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ON TENSOR PRODUCTS IN CONCRETE CATEGORIES

Abstract. In this paper we consider the notion of tensor product in a concrete cat-
egory, in the sense of [5]. For such a tensor product, which we refer as a concrete tensor
product we study some important properties: commutativity, associativity, epifunctori-
ality and zero object. We also consider examples and some special properties of tensor
products and of concrete categories with tensor products for: arbitrary topological spaces,
compact spaces, left modules, right H-comodules and left H-modules, for H a Hopf al-
gebra.

1. Introduction

Several authors have dealt with certain types of tensor products in a cat-
egory. Firstly, the notion of closed category was considered by S. Eilenberg
& G. M. Kelly [4]. A tensor product is a symmetric monoidal structure ex-
tendable to a structure of closed category. For example, if X and Y are two
topological spaces, then taking on X x Y the initial topology with respect to
the class of all maps f : X XY — Z, Z € Top®, such that fla,=):Y — Z
and f(—,b) : X — Z are continuous maps for each a € X, b € Y, a tensor
product X ® Y is obtained. We notice that this topology is somehow dual
of the product topology.

Tensor products in categories were considered after that by G. M. Kelly
[6]. G. M. Kelly studies the associativity and left and right identities. In-
teresting results have been obtained by J. Cincura. In [1], it is proven that
in the category Top of topological spaces and in the category of Ty—spaces,
there exists only one tensor product (up to isomorphism). In [2], it is es-
tablished that the category of pseudoradial spaces admits at most two ten-
sor products and that the category of Hausdorff pseudoradial spaces ad-
mits exactly two tensor products. B. A. Davey and G. Davis in [3] consider
the tensor product in a variety k as a free k-algebra. These authors prove
a lot of good properties for their tensor product when &k is an entropic
variety.
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Recently, D. Jagiello in [5] has defined a new tensor product in a concrete
category and has given sufficient conditions (Theorem 2 of [5]) for a concrete
category to have arbitrary tensor products. As application of this theorem,
it is proven that the category Comp of compact topological spaces has tensor
products.

In this Note, we consider the notion of tensor product according
to [5]. For this there are studied some important properties: commutativ-
ity, associativity, epifunctoriality and zero object. There are also consid-
ered examples and special properties of tensor products and of concrete
categories with tensor products for: arbitrary topological spaces, compact
spaces, left modules, right H-comodules and left H-modules, for H a Hopf
algebra.

2. Concrete tensor products
We remind that a concrete category U is a pair (U,U), with U a category
and U : Y — Ens a faithful covariant functor.

Firstly, we recall according to [5] the notion of concrete tensor product,
some notations and results that are used in this paper.

Given the sets M,..., My, and m; € M;,j=1,...,i—1,i+1,...,n, let

7r7AnJli;--~ymi—1)mi+1,---,mn : M; — M x --- x My, be the function of sets defined
by

M,
(1) T oo M 1 i 1y (zi)=(ma,...,mi—1, Ti, Mit1,...,My), for z;€ M;.

Let (U,U) be a concrete category and U° the class of objects of U.

DEFINITION 1. [5]. Let Ay, ..., Aqn, B € U°. A function of sets
p:U(A1) x---xU(An) — U(B)

is called an n—morphism for the concrete category (U,U) if for any i =
1,...,n and any a; € U(4;), 5 =1,...,i— 1,4+ 1,...,n, there exists a

(A1)

. . . U
morphism in U, 'yg’ll,_ : A; — B such that ©7g;, i 1,641,000 =

" <0i—1,0i41,--+,0n
i
U(’Yal,...,ai_l,ai+1,...,an ) :

DEFINITION 2 [5]. Let (Ai,...,Ap) be a sequence of objects of the cat-
egory U. By a tensor product (concrete tensor product) of this sequence
we call a pair (T,7) with T € U® and 7: U(A;) x - x U(4,) — U(T)
an n—morphism for (U, U), having the following universality property: for
any object X € U° and any n-morphism ¢ : U(4;) x -+ x U(4,) —
U(X) there exists exactly one morphism ¢ : T — X such that
U(Q)r = .
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The concrete tensor product, if it exists, is unique up to an isomorphism,
as it follows from [5, Th.1].

