DEMONSTRATIO MATHEMATICA
Vol. XXXIII No 4 2000

Nikolaos Matzakos, Nikolaos S. Papageorgiou

EXISTENCE OF PERIODIC SOLUTIONS
FOR QUASILINEAR ORDINARY DIFFERENTIAL
EQUATIONS WITH DISCONTINUITIES

Abstract. We consider a quasilinear differential equation with discontinuous right
hand side and periodic boundary conditions. To obtain an existence theory we pass to a
relevant multivalued variant of the original problem, which we solve. Our approach is a
mixture of the variational method (for nonsmooth locally Lipschitz functionals) and of the
method of upper and lower solutions. The mixing of these two techniques is made possible
by a nonresonance condition below the first nonzero eigenvalue of the one-dimensional
p-Laplacian with periodic boundary conditions.

1. Introduction
In this paper we study the following periodic problem for quasilinear
differential equations

(1) { = (' OP~22 () = f(t,2(t)) ae.on T =[0,}] }
2(0) = z(b), 2'(0) = 2'(b), a <p < o0 '

We do not assume f(t,:) to be continuous. So the problem (1) need
not have a solution. In order to be able to develop a satisfactory existence
theory, we have to pass to a multivalued problem, which is obtained by,
roughly speaking, filling in the gaps at the discontinuity points of f(t,-).
For this purpose we introduce the following two functions:
fo(t,z) = li{f)l ess inf f(t,z)

lo—a'|<e

and fl(t,:c)zliigess sup f(t,z').

|e—2'|<e
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Evidently fo(t,z) < fi(t,z) for all (¢,z) € T x R. Then instead of (1),
we consider the following multivalued version of it:

(2) {'—Gﬂ@NFJwTQYE[h@ﬂdﬂ%fﬂtzﬁﬁlaﬁ-ﬂlT}

2(0) = z(b), «'(0) =2'(b), a < p < |
We prove the existence of a solution for problem (2) by combining the
variational approach with the method of upper and lower solutions. The
link between these two techniques is a nonresonance condition below the
first nonzero eigenvalue of the one dimensional p-Laplacian with periodic
boundary conditions.

Quasilinear ordinary differential equations with Dirichlet boundary con-
ditions were studied by Boccardo—-Drabek-Giachetti-Kucera [1], Drabek [7],
DelPino-Elgueta-Manasevich [6] and De Coster [5]. Under homogeneous
Dirichlet boundary conditions, the differential operator Az = —(|z'|P~2z')
(the one dimensional p—Laplacian) is invertible (as a nonlinear map between
appropriate spaces) and so classical Leray-Schauder degree techniques (like
the Leray—Schauder principle) can be used. In contrast for the periodic prob-
lem, the corresponding operator has a nontrivial kernel and so a different
aopproach is needed. This problem was examined by Guo [9], who con-
sidered a more general version of (1) by allowing f to depend also on z’.
However he assumed f to be continuous in all three variables (including
the time-variable). His approach was degree theoretic, based on Mawhin’s
coincidence degree theory. This forced him to introduce additional restric-
tive conditions on the function f (like growth condition, see hypothesis H,
p. 710 in Guo [9]). Our method of proof here is completely different from
that of Guo and is based on variational arguments mixed with ideas from
the method of upper and lower solutions.

2. Preliminaries

Since the function f(¢,-) is discontinuous, our variational technique will
be based on the critical point theory for nonsmooth locally Lipschitz energy
functionals. For easy reference we recall here the basic aspects of that theory.
For details we refer to Chang [3] and Clarke [4].

Let X be a Banach space and f : X — R a function. We say that f(-) is
locally Lipschitz, if for every z € X, there is a neighborhood U of z and a
k > 0 depending on U such that

1f(y) = F(2)| < klly — 2]

for all y,z € U. For every h € X, we define the generalized directional
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derivative f°(z;h) by

It is easy to check that h — f°(z;h) is sublinear, |f°(z;h)| < k||h| and
h — f°(z; h) is continuous. So f°(z;-) is the support function of a nonempty,
convex and w*—-compact set

Of(z) ={z* € X*: (z*,h) < f°(z;h) forall he X}

known as the “generalized subdifferential of f(-) at z” (see Clarke [4]).

For every z* € df(z), we have ||z*|| < k. Also if f,g: X — R are locally
Lipschitz functions, then 8(f + g)(z) C 8f(z) + d¢g(z) and O(Af)(z) =
A0f(z) for all A € R If f : X — R is convex, then it is well-known
from convex analysis that f(-) is locally Lipschitz and its subdifferential
in the sense of convex analysis coincides with the generalized subdifferential
described above.

