

Adam Lecko

ON CERTAIN DIFFERENTIAL SUBORDINATION
 FOR SECTORS

Abstract. Let $\mathbb{D} = \{z : |z| < 1\}$ denote the unit disk. For $\alpha \in (0, 1]$, $\gamma \neq 0$, $\operatorname{Re} \gamma \geq 0$, we study some properties of the differential subordination of the form

$$p(z) + \gamma z p'(z) \prec \left(\frac{1+z}{1-z} \right)^\alpha \quad (z \in \mathbb{D}).$$

1. Introduction

For each $n \in \mathbb{N}$ let $\mathcal{A}(n)$ denote the class of functions f of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$$

which are analytic in the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.

For functions g and h analytic in \mathbb{D} a function g is called subordinate to h , written $g \prec h$ (or $g(z) \prec h(z)$, $z \in \mathbb{D}$), if h is univalent in \mathbb{D} , $g(0) = h(0)$ and $g(\mathbb{D}) \subset h(\mathbb{D})$.

For each $\alpha \in (0, 1]$ let us define

$$H_\alpha(z) = \left(\frac{1+z}{1-z} \right)^\alpha \quad (z \in \mathbb{D}).$$

For $\gamma \neq 0$ being such that $\operatorname{Re} \gamma \geq 0$ and $\alpha \in (0, 1]$ we consider some properties of the differential subordination of the form

$$p(z) + \gamma z p'(z) \prec \left(\frac{1+z}{1-z} \right)^\alpha \quad (z \in \mathbb{D}),$$

where p is an analytic function in \mathbb{D} with $p(0) = 1$, $p'(0) = \dots = p^{(n-1)}(0) = 0$. There is calculated a constant $\delta(\alpha, \gamma, n)$ such that the above subordination implies $\operatorname{Re} p(z) > \delta(\alpha, \gamma, n)$, $z \in \mathbb{D}$.

1991 *Mathematics Subject Classification*: 30C45.

Key words and phrases: Univalent function, subordination, differential subordination.

2. Main results

The following lemma proved by Hallenbeck and Ruscheweyh [1] will be basic for our investigations.

LEMMA 2.1 ([1]). *Let H be a convex univalent function in \mathbb{D} with $H(0) = 1$. Let h be a function analytic in \mathbb{D} with $h(0) = 1, h'(0) = \dots = h^{(n-1)}(0) = 0$. If $h \prec H$ in \mathbb{D} , then*

$$\lambda z^{-\lambda} \int_0^z t^{\lambda-1} h(t) dt \prec \lambda z^{-\lambda/n} \int_0^{z^{1/n}} t^{\lambda-1} H(t^n) dt,$$

$z \in \mathbb{D}$, for all $\lambda \neq 0$, $\operatorname{Re} \lambda \geq 0$.

Now we will prove the following theorem.

THEOREM 2.1. *Let $\gamma \neq 0$ be such that $\operatorname{Re} \gamma \geq 0$ and $\alpha \in (0, 1]$. Let p be an analytic function in \mathbb{D} with $p(0) = 1, p'(0) = \dots = p^{(n-1)}(0) = 0$. If*

$$(2.1) \quad p(z) + \gamma z p'(z) \prec \left(\frac{1+z}{1-z} \right)^\alpha \quad (z \in \mathbb{D}),$$

then

$$(2.2) \quad \operatorname{Re} p(z) > \delta(\alpha; \gamma, n) = \int_0^{1/t^{n \operatorname{Re} \gamma}} \left(\frac{1-t^n}{1+t^n} \right)^\alpha dt \quad (z \in \mathbb{D}).$$

Proof. Let us fix $\alpha \in (0, 1]$. We have

$$\begin{aligned} (2.3) \quad q_\alpha(z) &= \frac{1}{\gamma} z^{-1/(n\gamma)} \int_0^{z^{1/n}} u^{1/\gamma-1} H_\alpha(u^n) du \\ &= \frac{1}{\gamma} z^{-1/(n\gamma)} \int_0^{z^{1/n}} u^{1/\gamma-1} \left(\frac{1+u^n}{1-u^n} \right)^\alpha du \\ &= \frac{1}{\gamma} \int_0^1 v^{1/\gamma-1} \left(\frac{1+v^n z}{1-v^n z} \right)^\alpha dv \\ &= \int_0^1 \left(\frac{1+t^{\gamma n} z}{1-t^{\gamma n} z} \right)^\alpha dt = \int_0^1 H_\alpha(t^{\gamma n} z) dt \quad (z \in \mathbb{D}). \end{aligned}$$