If (T,7) is a concrete tensor product of the sequence (A, ..., A,), we
shall sometimes denote T'=A4; @ - - - ® A,,.

The concrete tensor product is a covariant multifunctor.

The first property, that we prove and that is mentioned also in [5] is
commutativity.

PROPOSITION 1. Let (U,U) be a concrete category with concrete tensor pro-
ducts. Then, for any A1, Ay € U°, we have: Ay @ Ay ~ Ay ® Aj.

Proof. Let U(A;) x U(42) =5 U(A; ® As) be the 2-morphism from the
definition of tensor product and similarly, U(As) x U(4;) =2 U(42 ® 4,).

Denote ¢ : U(A;1) x U(A2) — U(Az ® A1) the function defined by
(z,y) — 72(y, z). It is easy to check that ¢ is a 2-morphism. Similarly, we
define ¢ : U(Az) x U(A1) — U(A:1 ® A2) by (y,z) — m1(z,y), which is a
2-morphism. It results that there exist exactly one morphism f: 4143 —
Az ® A; and one morphism g : Ay ® A; — A; ® As such that U(f)1 = ¢
and U(g)ra = 9. It follows that U(g)U(f)mn = 1 < U(gf)n = 7.
From the universality property, it results that gf = 14,g4,. Analogously,
f9=1aea-

We shall now give more properties of concrete tensor product.

THEOREM 1. Let (U,U) be a concrete category that has a zero object
N and concrete tensor products. Then, for any object A € UY, we have:
AN ~N.

Proof. Because N is a zero object, it results that there exist exactly one
morphism f: A® N — N and one morphism g: N — A ® N. It follows
that fg : N — N is a morphism = fg = 1.

On the other hand, for any z € U(A), let g W) U(N) — U(A) xU(N)
defined by y — (z,y). As 7 : U(A) x U(N) — U(A® N) is a 2-morphism,
it results that it exists g* : N — A ® N, morphism in (4, U), such that
Ty W _y (¢®). But, N is an initial object. It follows that ¢® = g, for any
z € U(A) = Y(z € U(A)), U(g) = g™,

Let p:U(A) x U(N)—U(N) be the function of sets defined by (z,y)—y.
We have: U(g)p = Tﬂg(N)cp and (T’II';,;U(N)(p)(ZBo,yo) = ('r7ero(N)<p)(m0,yg) =
ng,(N)(yg) = 7(z0,Y0), for any (zg,yo) € U(A) x U(N). Thus, ng(N)cp =T
= Ulg)p = 7 = U(f)r = U()U(9)p = U(fg)p = U(ln)p = ¢. We
obtain that U(gf)r = U(q)U(f)r =U(g)p = 7.
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From the following diagram
U(A)xU(N) - U(A®N)

, U(leN)| |U(9f)
ti
U(A®N)

it results that gf = l4gn. We have obtained that AQ N ~ N.

DEFINITION 3. Let (U, U) be a concrete category with concrete tensor pro-
ducts. We say that the 2-tensor product in (U,U) is special if for any
Ajq, As, As Guo, with
7:U(A1) x U(A2)—U(A1 ® A3) and 7":U(A2) x U(A43)—U(Az ® A3),
and any functions of sets
@ : U(A1 ®A2) X U(Ag) — U(B), (,0, : U(Al) X U(Az ®A3) — U(B),
we have the following implications:
(i) If V(z € U(43)) I(vA1®42 : A; ® Ay — B) such that o7, U(41842) =
U(y1®42) and po(r x 1y7(45)) is & 3-morphism then ¢ is a 2-morphism.
(ii) If V(z € U(A;1)) 3(y22®4s . Ay ® A3 — B) such that ¢'7z Ulhe®4s) _

U(y42843) and ¢’ o (lyca,) x 7') is a 3-morphism then ¢ is a 2—
morphism.