Let f : X — R be locally Lipschitz on the Banach space z. A point
X is said to be a “critical point” of f(-) if 0 € 8f(z). It is easy to see
that if z € X is a local extremum of f(-), then z is a critical point of f(-).
We say that f(-) satisfies the “(PS)—condition” (Palais—Smale condition),
if any sequence {z,}p>1 C X along which {f(zn)}n>1 is bounded and
m(z,) = inf{||z*|| : z* € 8f(zn)} — 0 as n — o0, has a strongly convergent
subsequence. Since for f € C}(X,R), 0f(z) = {f'(z)}, we see that for a
smooth f(-), the above version of the (PS)-condition coincides with the
classical one (see Rabinowitz [12]).

In our analysis of problem (2), we will need the following theorem, which
is due to Chang [3] and extends to a nonsmooth setting the well-known
mountain path theorem of Ambrosetti and Rabinowitz [12].

THEOREM 1. Assume that:

X is a reflexive Banach space, X = X, ®Xo withdimX; < oo, f: X —
R is a locally Lipschitz function which satisfies the (PS)-condition and
there exist constants 31 < B2 and a neighborhood U of 0 in Xy such that
flov < B1 and fl|x, > fa.

Then f(-) has a critical point = and f(z) =c > fa.

3. Auxiliary results
In this section we prove two auxiliary results which will allow us in
Section 4 to use the method of upper and lower solutions together with

theorem 1 in order to obtain a nontrivial solution for problem (2). In what

follows WLE(T) = {x € WYP(T) : z(0) = =(b)}. Recall that W'P(T) is
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continuously embedded in C(T') and so the pointwise evaluations at t = 0
and ¢t = b make sense.
First let us define what we mean by a solution of problem (2).

DEFINITION: By a solution of (2) we mean a function z € C*(T) such that
|z’ (-)IP~22'(-) € WH(T)(3 + ¢ = 1) and there exists g € LI(T) such that
fo(t,z(t)) < 9(t) < f1(t,2(t)) ae. on T, —(|2'(t)|P~%2'(t))' = g(t) a.e.on T
and z(0) = z(b), 2/'(0) = z'(b).

Let Ay > 0 be the second eigenvalue of the one-dimensional p-Laplacian
with periodic boundary conditions, i.e.

3 — (J2' (&) P22/ (t)) = X2|2(t)|P"%2(t) ae.on T
T OO s M s i

Notice that A\; = 0 is the first eigenvalue. So Az > 0 is the first nonzero
eigenvalue of the p-Laplacian with periodic boundary conditions (see
Showalter [13], Corollary 7.D, p. 78).

Now we introduce our hypothesis for the function f(¢,z). They will be in
effect for the rest of this paper. Recall that a function A : T'x R — R is said
to be “N-measurable”, if for every  : T — R which is Borel measurable, we
have that t — h(t, z(¢)) is Borel measurable (superpositional measurability).
H(f): f: T x R — R is a Borel measurable function such that:

(i) fo, f» are N—-measurable functions;

(ii) for every M > 0, there exists vy € LI(T') such that for almost all
teT andall |z| < M, |f(t,z)| < vm(t);

(iii) mm_,oo'—ili,f—’_?; < Az uniformly for almost all t € T,

(iv) for almost all ¢ € T and all z € R\ {0} f(¢t,z)z > O (strict sign
condition).

By virtue of hypothesis H(f)(iii), we see that there exists € > 0 (with
0 < Ay —¢)and M > 0 such that
(4) f(t,z) < (A2—¢)|z|P~%z for almost all t€T and all z>M >0
(5) and f(t,z) > (A\2—¢)|z|P~2z for almost all t€T and all z<—~M <O0.

Moreover, from hypothesis H(f)(ii) we have that
(6) |f(t, )| <vm(t) for almost all ¢t € T and all [z| < M

Combining (3), (4) and (5) above, we infer that for some ¢ > 0 (with
0< Az —¢)and vy € LIYT) v > 0, we have

ft,z) < (A2 —e)|z[P 2z +4(t) for almost allt € T and all z > 0
and f(t,z) > (A2 —€)|z[P "%z — y(t)) for almost all t € T and all z < 0.
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We consider the following two auxiliary periodic problems:

@ {7 WO = Y £ e onT)
$(0) = ¢(b), ¢'(0) = 4'(d)

and

(8) { — (W' @OP2Y' () = (2 = )P@)F*¥(t) ~7(t) a.e.onT }
$(0) = $(b), ¥'(0) =o' (b).

