Arguing as in the proof of proposition 2, we can extract a 
strongly convergent subsequence of {xn}„>i Ç W^(T). Thus R( ) satisfies 
the (PS)-condition. Applying Theorem 1 one can obtain x G x ^ O 
such that 0 G dR(x). a 

Using this proposition, we can have an existence theorem for problem (2). 

-THEOREM 5. If hypotheses H ( f ) hold, then problem (2) has a nontrivial 
solution x(-). 

P r o o f . Let x G Wp£{T) be a nontrivial critical point of the functional 
R(-). It exists by Proposition 4. We have 0 G dR(x) Ç A{x) — dH(x), hence 
A(x) = 6 for 0 G dH(x). Arguing as at the end of the proof of Proposition 
2, we can have that 

r - (\x'(t)\p-2x'(t))' = Ô(t) a.e. on T 1 
\x(0) = x(b), x'(0) = x'(b). J 

Also let V, B : W^(T) —> R be the locally Lipschitz functionals defined 
by V{x) = \x

Q
{t) g(t, r) dr dt and B(x) = ^ \x

Q
{t)(3(t, r) dr dt (see Chang [3]). 

We see that H(x) — V(x) — AB(x) . Hence we have that 9 G dH{x) Ç 
dV(x) — A d B ( x ) (see Section 2) and so 9 = v — \w with v G dV(x) and 
w G dB(x). Since ip is a lower solution of problem (2), we have 

b 
( I 6 ) \(\x'(t)r2x'(t)y'(t) - I V / ( I ) R V ( I Y W ) ^ 

0 
b 

> \(v(t)-Xw(t)-fo(t,m))y(t)dt for all y G W^r{T) n LP(T)+ . 
0 

Let y = (V> - x)+ G n LP(T)+ and recall that 

(l>-x)'M) = l ^ - x y W i f W ' - a O W > 0 

v lO otherwise, 

(see Gilbarg-TVudinger [8]). We have 

(I?) ¡ ( I x ' { t ) r 2 x ' { t ) - w { t ) r ^ ' { t m - x ) ' + { t ) d t 
0 
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= 5 a * ' ( i ) r v ( i ) - m t ) \ p - 2 n m n t ) - A t ) ) & 
{ip>x} 

b 

< - 2 2 - p 5 W{t)-x'(t)\pdt = -22-p\\(iP-x)'+{t)\pdt<0. 
{V>x} 0 

Also we have that 
6 

\(v(t)-fo(t,m))(^-^)+(t)dt= 5 (v(t)-f0(t,W)))W-x){t)dt. 
0 {i»x} 

Recall that since v € dH(x), that v(t) > go{t,x(t)) a.e. on T. Also from 
the definition of g(t,r) we see that for almost all t € {x < tp}, we have 
fo(t,ijj(t)) = go(t,x(t)). So fo(t,i>(t)) < v(t) a.e. on {x < ip}. Hence we 
have 

b 

(18) \(v(t) - fQ(t, m))(Tp ~ ®)+(0 dt > 0. 
o 

Finally note that since w€dB(x), we have Po(t,x(t))<w(t)<f3i(t,x(t)) 
a.e. on T. But from the definition of the penalty function /3(t,r), we see 
that for almost all t € {x < ip} we have (5Q(t, x(t)) = ¡3\(t, x(t)) = —1, hence 
w(t) — —1 a.e. on {x < ip}. Thus we have 

b b 

(19) -\\w(t)(i>-x)+(t)dt = - \ \ (-l)(ip-x)(t)dt = \\(^-x)+{t)dt. 
0 {ip>x} 0 

Using (17), (18) and (19) in (16), we have 
b 

X\{ip-x)+(t)dt = 0 , A > 0, 
o 

Ip(t) < x(t) for all t € T. 

Similarly we obtain that ( x ( t ) < 4>(t) for all t G T. Therefore we see that 
for all t € T ip(t) < x(t) < i(t). Recall that - ( |x ' ( i ) |P- 2x'( i ) ) ' = d(t) a.e. 
on T with ho(t,x(t)) < 0(t) < hi(t,x(t)) a.e. on T. Using the definitions of 
h, ho and hi and the fact that ip(t) < x(t) < <f){t) for all t £ T, we can check 
that ho(t,x(t)) = fo(t,x(t)) and hi(t,x(t)) — fi(t,x(t)) a.e. on T. Thus we 
conclude that 

r -(¡At)r2At)ye[fo(t,z(t)),f1(t,z(t))l a.e. o n T | 

\ x ( 0 ) = ®(6), x ' (0) = x'(6) . J 

=> x(-) is a nontrivial solution of problem (2). • 
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