THEOREM 2. Let (U,U) be a concrete category with 2-tensor products such
that the 2-tensor product is special. Then (A; ® A2)® A3 ~ A; ® (A2 ® As),
for any Ay, Aa, Az € U°.
Proof. Let U(4z) x U(A43) — U(A2 ® A3), U(A;) x U(Ay ® A3)
U(A1 ® (A2 ® Ag)), U(Al) X U(Az) LN (Al ® Ag) and U(A1 ® A2) X
U(A3) =5 U((A; ® A2) ® A3) be the 2-morphisms from the definition of
tensor products. Let z € U(As). Let w, : U(41) x U(4y) — U(41 ®
(A2 ® A3)) be the function defined by (z,y) — m2(z, 71(y, 2)). We check
that v, is a 2-morphism. For any mo. %) : U(A1) — U(A;) x U(Az),
a1 — (a1,02), (uzme™)(a1) = ma(ar, mi(az,2)) = U(vah,, )(a1) from
the fact that 7 is a 2-morphism. Also, because 71 and 7o are 2-morphisms,
for any 7ra( 2) : U(A2) — U(A1)xU(Az), ag — (a1, a2), (uz'/ral( 2))( 9) =
2(a1,11(a2, 2)) = Ulaa,)(11(a2, 2)) = U(aa,)U(B:)(a2) = U(a,B:)(a2) =
U (va2)(az)-

We have shown that u, is a 2-morphism. From the following diagram,
it exists exactly one morphism v, : 4; ® A — A; ® (A2 ® A3) such that
U(vy)73 = us.
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73
U(A1)xU(A2) ———————  U(A10A42)

Uy U(v:)

!

U(A1®(A20A43))

We define U(A4; ® Ag) x U(A3) == U(A; ® (A2 ® 43)) by p(w,2) =
U(v,)(w). Check that ¢ is a 2-morphism. Because the 2-tensor product is
special, it is sufficient to prove that ¢ o (73 X 1y (4,)) is a 3-morphism. We
have that

(0o (13 X Ly(ay)))(2, 9, 2) = @(73(2,9), 2) = U(vz)(73(2,9)) = uz(2, ),
for any (z,y,2) € U(A1) x U(A2) x U(A3).
For any ng(;"lgs)) :U(A1) — U(A;) x U(Ag) x U(As), a1 — (a1, a2, a3),
we have:
(0 (75 X Ty(ag) 0 e i) )(@1) = gy (01,02) = UMY . )(@2)
as Ug, is a 2-morphism.

. U(A
Similarly, ¢(r3 x 1U(A3))7T(a(1,:3)) = U('yézha?')).

U(As)

Finally, for any m, ',

Uqy (a1, 02) = T2(a1, T1(az,a3)) = U(eg,)(m1(az, a3)) =
= U(ag,)U(BL,)(a3) = U(al,BL,)(as)
= @(73 X Ly(ag)) oy = Ulal, BL,).

We have obtained that ¢ is a 2-morphism.
Let g: (A1®A2)® Az — A1 ®(A2® A3) be the morphism in U/ uniquely
defined such that the following diagram is commutative:

T4
U(A1 ®A2) X U(Ag)

U((A1®A2)®A3)

@ U(g)
(3)
¥
U(A1®(A20A3))

In the same way, consider for any z € U(41), 6z : U(A2) x U(43) —
U((A1®A2)® A3), (y, z) — 14(13(2,y), 2), that is a 2-morphism. It follows
that there exists exactly one morphism p; : A2® A3 — (A1 ® A2)® A3 such
that U(/,Lz)Tl = 6;. Now, let ¢ : U(Al) X U(A2®A3) — U((A1 ®A2)®A3),
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(z,a) — U(pz)(@). ¥ is a 2-morphism because 1 o (1y(4,) x 71) is a 3-
morphism. It follows that there exists only one morphism f : 4; ® (42® As)
— (A1 ® A2) ® A3z such that the following diagram is commutative:

T2
U(A1)xU(A2043) > U(A418(42043))

¥ u(f)
(4)

U((A18A42)®A3)

It remains to prove that fg = 1(4,04,)04; a30d g9f = 14,0(4.04;)- We have:
U(f)ra(z,71(y, 2))) = 8s(y,2) = ma(73(2,9), 2) and U(g)(ra(ms(,y),2) =

mo(z, T1(y, 2)). It follows that
U(gf)(r2(z, 11y, 2)) = m2(z, 11(y, 2)),
for any (z,y,2) € U(A41) x U(Az) x U(As3).
Let z € U(Al) and 6, : U(A2 ® Ag) o U(A1 ® (Az & A3)) be defined
by o+ 7a(z, ). It results that
(0:71)(y, 2) = m2(z, 1(y, 2)) = V(z € U(A1)), U(gf)bam1 = bz71.