By a solution of problem (6) (resp. of problem (7)), we mean a function
¢ € CHT) (resp. ¥ € C*(T)) with |¢'|P~2¢' € WL(T) (resp. |¢'|P~2y' €
W14(T)), which satisfies (6) (resp. (7)).

In the next two propositions we prove that the two problems have solu-
tions ¢ > 0 and ¢ < 0 respectively.

PROPOSITION 2. Problem (6) has a solution ¢ > 0, ¢ # 0.

Proof. Since 4(t) > 0 a.e. on T, from Theorem 9.5, p. 210 of Gilbarg-
Trudinger [8], we know that if ¢ € C1(T) is a solution of (6), then ¢(¢) > 0
forallteT.

So we have to show that a solution ¢ exists. To this end let WLE(T) =
Z ®Y, where Z is the space of constant functions (ie. Z = R) and Y is
the space of all functions in W4P(T') with mean value zero (i.e. Y = {y €

Wak(T) : Sgy(t) dt = 0}). Let ]se:TWI}é’,’(T) — R be defined by
_lm/p_(’\2_5)zp__b .
R(z) = _lle’l; o el (S)V(t) (t) dt.

If z € Z =R, then we have

b
/\2 — &
Rz =~ 22D a2y
p 0
_Qe—e)pp if2>0
= R(Z) = (A p_s) N z'hlll 1 i
—=2=2blzP o+ 2] |yl iz <0
So we infer that R(z) — —oo as |z| — oc.
Next let y € Y. Using the Poincare-Wirtinger inequality, we have

(A2 —¢) :

1
R(y) = ~Iy'Ilp = =—llllz — {v(Dy(t) at
p p :
1 ( ()\2 hd E)) ’ 1 ’
2 (1= ——=Ill; = a7 l¥ll»
p p AP

= R(y) — +oo as ||y]| - o0, y€Y,
(because ||y’'||p is an equivalent norm on Y').
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Finally we will show that R(-) satisfies (PS)-condition. To this end let
{Zn}n>1 © WEE(T) such that |R(z,)| < M and m(z,) — 0 as n — oo. Pick

z} € OR(z,) such that m(z,) = ||z}||, n > 1. Such an element exists since
OR(z,) is nonempty, w-compact in W,2(T)* and the norm of WR(T)* is

per
weakly lower semicontinuous. Let Ji, J2, G : W).2(T') — R be defined by
1 Ag —€ 2
o —
Ti(a) = 1, Jala) = 25 [ally and Ga) = §2(t)a e dt.
0

We have R(z) = J1 — J2(z) — G(z). Hence
OR(z) = 0(J1— J2 — G)(z) C 8J1(z) — 8J2(z) —8G(z) for all z € WEE(T).

Let A: WLP(T) — WLE(T)* be a nonlinear operator defined by

per per

b
< A(z),y >= S |z’ (t)[P~22'(t)y'(t) dt for all z,y € WHP(T).
0

Here by < -,- > we denote the duality brackets for the pair (W2(T),

Wak(T)*). It is easy to verify that A(-) is monotone, demicontinuous and

coercive (see for example Kourogenis—Papageorgiou [10]). Then 8Ji(z) =
A(z). Also if Jp : LP(T) — R is defined by J2(z) = %Hz}lg, then Jo =
‘Elw,};ﬁ(T)' Since Wj?(T') is embedded continuously and densely in LP(T),

using Theorem 2.2 of Chang [3], we have that 8Jx(z) = (A —¢€)|z(-)|P~2z(")
€ L(T). So finally we have

zr = A(z,) — (A2 — €)|zalP %z, — 7.

n

We claim that the sequence {n}n>1 C WE(T) is either uniformly (in
t € T') bounded from above or from below. Suppose not. Then we can find
a subsequence, still denoted by {z,},>1 such that

Ln=m1gxzn—>+oo and Zn=n¥nzn—>—oo as n — oo.

