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ON CERTAIN DIFFERENTIAL SUBORDINATION
FOR SECTORS

Abstract. Let D = {z : |z| < 1} denote the unit disk. For e € (0,1], v # 0, Rey > 0,
we study some properties of the differential subordination of the form

o) +yp ) < (122)° Gem)

1. Introduction
For each n € N let .A(n) denote the class of functions f of the form

f(zy=z+ Z apz”
k=n+1
which are analytic in the open unit disk D = {z € C: |z| < 1}.
For functions g and h analytic in D a function g is called subordinate to
h, written g < h (or g(z) < h(z), z € D), if h is univalent in D, ¢(0) = h(0)
and g(D) C k(D).
For each a € (0, 1] let us define

1+ 2

Ha(z) = (1%)& (z € D).

For v # 0 being such that Rey > 0 and a € (0,1] we consider some
properties of the differential subordination of the form

1+2\°
P+ 7@ < (122) (=€)
where p is an analytic function in I with p(0) = 1, p’(0)=.. =pn=1) (0)=0.

There is calculated a constant §(c,~,n) such that the above subordination
implies Rep(z) > 6(e,7y,n), z € D.

1991 Mathematics Subject Classification: 30C45.

Key words and phrases: Univalent function, subordination, differential subordination.



742 A. Lecko

2. Main results
The following lemma proved by Hallenbeck and Ruscheweyh [1] will be
basic for our investigations.

LEMMA 2.1 ([1]). Let H be a convez univalent function in D with H(0) = 1.
Let h be a function analytic in D with h(0) = 1, B'(0) = ... = R(*=1(0) = 0.
If h < H inD, then

2 zl/n.
Az Rty dt < A7 | ATTH () dt,
0 0

z€D, forall A #0, ReA > 0.
Now we will prove the following theorem.

THEOREM 2.1. Let v # 0 be such that Rey > 0 and « € (0,1]. Let p be an

analytic function in D with p(0) =1, p'(0) = ... = p(*~V(0) = 0. If
1 [23
2.1) W@+ 1) < (152)  (zeD)
then
1 nRey\ &
(2.2) Rep(z) > 6(a;y,n) = S 1= 7 dt (zeD). -
r o : 1+1¢» Re~y

Proof. Let us fix & € (0,1]. We have

2/m
09 gule)= 2V | i, )
Y 0
Z1/n
=lz—1/(n7) S w7 1<1+u ) du
¥ 1—um
li’ul/ 1+U yA > .
7y 1 —ovhz
1 1
1+1"2 _ n
g(l_mz> —(S]Ha(t z)dt (2 €D).

Using the general result from [1] we state that the function g, is convex and
univalent in D. Setting

(2.4) h(z) = p(2) + vzp'(2) (z€D)
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we see from (2.1) that h < H, in D. It is clear also from (2.4) that
= —z_l/'ys Vr=1p(y (z € D).
0
So applying now Lemma 2.1 and (2.3) we obtain
1 z
(2.5) p(z) = =271/ Sulh_lh(u)du
v 0

zl/n.

lz—l/(m) S w7 Hy (u)du
v 0

C1 )\

S (m) dt = qa(Z) (Z < D)

<

Observe that for ¢t € [0, 1] holds
1412\
(2.6) min Re { (+_E> } = min ReH, (t'ynz)

2€8D\{1} 1—-tmz 2€8D\{1}

= (i) = B = (F0 )

1+1¢n Re~y
y (2.5) and (2.6) we have
. S _
;IellgRep(z) > ;guf)Reqa(z) min Regq,(z) = 6(a,7,n),

zedD\{1}
where
L [(1—trRer\©
(2.7) 5(a,7,n):§(m) dt (zeD),

so the thesis of the theorem follows.

Remark 2.1. The constant 6(c,v,n) given by the integral (2.7) is the
best possible. In fact the integral (2.7) can be aproximated for every fixed
systems of parameters ¢, v and n with an arbitrary precision, for example
by using the numerical methods. Naturally, in the case when we are able to
find a primary function of this integral we can calculate a constant §(c, v, n)
exactly. In the next considerations we propose lower estimates of §(a, v, n),
where we eliminate the integral by applying Hermite-Hadamard’s inequality.
Presented estimates are not sharp. To compare an error let @ = 1 and
v = 1/n. Then an easy computation of the integral (2.7) yields us to the
sharp result

6(1,1/n,n) = 2log2 — 1 ~ 0.38629436.
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On the other hand from (2.10) with 8 = 1 we have only 6(1,1/n,n) > 1/3.
The constant 6§(1,1/n,n) was calculated by Ponnusamy [3] (see also Owa
and Nunokawa [2]).