But 8,7 is a 2-morphism. From the diagram
L

U(A2)xU(Asz)— U(A20A3)

0:71 0z U(gf)ez

(5)

U(A1®(A20A3))

and the fact that 8, = U(&,), where @&, : Ay ® A3 — A; ® (A2 ® A3)
morphism in (U, U), it results that

Oz = 9f0y = 0, = U(gf)0r = m2(z, @) = U(9f)(m2(z, @),
for any z € U(A1) and o € U(A2 ® A3). It results that 7 = U(gf)m and
from the universality property, it follows that gf =1 A1®( A2@A4;)- Similarly,
fg= 1(A1®A2)®A3
DEFINITION 4. We say that a 2-tensor product 7 : U(A;) x U(42) —

U(A1®A43) in a concrete category (U, U) is dense if for every morphism f :
A — A1®A; for which Im7 C ImU(f), it follows that U(f) is surjective.

THEOREM 3. Let (U,U) be a concrete category with 2-tensor products such
that U preserves epimorphisms. Then, if 7: U(A;)xU(Az) — U(A1Q42)
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is dense and f: A} — A; is an epimorphism, it results that the morphism
f®1la,: A1 ® A — A1 ® A
is also an epimorphism.

Proof. We recall that f ® 14, is defined in this way: let us consider ¢ :
U(A])xU(A2)—U(A1®Az) defined by ¢ =70(U(f)x1y(a,)). Then ¢ is a 2-
morphism: (a, az) = T(U(f)(a}),02) = U(1a) U(H(@) = UlYarf)(al)
and ¢(ay, a2) = U(vy(f)(a;))(a2) because 7 is a 2-morphism. It follows that
there exists only one morphism f : 4] ® A2 — A; ® A; such that U(f)7' =
@, where 7/ : U(A)]) x U(A2) — U (A4} ® Az) is from the definition of tensor
product. We denote f by f® 1 A,- As f is an epimorphism, it results that
U(f) is surjective. This implies that U(f) x 1y(4,) is surjective. We have
that U(f ® 1ya,))™ = 7(U(f) x 14,). It results that Im7 C ImU(f ® 14,)
and because 7 is dense, it follows that U(f ® 14,) is surjective. As U is
faithful, f ® 14, is an epimorphism.

3. Examples
In this section, U is the forgetful functor.

a) Tensor products of sets
PROPOSITION 2. For any Ay, ..., A, € Ens®, A;x-- - x A, = A41®- - QA,.

Proof. It is obvious because every function of sets ¢ : A; X --- x A, — B
is an n—morphism.

b) Tensor products of topological spaces. It can be shown that for two
arbitrary topological spaces X and Y, the pair (X ®Y, 1xgy), where X®Y
is obtained like in the introduction, is a concrete tensor product in Top. We
shall refer to this as the canonical tensor product in Top. We shall explain
this tensor product in the situation when X is a discrete topological space.

PROPOSITION 3. Let X be a discrete topological space and Y an arbitrary
topological space.
If}/{Y is the topological sum U {(z,y) |lyeY}andr: X xY — )\éY

zeX
is the map given by 7(z,y) = (z,y), then (}\éY,T) =X®Y in (Top,U).

Particularly, if X = {*} is a singleton, then {x} @Y =Y.
Proof. First we prove that 7 is a 2-morphism. The function ¥ — VY

X
defined by y — (z,y), where z € X is fixed, is continuous because {(z,y) |
y € Y} is a subspace of the sum )\éY homeomorphic with Y. Also, because

X is discrete, the following function X — )\éY, defined by z — (z,y), for
y €Y fixed, is continuous.
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Let ¢ : X xY — Z be a 2-morphism in (Top,U). It follows that
the functions X — Z defined by z — ¢(z,y) and ¥ — Z given by
y +— o(z,y) are continuous. Define « : )\éY — Z by v(z,y) = ¢(z,y).
This is continuous because ¥ —— )\éY — Z, y — (z,y) — p(z,y),

)

z € X fixed, is continuous. We have: (U(7)7)(z,y) = U(7)(z,y) = ¢(z,¥),
so U(y)T = ¢. Uniqueness: let v : XY — Z with

UA)r=p= U )(2,9) =U)(2,y) = U) =U(y) =+ = 1.
REMARK 1. For the canonical tensor product (X; ® Xo,7) in Top, 7 is
surjective and then we can apply Theorem 2.