Extending periodically z,(-) on [0,2b], for all n > 1 large we can find
Qn, B, On, n € [0, 2b] such that

Zn(an) = 2n(Bn) =0, z,(t) >0
for t € (ap,Bn), max[zy(t) :t € [an, Bn]] = Ln
and z,(0,) =zn,(n) =0, z,(t) <0
for t € (6n,mn), min[z,(t) : t € [On, 7n)] = ln.
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We will show that there exists & > 0 or £ > 0 such that

ﬁ‘n ﬂ‘n ﬁn
[ lzn@Pdt— (Ao —e) | lza(®)|Pdt > €' | |a),(¢)[P dt
:: 77: "70:1

and | |z, ())Pdt— (A2 —¢) | |zn ()P dt > € | |2/, (1)IP dit.
On On On

Suppose not. Then at least for a subsequence, we will have

[ e P dt— (A2 —e) | lza(@)iPdt <6} | 2, ()P dt
Mn Mn Tn

and | )Pt — (o —e) | o dt < 82 | |2 ()P dt
97,, 0, 0n

with 6,62 | 0 asn — oo. Also we may assume that a,, — @, B, — 3,6, — 0
and 7, — 7

We will work with the first of the last two inequalities, since the argu-
ments for the second are similar. Using Poincare’s inequality on (an, 3n),
we have

B Ny —g P
A2 —e) | lzn(@)Pdt < - [ IaL ()1 at.
Gn /\1 ((anaﬂn)) Qn

Here by A1 ((an, Brn)) > 0 we denote the first (principal) eigenvalue of the
one dimensional p—Laplacian on (&, 8,) with Dirichlet boundary conditions
(i.e. of (—Ap, Wy'P(atn, Br))). From Otani [11] we know that

° 1 p-1,/11Y°
A Qnp, ﬁn = /8<_a —)
1 ) (Brn—an)? p? "\p'q
where ((z,y) is the beta function defined by B(z,y) = S(l) t*71(1 — ¢)¥~1dt,

z,y > 0. Note that (8, — an) < |T| and so A1 (T) <A1 ((an,Br)). Then we
have

B Ny —g Pn B
[ lzh@Pdt — —=—— [ |z @)Pdt < &) | len(t)IPdt.
on A1 ((an, Br)) an an
Dividing both sides by S'Z " |25 (¢)|P dt, we obtain
1— _de—E < 8L,

At (e, )
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Passing to the limit as n — oo, we have

1< i\z ¢ <1 (since 3\1 (T) Sj\1 ((%ﬂ)))
A1 (T)

a contradiction. Note that if & = 0,3 = b then # = n = b and vice versa. So
we conclude that one of the inequalities (8) or (9) holds.

Suppose that (8) holds (the argument is similar if (9) holds). Define the
functions u, : [0,2b] — R as follows:

S za(t) ift€E o, Bl
un(t) = {0 if t € [0,25] \ [n, Bnl.

Evidently u,, € Wy'?(0,2b). Also let wy,(t) = u,(t) for all t € T if 8, < b,
while if 8, > b set w,(t) = un(t + b) for t € [0,5, — b] and w,(t) = un(?)
for t € [8, — b,b]. Clearly then w, € WEE(T) and ||wall1,p,7 = l[tnl1,p,[0,20]
(hence by || - [l1,5,r (resp. || - |l1,5,j0,26)) we denote the norm of the Sobolev

space WLP(T) (resp. of W1P(0,2b))). We have
| <zt,y>| <enllyll forall y € WLE(0,2b).

per

Take y = w,. We obtain

J lzn@)Pdt — (A2 =€) | len(®)lPdt — | v()2n(t) dt < enllunllr,p,o,20
Bn Bn
=& | 2P dt — | v()en(t) dt < enfiunlly,p o2
Bn
=& S lz7, ()P dt < c1l|Znlly,p,(an,g,) for some c; >0

(since Un|(a,,8.) = Tn)-

Using Poincare’s inequality in the space Wol’p (atn,Brn) we obtain that
lznll1,p,(an,8.) < c2 for some cz > 0 and all n > 1. So we have S'Z: |zn (t)| dt
< ¢3 for some ¢3 > 0 and all n > 1. Therefore
¢
zn(t) < | |25(s)|ds < cs for all t € [an, Bn]
Qn

= max{z,(t) : t € [an,Bn]} = Ln < c3.

However, by hypothesis L, — +0c0 as n — co and so we have a contra-
diction. Thus we have proved that {z,}r>1 is uniformly (in ¢t € T') bounded
from above or below. To fix things we will assume that it is bounded from
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above. So z,(t) < c4 for all t € T and all n > 1. Recall that
| <2hy> | <enllyll for all y € WAE(T), with eq | 0.
Take y = 1. We obtain

b
l()\g — 5)8 |Zn(8)|P~ 22, (1) dt‘ <cs forsomecs >0 andall n>1
0

=>‘ | len@P2zat)dt+ | lea(®)lP2ea(t)dt
{2n20} {zn<0}

1
< ce (CG = " _605)-

Since z,,(t) < ¢4 for all £ € T and all n > 1, then we see that

i |LJQP_%m@)ﬁ‘§C7(w:=%—kﬁ_%)
{zn <0}
= | |z (—za(t)dt < o
{z.<0}
=sup | |z.(®)P dt < cr
n>1
=1 {zn <0}
b