Using the general result from [1] we state that the function q_α is convex and univalent in \mathbb{D} . Setting

$$(2.4) \quad h(z) = p(z) + \gamma z p'(z) \quad (z \in \mathbb{D})$$

we see from (2.1) that $h \prec H_\alpha$ in \mathbb{D} . It is clear also from (2.4) that

$$p(z) = \frac{1}{\gamma} z^{-1/\gamma} \int_0^z u^{1/\gamma-1} h(u) du \quad (z \in \mathbb{D}).$$

So applying now Lemma 2.1 and (2.3) we obtain

$$\begin{aligned} (2.5) \quad p(z) &= \frac{1}{\gamma} z^{-1/\gamma} \int_0^z u^{1/\gamma-1} h(u) du \\ &\prec \frac{1}{\gamma} z^{-1/(n\gamma)} \int_0^{z^{1/n}} u^{1/\gamma-1} H_\alpha(u^n) du \\ &= \int_0^1 \left(\frac{1+t^{\gamma n} z}{1-t^{\gamma n} z} \right)^\alpha dt = q_\alpha(z) \quad (z \in \mathbb{D}). \end{aligned}$$

Observe that for $t \in [0, 1]$ holds

$$\begin{aligned} (2.6) \quad \min_{z \in \partial\mathbb{D} \setminus \{1\}} \operatorname{Re} \left\{ \left(\frac{1+t^{\gamma n} z}{1-t^{\gamma n} z} \right)^\alpha \right\} &= \min_{z \in \partial\mathbb{D} \setminus \{1\}} \operatorname{Re} H_\alpha(t^{\gamma n} z) \\ &= H_\alpha(-|t^{\gamma n}|) = H_\alpha(-t^{n \operatorname{Re} \gamma}) = \left(\frac{1-t^{n \operatorname{Re} \gamma}}{1+t^{n \operatorname{Re} \gamma}} \right)^\alpha. \end{aligned}$$

By (2.5) and (2.6) we have

$$\inf_{z \in \mathbb{D}} \operatorname{Re} p(z) \geq \inf_{z \in \mathbb{D}} \operatorname{Re} q_\alpha(z) = \min_{z \in \partial\mathbb{D} \setminus \{1\}} \operatorname{Re} q_\alpha(z) = \delta(\alpha, \gamma, n),$$

where

$$(2.7) \quad \delta(\alpha, \gamma, n) = \int_0^1 \left(\frac{1-t^{n \operatorname{Re} \gamma}}{1+t^{n \operatorname{Re} \gamma}} \right)^\alpha dt \quad (z \in \mathbb{D}),$$

so the thesis of the theorem follows.

Remark 2.1. The constant $\delta(\alpha, \gamma, n)$ given by the integral (2.7) is the best possible. In fact the integral (2.7) can be approximated for every fixed systems of parameters α , γ and n with an arbitrary precision, for example by using the numerical methods. Naturally, in the case when we are able to find a primary function of this integral we can calculate a constant $\delta(\alpha, \gamma, n)$ exactly. In the next considerations we propose lower estimates of $\delta(\alpha, \gamma, n)$, where we eliminate the integral by applying Hermite-Hadamard's inequality. Presented estimates are not sharp. To compare an error let $\alpha = 1$ and $\gamma = 1/n$. Then an easy computation of the integral (2.7) yields us to the sharp result

$$\delta(1, 1/n, n) = 2 \log 2 - 1 \approx 0.38629436.$$

On the other hand from (2.10) with $\beta = 1$ we have only $\delta(1, 1/n, n) \geq 1/3$. The constant $\delta(1, 1/n, n)$ was calculated by Ponnusamy [3] (see also Owa and Nunokawa [2]).

Now we will estimate the constant $\delta(\alpha, \gamma, n)$ by using the Hermite-Hadamard's inequality

$$(2.8) \quad \varphi\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b \varphi(t) dt \leq \frac{\varphi(a) + \varphi(b)}{2}$$

for every convex function $\varphi : I \rightarrow \mathbb{R}$ on the interval I , where $a, b \in I$ with $a < b$. In the case when the function φ is concave in a certain segment we estimate it by the most simple method, i.e. by the area of the triangle or of the trapezium under the graph of φ .