PROPOSITION 4. Let X,Y, X' € Comp?, where Comp is the category of com-
pact Hausdorff spaces. Assume that 7(X x Y') is dense in a tensor product
XQ®Y (cf. [5], in Comp there ezist tensor products). Then, if f: X' — X
is a continuous surjection, the map fQly : X' @Y — X QY is surjective.
Proof. The following diagram is commutative:

7.I

X'xY X'®Y
fxly fely
(6)
r
XxY X®Y

We have that, for any z € X, there exists z’ € X’ such that f(z') = z.
It follows that 7(z,y) = 7(f(z'),y) = 7(f x Iy)(2',y) = (f ® 1y )(r'(z', y)).
We obtain that 7(X x Y) C Im(f ® 1y).

Now let z € X ® Y. Because 7(X xY') is dense in X ® Y, it follows that
there exists a generalized sequence (z;)ier C 7(X xY') such that z; — z. It
results that there exists ({;)ier such that z; = (f®1y)({;). Because X'®Y is
a compact, (;)ier has a generalized subsequence (;,)jes such that ¢;; — ¢
in X'®Y. As f ® ly is continuous, it follows that 2, — (f ® 1y)(¢). We
obtain that z = (f ® 1y )(¢) as X ® Y is separate.

c) Left A-modules, H—-comodules and H-modules.

Another example of concrete tensor product can be given in the category
of H-comodules, where H is a Hopf algebra.

PROPOSITION 5. Let V,W be k-linear spaces and H a Hopf algebra with
er the unity. V and W are right H—-comodules with the maps py : V —
VorH, v— v®ey and respectively, pww : W — W QL H, w — wQep.
Then V @, W as H-comodule is the concrete tensor product of V and W
in the category of right H-comodules, MH .
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Proof. V®; W becomes a right H-comodule via pyg, w : VW —
VW H, vQw+— vQw®ey. Let 7: V X W — V@ W from the
definition of tensor product in the category of k-linear spaces. Let us verify
that 7 is a 2-morphism in M. Let v € V be fixed and f: W — V @, W,
f(w) = v®w. f is a morphism in M#. Indeed, f is a k-linear map and the
following diagram is commutative:

PW
w W, H
f f®kly
(7)
pV®kW
VerW VoW H

Similarly, g : V — V@ W, v — v ® w is a morphism in M¥. Let
Me MHY and ¢ : V x W — M be a 2-morphism in M¥. It fol-
lows that @ is a bilinear map over k. From the universality property for
k-linear spaces, there exists exactly one k-linear map ¢ : V@i W — M
such that Y7 = . We check that v is a morphism in M. We have:
Y@k lu)(pve,w(v®w)) = (PO la)(v®w®en) = Y(vOw) ey =
e(v,w)Qen = pm(p(v,w)) = pu(¥(v®w)) because ¢ is a 2-morphism in
MH  Thus, the following diagram commutes:

PV R W
VerWw VerWerH
Y Y ®klu
(8)
PM
M M@ H

The uniqueness is obvious.

REMARK 2. In this situation, the concrete tensor product coincides with the
tensor product of right H-comodules met in [7].

REMARK 3. Proposition 5 is valid also for H only a bialgebra.

We shall now give examples of categories with concrete tensor products.
D. Jagiello gives in his paper sufficient conditions for a concrete category to
have concrete tensor products (cf. Theorem 2 from [5]). We shall use this
for other examples.

PROPOSITION 6. Let A be a ring with unity 1 # 0. Then g4 M, the category
of left A-modules, has concrete tensor products.
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Proof. We verify the following conditions (cf. Theorem 2 from [5]).