= SUPS |2 (t)|P"1dt < cg (cs = c6 + 2¢5 'b); i.e. sup |zn|2t < cs.
n210 n>1

Nowlet 2, = 2n + yn, 2n € Z=R and y, € Y, n > 1. We have
(11) < zh,yn >< enllynll

b b b
= (IO dt = (hz — &) {[oa(®) P~ ya(t) dt — | 1(E)yn(t) dt < e lwnll
0 0 0

From the Poincare-Wirtinger inequality we know that
Loy
lyallp < A—zllynlli-

Using this fact in (10) we obtain

(12) lwallp < Qa=e)llzallp ™ lynllo+1Vlgllynllp+collvnll, for some g > 0

1 1
< ()\Q—S)Cgﬂ + ”')’“ql_/q + ¢ ”y;r,llp

4

{3}, = 2/, }n>1 € LP(T) is bounded.
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Finally recall that |R(z,)| < M for all n > 1. So using the boundedness
of {z},}n>1 C LP(T) we have

)\2—6

1
- EII%IIZ + [2ally < M + |[vllglzallo

= ||lznll} < c10(1 + [17llgllznllp) for some c1 >0
= {Zn}n>1 € LP(T) is bounded.

. . w
So by passing to a subsequence if necessary, we may assume that z,, — =

in WpE(T) and z,, — z in LP(T') as n — oo. Therefore we have

<zTh ZTp—T>= < A(Tn),Tn —Z >
b

= (2 = &) [ [zn () P22 (t) (2 (1) — 2(2)) dt

b
— () (@a(t) — 2(t)) dt
0
< enllzn — x”
But §g 2 (£)[P~22n(t) (zn () — 2(t)) dt — 0 and [§ ¥(t)(zn(t) — 2(t)) dt —
0 as n — oo. Thus we obtain that
Iim < A(z,), 2, —2 >< 0.

Since A(-) is maximal monotone (being monotone, democontinuous, ev-
erywhere defined, see Zeidler [14]) it has the generalized pseudomonotone
property (see Browder—Hess [2]) and so

< A(zn), zn >—< A(z),z > asn —> o
= ”"E;zllp — ||l2'|l, asn — oo.
Because z/, = z’ in LP(T') and the latter space is uniformly convex (thus has
the Kadec—Klee property), we conclude that z, — z in WL2(T) as n — oo.

per
Therefore R(-) satisfies the (PS)-condition.
Apply Theorem 1 to obtain ¢ € WLE(T), ¢ # 0 such that 0 € OR(¢) =

A(p) — (A2 — €)|¢|P~2¢ — . Then for gflrf € C§°(0,b) we have
b b

(13) (2 —e) [ 1s@)IP2p(0)E(t) dt + [ v(1)&(¢) dt =< Ag), € >
0 0

b

= {18/ @)1P2¢' (1)¢'(2) dt.

0
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Since |¢(:)[P~24(:) +(-) € LI(T), then from the definition of the distri-
butional derivative, it follows that |¢'(-)|P~2¢'(-) € IWl’q(T) and

—(J O 2 @) = (M2 — €)|d(t)|P2¢(t) + v(t) ae.onT
19 { 50 = it }

Also from Green’s formula (integration by parts), we have

b
JUg' @ P26/ (1))y(t) dt =
0
b
l¢’(b)|p_2¢'(b)y(b) . |¢'(0)l”_2¢'(0)y(0) _ Sl¢l(t)|p—2¢l(t)y/(t) dt
0
forally € W;}éf (T).

Using (12) and (13) we obtain
|#'(0)[P~24(0)y(0) = 1¢'(b)P~2¢' (b)y (b).
Let y € W2(T) be such that y(0) = y(b) = 1. We have
|6/ (0)[P~2¢'(0) = |¢' (b)IP~2¢' (b)-

But the map r — %|'r|p is strictly convex and differentiable on R. So
its derivative 7 — |r|P~?r is strictly monotone. Hence ¢'(0) = ¢'(b), i.e.
¢ € CY(T) is a nontrivial solution of (6) and from the beginning of the
proof we know that ¢ > 0.

In a similar way we can prove the next proposition.

PROPOSITION 3. Problem (7) has a solution ¢ < 0, v # 0.