To this end let us define for each $\alpha \in (0, 1]$ and $\beta > 0$ the function

$$\varphi(t) = \left(\frac{1-t^\beta}{1+t^\beta} \right)^\alpha \quad (t \in [0, 1]).$$

By an elementary calculations we have

$$\varphi''(t) = -2\alpha\beta t^{\beta-2} \frac{(1-t^\beta)^{\alpha-2}}{(1+t^\beta)^{\alpha+2}} ((\beta+1)t^{2\beta} - 2\alpha\beta t^\beta + \beta - 1) \quad (t \in (0, 1)).$$

Hence $\varphi''(t) = 0$ iff

$$(2.9) \quad (\beta+1)u^2 - 2\alpha\beta u + \beta - 1 = 0 \quad (u \in (0, 1)),$$

where $u = t^\beta$. Since $\Delta = 4(\alpha^2\beta^2 - \beta^2 + 1)$ so we distinguish the following cases:

CASE 1. $\alpha = 1$ and $\beta \geq 1$. Then the equation (2.9) has two solutions

$$t = t_1 = \left(\frac{\beta-1}{\beta+1} \right)^{1/\beta}, \quad t = t_2 = 1$$

lying in the interval $[0, 1]$. Moreover $\varphi''(t) < 0$ for $t \in (0, t_1)$ and $\varphi''(t) > 0$ for $t \in (t_1, 1)$. Consequently, by (2.8) we have

$$(2.10) \quad \begin{aligned} \int_0^1 \varphi(t) dt &= \int_0^{t_1} \varphi(t) dt + \int_{t_1}^1 \varphi(t) dt \\ &\geq \frac{1+\varphi(t_1)}{2} t_1 + \varphi\left(\frac{1+t_1}{2}\right) (1-t_1) \\ &= \frac{1}{2} \left(1 + \frac{1}{\beta}\right) \left(\frac{\beta-1}{\beta+1}\right)^{1/\beta} + \left(1 - \left(\frac{\beta-1}{\beta+1}\right)^{1/\beta}\right) \frac{2^\beta - ((\frac{\beta-1}{\beta+1})^{1/\beta} + 1)^\beta}{2^\beta + ((\frac{\beta-1}{\beta+1})^{1/\beta} + 1)^\beta}. \end{aligned}$$

CASE 2. $\alpha = 1$ and $\beta \in (0, 1)$. Then $\varphi''(t) > 0$ for $t \in (0, 1)$ so the function φ is convex in $(0, 1)$. Hence and by (2.8) we state that

$$\int_0^1 \varphi(t) dt \geq \varphi\left(\frac{1}{2}\right) = \frac{2^\beta - 1}{2^\beta + 1}.$$

Let now $\alpha \in (0, 1)$.

CASE 3. $\beta > 1/\sqrt{1 - \alpha^2}$. Then the function φ is concave so

$$\int_0^1 \varphi(t) dt \geq \frac{\varphi(0) + \varphi(1)}{2} = \frac{1}{2}.$$

CASE 4. $\beta = 1/\sqrt{1 - \alpha^2}$. Then the equation (2.9) has a double solution

$$t = t_0 = \left(\frac{\alpha\beta}{\beta + 1}\right)^{1/\beta} = \left(\frac{\alpha}{1 + \sqrt{1 - \alpha^2}}\right)^{\sqrt{1 - \alpha^2}} \in (0, 1)$$

and therefore we have

$$\begin{aligned} \int_0^1 \varphi(t) dt &= \int_0^{t_0} \varphi(t) dt + \int_{t_0}^1 \varphi(t) dt \\ &\geq \frac{1 + \varphi(t_0)}{2} t_0 + \frac{\varphi(t_0)}{2} (1 - t_0) = \frac{t_0 + \varphi(t_0)}{2} \\ &= \frac{1}{2} \left(\left(\frac{\alpha}{1 + \sqrt{1 - \alpha^2}}\right)^{\sqrt{1 - \alpha^2}} + \left(\frac{1 - \alpha + \sqrt{1 - \alpha^2}}{1 + \alpha + \sqrt{1 - \alpha^2}}\right)^\alpha \right). \end{aligned}$$