(i) aM is complete with respect to inputs because it has products and
equalizers.
(ii) 4M is complete with respect to coequalizers. Every pair of morphisms

f
M —3 N has a coequalizer (N/Im(f — g);p).

9
(i) U : 4M — Ens, the forgetful functor, has a left adjoint
L : Ens — 4 M, the free functor:

X — L(X)

fl LL(F)
Y — L(Y)

where L(X) is the free left A-module with basis X.

(iv) U preserves epimorphisms because epimorphisms in 4 M are surjective
morphisms.

(v) Every injection is an embedding (a morphism & : M — N is called
an embedding if for any function of sets f : P — M such that £f is
a morphism, it follows that f is a morphism).

(vi) For each M € (4M)?, the class of all the structures of left A-modules
on M is a set. Indeed, it is known that for any structure on a group
M corresponds a ring morphism A — End(M) and conversely. Also,
the class of all the group structures on the set M is a set.

REMARK 4. By following the proof of Theorem 2 from [5], it results that for
any Mi,..., M, € (4aM)°, M1 ®---®@ My, = L(M;y x - -- x My,)/N, where N
is the submodule of L(M; x --- x M,) generated by the elements:
(al,...,ai-l-&i,...,an) - (al,...,ai,...,an)— (al,...,&i,...,an),
(@1,-.-,Aq4,...,an) — Ala1,. .., 04, ...,an).
REMARK 5. The associativity holds because the 2-tensor product is special.
REMARK 6. Because of Remark 4, every 2-tensor product is dense.

REMARK 7. By a similar proof like that of Proposition 6, it follows that the
category of groups Gr has concrete tensor products.

Moreover, a canonical tensor product can be obtained. If G and H
are arbitrary groups, one considers the free group generated by G x H,
Gp{G x H}, and the normal subgroup N generated by the elements:

(9192, R)(g2,h) " (g1,h) ! and (g, h1h2)(g,h2) (g, h1)™"

for any ¢,91,92 € G and h,h1,ho € H. Then Gp{G x H}/N verifies the
universality property for the groups G and H.
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By taking G = {e} a trivial group, we have G ® H = G, in concordance
with Theorem 1.

PROPOSITION 7. Let V,W be k-linear spaces and H o Hopf algebra. V
and W are left H-modules with the structures: h - v = e(h)v, respectively
h-w = eh)w, for any h € Hyv € V, w € W. Then VW, as left
H-module, is the concrete tensor product of V and W in g M.

Proof. V®; W becomes an H-module via h - (v ® w) = Thiv ® how (in
the sigma notation), where Ah = £hy ® ho (A : H — H ®; H from the
definition of a k-coalgebra). In terms of maps, if ¢y : H@,V — V and
ow : H @y W — W are the two given module actions, then

tverw =(dv®dw)o(lp®u®lw)o(AQlye, w)

(where p : H®rV — V @y H is the twist map) is the left H-module
structure on V ®; W, as in the following diagram

AQly @, w
HrVerW HRrHQ VW
|
(9) pveg,w | 1g®udlw
I
¥
Pv@dw
VerW (HQrV)®r(H®r W)

We have: h- (v@w) = Ze(h1)v® how = Zv®e(h1)how = v® (Ze(hy ) ho)w =
v@hwand h-(v®w) =h-v®w, similarly.

Verify that 7: V x W —» V ®, W is a 2-morphism in g M. First, 7 is
a bilinear map over k. Also,V(he Hyve V,w e W), 7(hv,w) = hv@w =
h-(v®w)=hr(v,w) = 71(v, hw).

Let ¢ : V.Xx W — M be a 2-morphism in gM. There exists exactly
one morphism of k-linear spaces ¢ : V @ W — M such that Y7 = ¢. ¢ is
a morphism in gM : Y(h- (v @ w)) = ¢Y(hv @ w) = p(hv,w) = hp(v,w) =
h-pv@w) = V(he H weVerW), ¥(hw)= hip(w). Uniqueness is
obvious.

REMARK 8. The concrete tensor product in g M coincides with the tensor
product of H-modules from [7] only in the situation of Proposition 7. In
general, V @, W £ W ®; V as H-modules, so that the commutativity is not
satisfied. Thus, the tensor product in {7] is not concrete.
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