4. Main result

We start this section by introducing the notions of upper and lower
solutions for problem (2).
DEFINITION:

(a) A function u € C}(T) is said to be an “upper solution” for problem
(2) if |u'|P~%u’ € WH(T) and —(|u'(t)[P~2u'(t))' > f1(t,u(t)) a.e. on
T, u(0) = u(b), v/ (0) < u'(b).

(b) A function v € C*(T) is said to be an “lower solution” for problem
(2) if [v'[P720" € WHY(T) and —(]v'(&)|P~2'(2)) < fo(t,v(t)) a.e. on
T, v(0) = v(b), v'(0) > v'(b).
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Evidently the functions ¢ and v obtained in Propositions 2 and 3 are
upper and lower solutions respectively for problem (2).

Nowlet 7: TxR — Rand 8: T xR — R be respectively the truncation
and penalty functions defined by

p(t) if ¢(t) < 1 if¢(t)<=z
Ttz)=qz fP(t) <z <P(1) and Bt,z)=¢ 0 HY(t) <z < ()
¥(t) if z < P(t) -1 ifz < (1)

Because ¢ > 0, ¢ # 0 and by virtue of hypothesis H(f)(iv) we see
that f(¢,¢(t)) > 0 a.e. on T and the inequality is strict on a set of pos-

itive Lebesque measure. So Sg f(t, #(t))dt > 0. Similarly we obtain that
Sbf( t,%(t)) dt <0. Thus we can find A >0 small enough so that ng(t, o(t)) dt

> Ab and S flt,¢())dt < —Xb. With A > 0 chosen this way, we de-
fine h(t,z) = g(t,z) — AB(t,z) with g(t,z) = f(¢t,7(¢,z)). Clearly h(-,")
is Borel measurable and for almost all ¢t € T and all £ € R, we have
|h(t,z)] < ~v(t) with v € LYT) (for example we can take v = yp + A
with M = max{||$llco, [%]leo})-

Let J,H : WLP(T) — R be the fuctionals defined by

per

bz(t)
J(z) = ~|'|E and H(z) =1 | ht,r)drdt.
p 00
Note that J € CI(WI}éE(T)) with 8J(z) = J'(z) = A(z) (see the proof
of Proposition 2) and H is locally Lipschitz (see Chang [3]). So if we set
R(z) = J(z) — H(z), then R : W}E(T) — R is locally Lipschitz. In the
next proposition we establish the existence of nontrivial critical points for

the functional R(:).

PROPOSITION 4. If hypotheses H(f) hold, then R(-) has a nontrivial critical
point z(-).

Proof. Again consider the decomposition Wp2(T) = Z @Y with Z = R
and Y = {y € WLP(T) : Sgy(t) dt = 0}. For z € Z = R we have

per
bz bz bz

R(z) = - tht r)drdt = Hg (t,7) drdt+)\“ﬁ(t,1‘)drdt.
00 00 00

First suppose that z > ||@|lcc > 0. From the definitions of g(t,r) and
B(t,r) we have



Existence of periodic solutions 765

bo(t) bz b 2z
R(z)=—-{ | ft,rydrat—{ | rt,¢@)dt+ A} | drdt
0 0 0 ¢(t) 04(¢)
b b
= — | F(t,6(t) dt - {(£(t, 6(2)) — N)(z — 6(2)) dt.
1] 0

Note that | {3 Fi(¢, é(¢ >>dt1 < iwnlwnm and | {3(£(t, 8(t)) — N)(t) dt] <

(Il + Ab)lllleo. Also §o(f = Nzdt = 2(§g £(t,$(2)) dt — Ab) > 0
(recall the choice of A > 0). Thus we have

R(z) > —00 as z — +o0.

If z < —||9]leo < 0, we have

b¥(t) bz i
R(z):_s S f(t,r)drdt*g S f(tﬂl)(t))drdt_)\s § dr dt
00 0 %(t) 0y(t)

b b
=—{F@t,v@®)dt - {(f(t,¥(®) + Nz — p(2)) dt.
0 0
Again |§o F(t,9()dt] < [[vfafl$lleo and |§o(f(t, %) + () dt]
(Il7Il1 + Ab)||%]| 0o - Also our choice of A > 0 implies that Sg(f(t, Y(t))+A)zdt
= 2(§p f(t,%(t)) dt + Ab) < 0. Thus we have

R(z) — +o0 as z — —o0.