CASE 5. $\beta < 1/\sqrt{1 - \alpha^2}$ and $\beta > 1$. Then there are two solutions of (2.9) of the form

$$t = t_1 = \left(\frac{\alpha\beta - \sqrt{1 - \beta^2(1 - \alpha^2)}}{\beta + 1}\right)^{1/\beta}$$

and

$$(2.11) \quad t = t_2 = \left(\frac{\alpha\beta + \sqrt{1 - \beta^2(1 - \alpha^2)}}{\beta + 1}\right)^{1/\beta}$$

both of them lying in the interval $(0, 1)$. Hence $\varphi''(t) < 0$ for $t \in (0, t_1) \cup (t_1, 1)$ and $\varphi''(t) > 0$ for $t \in (t_1, t_2)$. Therefore using (2.8) we have

$$\begin{aligned} \int_0^1 \varphi(t) dt &= \int_0^{t_1} \varphi(t) dt + \int_{t_1}^{t_2} \varphi(t) dt + \int_{t_2}^1 \varphi(t) dt \\ &\geq \frac{1 + \varphi(t_1)}{2} t_1 + \varphi\left(\frac{t_1 + t_2}{2}\right) (t_2 - t_1) + \frac{(1 - t_2)\varphi(t_2)}{2}. \end{aligned}$$

CASE 6. $\beta = 1$. Then the function φ is convex in the interval $(0, \alpha)$ and concave in the interval $(\alpha, 1)$. Using (2.8) we have

$$\begin{aligned} \int_0^1 \varphi(t) dt &= \int_0^\alpha \varphi(t) dt + \int_\alpha^1 \varphi(t) dt \\ &\geq \alpha \left(\frac{2-\alpha}{2+\alpha} \right)^\alpha + \frac{1}{2} \frac{(1-\alpha)^{\alpha+1}}{(1+\alpha)^\alpha}. \end{aligned}$$

CASE 7. $\beta < 1$. Then the equation (2.9) has a unique solution $t = t_2$ given by (2.11) in the interval $(0, 1)$. Therefore $\varphi''(t) < 0$ for $t \in (0, t_2)$ and $\varphi''(t) > 0$ in $(t_2, 1)$. Consequently applying again (2.8) we have

$$\int_0^1 \varphi(t) dt \geq \frac{1+\varphi(t_2)}{2} t_2 + (1-t_2) \varphi\left(\frac{t}{2}\right).$$

For $\alpha = 1$ and $\operatorname{Re} \gamma = 1/n$ we obtain the result mentioned in Remark 2.1 due to [3] and [2].

COROLLARY 2.1. *Let γ be such that $\operatorname{Re} \gamma = 1/n$. If p is an analytic function in \mathbb{D} with $p(0) = 1$, $p'(0) = \dots = p^{(n-1)}(0) = 0$ and*

$$\operatorname{Re}\{p(z) + \gamma z p'(z)\} > 0 \quad (z \in \mathbb{D}),$$

then

$$\operatorname{Re} p(z) > 2 \log 2 - 1 \quad (z \in \mathbb{D}).$$

Remark 2.2. By setting in Theorem 2.1 the expressions $p(z) = f(z)/z$, $p(z) = f'(z)$, $p(z) = zf'(z)/f(z)$, $(z \in \mathbb{D})$, or the another ones, where $f \in \mathcal{A}(n)$, we obtain the results concernig the inclusion relations between various classes of analytic or univalent functions.

References

- [1] D. J. Hallenbeck, St. Ruscheweyh, *Subordination by convex functions*, Proc. Amer. Math. Soc. 52 (1975), 191–195.
- [2] S. Owa, M. Nunokawa, *Applications of a subordination theorem*, J. Math. Anal. Appl. 188 (1994), 219–226.
- [3] S. Ponnusamy, *Subordination properties of certain integrals*, Proc. Indian Acad. Sci. 101 (1991), 219–226.

DEPARTMENT OF MATHEMATICS
 TECHNICAL UNIVERSITY OF RZESZÓW
 ul. W. Pola 2
 35-959 RZESZÓW
 E-mail: alecko@prz.rzeszow.pl

Received October 20, 1999.