Now we will estimate the constant &(c,7,n) by using the Hermite-
Hadamard’s inequality

b
(2.8) go(a—zl-b)sbiaSgo(t)dtSf_(ﬁ);ﬂ

a

for every convex function ¢ : I — R on the interval I, where a, b € I with
a < b. In the case when the function ¢ is concave in a certain segment we
estimate it by the most simple method, i.e. by the area of the triangle or of
the trapezium under the graph of .

To this end let us define for each o € (0,1] and 8 > 0 the function

1-tP\*
p(t) = (H_—tﬁ> (t€[0,1]).
By an elementary calculations we have

(1—tP)>2

" _ B—2
©"(t) = —2a0t EREEE]

(B+1)t*° —2apt° + B —1) (t € (0,1)).

Hence ¢"'(t) = 0 iff
(2.9) B+1u?-2aBu+8-1=0 (ue(0,1)),

where u = t5. Since A = 4(a26% — B% + 1) so we distinguish the following
cases:

CASE 1. a =1 and 3 > 1. Then the equation (2.9) has two solutions
/8 _ 1) /8
t=t1=(0—=) |, t=ty=1
1 ([3+ 1 2

lying in the interval [0, 1]. Moreover ¢"(t) < 0 for ¢t € (0,¢;) and ¢”(t) > 0
for t € (t1,1). Consequently, by (2.8) we have

(2.10) Scp(t) dt = Sl o(t) dt + S p(t) dt
0 0 t1

1 1 — ((8=1\Y/ s
AR (- )

B+l
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Case 2. a =1land 8 € ( 1). Then ¢”(t) > 0 for t € (0,1) so the
function ¢ is convex in (0,1). Hence and by (2.8) we state that

(0

§ Vit > 1 26 _1

0<p P\a2) T 251
Let now a € (0,1).

CASE 3. 3 > 1/+/1 — 2. Then the function ¢ is concave so

(S)w(t)dtz M _ %

CasE 4. 8 =1/v/1 — ¢2. Then the equation (2.9) has a double solution

Q,B 1/8 o 1-a
B=to= (m) = (ﬁ) €(0.1)

and therefore we have

o) dt = { o) dt+ | o(t) dt
0 0 to
21+§“®t+ g)u_t) m+§@w

(R D)

CASE 5. 8 < 1/v/1 — a? and 8 > 1. Then there are two solutions of (2.9)

of the form
t=tl=<a,6— 1—52(1—a2))1/ﬂ
B+1
and
(2.11) t =t _<aﬂ+vl_ﬂ2 )w
B+1

both of them lying in the interval (0,1). Hence ¢"(t) < 0 for ¢t € (0,¢1) U
(t1,1) and ¢"(¢) > 0 for t € (¢1,¢2). Therefore using (2.8) we have

{o)dt = Sltp(t) dt + f o(t)dt + | o(t) dt
0 0 t1 t2

v

1 +920(t1)t1 4 SO(tl ;t2>(t2 — )+ (1 —t22)€0(t2)‘
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CASE 6. 8 = 1. Then the function ¢ is convex in the interval (0, «) and
concave in the interval (a 1). Using (2.8) we have

S o(t) dt =

0

o) de + | (o)t

«

0
a+1
<2+a> 2 1+a)a'

CaSE 7. f < 1. Then the equation (2.9) has a unique solution t = ¢,
given by (2.11) in the interval (0,1). Therefore ¢”(¢) < 0 for ¢ € (0,t2) and
¢"(t) > 0 in (t2,1). Consequently applying again (2.8) we have

1

S t)dt > li@h +(1- tg)go(%)

Fora=1and Refy = 1/n we obtain the result mentioned in Remark 2.1
due to [3] and [2].

COROLLARY 2.1. Let -y be such that Rey = 1/n. If p is an analytic function
in D with p(0) = 1, p'(0) = ... = p(»~1(0) = 0 and

Re{p(z) +v2p'(2)} >0 (z€D),

then
Rep(z) > 2log2—-1 (z € D).

Remark 2.2. By setting in Theorem 2.1 the expressions p(z) = f(z)/z,
p(z) = f'(2), p(2z) = 2f'(2)/f(z), (z € D), or the another ones, where
f € A(n), we obtain the results concernig the inclusion relations between
various classes of analytic or univalent functions.
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