Therefore we can say that R(z) — —oo as |z| — .
Next let y € Y. We have

by(t)
1 1
R(y)==|ly'IIE-{ | nt,r)drde > )y |15 = 17ll1]ylloo-
p 00 p

Since WLP(T) is embedded continuously in C(T) and by using the

per

Poincare-Wirtinger inequality, we obtain
1
R(y) 2 5|Iu’|l§ —cilly'llp for some ¢; >0

= R(y) — +oo as [ly[| — o0, y€Y.

Finally let us check that R(-) satisfies the (PS)-condition. To this end
let {zn}n>1 C W,2(T) such that |R(z,)] < M and m(z,) — 0 as n >
oo. Let z7 € OR(z,) such that m(z,) = |jz}|, n > 1. We know that
OR(z,) C 0J(zn) — O0H(z,) (see Section 2) and 8J(z,) = A(z,). Hence

z:, = A(zy) — 0, with 0, € 8H(z,). Let H : LP(T) — R be defined by
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H(z) = Sg Sg(t) h(t,r)drdt. Evidently H = ﬁ|W,}g',’(T)' Using Theorem 2.2
of Chang [3], we have 0H (z,) C 0H(z,) C LY(T). Moreover, by definition
(see Section 2)

b
OH(zn)={0 € LUT) : {0(t)y(t) dt < H'(zn;y) for all ye LP(T)},

0
where
~ — 17~ ~
H%zp;y)= lin%)X [H(wn +a+Ay) - H(zn + a)]
210

__ 1 b(Eatabn()
= ii_%—s | htr)drdt.
A0 0 (znpta)(t)
Performing a change of variables according to r(n) = z,(t) + a(t) + nAy(t)
and using Fatou’s lemma, we obtain
b

1
H(zn59) < | lim [t 2n(t) + a(t) + Xy (1)) dn dt
0 %0 0

< | mtza@u@ydt+ | ho(t,za(0)y(t) dt
{y>0} {y<o0}

= [0,y dt < | halt, za(t)y(t) dt
0 {y>0}

+ S ho(t, z,(t))y(t)dt for all y € LP(T)
{y<0}

= Ro(t, Zn () < On(t) < hi(t,zn(t)) ae.on T

= {Op}n>1 € LY(T) is bounded.
Let ¢, = zp + y, with 2, € Z=R and y, € Y, n > 1. We have
b
< ahtn > 1= 1041 - [0 n0) ] < enllinll (on 10
0
= |lynllp < (en + 110llg)c2llynll, for some c; > 0
(here we have used the Poincare-Wirtinger inequality). Therefore
{yr, = 2L }a>1 C LP(T) is bounded. We claim that {z,}n>1 C C(T) is
bounded. Suppose not. Then because {z,}n>1 € LP(T) is bounded, we
must have L, = maxp z, — —oo or £, = miny z, — +00 as n — 00. Sup-
pose the first is true (the analysis being similar if the second holds). Then
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we have
|R(z,)| < M foralln>1

1
= — Slenllp+ | Rt,rydrdat< M
0

1 Lo
= — =z, |15 +
p zn(t)
Note that

b L, b

| | rtr)drdt <{yv@)(Ln —2a(t) dt < [7]1)lLn

Oz, (t) 0
b L,
= —{ | rtr)drdt> —[71lLn — Zalleo-
0z,(t)

Choose t, € T such that L, = z,(t,), n > 1. We have
tn

Ta(tn) — zn(t) = | 2,(s)ds, t€T

b
h(t,r) drdt — g h(t,r)drdt < M.
0

- mn”oo

= n(tn) = 2n (Bl = L — 2a () < sup [lzn 1 < c5

for some c3 >0 andallteT
= || Ln — Znlloo < c3.

767

Thus it follows that for n > 1 large enough (so that L, < —||¢|leo), We

have

(15)

b (t) b L,

OLMF OL”:E‘

00 09(t)
b b

Ot ¢ O ) G O e O

0 0

IA
O
'S

1
h(t,7)drdt < M + sup EH:B:,HZ + |7]lies = ca < +o0
n>1

b L,

0(t)

F(t,9(t) dt + | £(t,9())(Ln — (1)) dt + A|(Ln — $(2)) dt

h(t,r)d'rdt=§ S g(t,r)drdt+§ S g(t,r)drdt—#)\g S drdt

Note that from the choice of A > 0, we have Sg(f(t, P(t))+A)dt < 0. Also
|10 F(t,9%(8)) dt], | §o £(£,%(£))3(2) dt} < c5 for some cs > 0. since Ly, — —oo,
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we have Lngg(f(t, ¥(t))+A) dt — +00 asn — oo and we have a contradiction
o (14). So indeed {z,}n>1 C C(T) is bounded and this together with the
boundedness of {z], = y/,},>1 C LP(T) implies that {z,}n>1 C WHP(T)
is bounded. Arguing as in the proof of proposition 2, we can extract a
strongly convergent subsequence of {zn}n>1 C Wp2(T). Thus R(-) satisfies

the (PS)-condition. Applying Theorem 1 one can obtain z € W, 2(T), z # 0
such that 0 € OR(z). =

Using this proposition, we can have an existence theorem for problem (2).

-THEOREM 5. If hypotheses H(f) hold, then problem (2) has a nontrivial
solution z(-).

Proof. Let x € W),2(T) be a nontrivial critical point of the functional
R(-). It exists by Proposition 4. We have 0 € 0R(z) C A(z) — 0H(z), hence
A(z) = 6 for § € OH(z). Arguing as at the end of the proof of Proposition
2, we can have that

{ — (|2’ (t)IP~%2'(t)) = 6(t) a.e. on T}
z(0) = z(b), 2'(0) ='(b). .
Also let V, B : WLE(T) — R be the locally Lipschitz functionals defined

per

by V(z) = Sg Sg(t) g(t,r)drdt and B(z) = Sg Sg(t)ﬁ(t, r) dr dt (see Chang [3]).
We see that H(z) = V(z) — AB(z). Hence we have that § € 0H(z) C
OV (z) — A0B(z) (see Section 2) and so § = v — Aw with v € 8V (z) and

w € dB(z). Since 9 is a lower solution of problem (2), we have

(16) [l (t)y' (1) — W' ()P~ (t)y' (1)) at
0
b
> {(o(t) = Mw(t) = folt, ¥(8)))y(t) dt for all y € Wp(T) N LP(T)+ .

Let y = (¥ —z)4 € WLE(T) N LP(T) 4+ and recall that

per

(% —z), (t) = {g‘ﬁ —z)'(t) if (¥ —2z)(t)>0

otherwise.
(see Gilbarg-Trudinger [8]). We have

b

17§ @22 () = W' @OF 2 (0) % — 2)4.(t) dt

0
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= | (Z®P %' @) - W' @2 (1) (@' (t) - 2'(t)) dt
{¥>=z}
b

< -7 | ) -2 ()P dt = 227 [ |(y - 2), (D) dt < 0.
{¢>z} 0
Also we have that
b

Jw(®) = fo(t, v (W — @)+ () dt = | (v(t) - folt, b())(& — 2)(t) dt.
0 {¢>z}

Recall that since v € dH(z), that v(t) > go(t, z(t)) a.e. on T'. Also from
the definition of g(¢,7) we see that for almost all t € {z < ¥}, we have

}{O(t,'dz(t)) = go(t,z(¢)). So fo(t,¢(t)) < v(t) a.e. on {z < 1}. Hence we
ave
b

(18) [(0(t) — folt, () = 2)4 (8)dt > 0.
0
Finally note that since w € B(z), we have By(t, z(t)) <w(t) <G (t, z(t))
a.e. on T. But from the definition of the penalty function ((t,r), we see
that for almost all ¢t € {z < ¥} we have Go(t, z(¢)) = B1(t, z(¢)) = —1, hence
w(t) = —1 a.e. on {z < 9}. Thus we have

b b
(19) —Aw@®@ -2)¢ (@) dt=-1 | (-)(@-z)(t)dt=A|(¥—2z)1(t)dt.
0 {¥>z} 0
), (18) and (19) in (16), we have
b
M@ —z)4(t)dt=0, X>0,
0
= () < z(t) forallteT.

Similarly we obtain that (z(t) < ¢(¢t) for all ¢ € T. Therefore we see that
for all t € T 9(t) < z(t) < #(t). Recall that —(|z’(¢)|P~22'(t))’ = 8(¢) a.e.
on T with ho(t,z(t)) < 6(t) < hi(t,z(t)) a.e. on T. Using the definitions of
h, ho and hy and the fact that ¥(¢) < z(t) < ¢(¢) for all t € T, we can check
that ho(t, z(¢t)) = fo(t, z(t)) and hi1(t, z(t)) = f1(t,z(t)) a.e. on T. Thus we
conclude that

{ = (I2'(®)|P~%2'(t))" € [fo(t, 2(t)), fr(t,2(1))] ae. on T}
z(0) = z(b), z'(0) = z'(b).

= z(-) is a nontrivial solution of problem (2). m

Using (17), (
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