
DEMONSTRATE MATHEMATICA 
Vol. XXXIII No 4 2000 

Iulia Pop 

ON TENSOR P R O D U C T S IN CONCRETE CATEGORIES 

Abstract. In this paper we consider the notion of tensor product in a concrete cat-
egory, in the sense of [5]. For such a tensor product, which we refer as a concrete tensor 
product we study some important properties: commutativity, associativity, epifunctori-
ality and zero object. We also consider examples and some special properties of tensor 
products and of concrete categories with tensor products for: arbitrary topological spaces, 
compact spaces, left modules, right //-comodules and left //-modules, for H a Hopf al-
gebra. 

1. Introduction 
Several authors have dealt with certain types of tensor products in a cat-

egory. Firstly, the notion of closed category was considered by S. Eilenberg 
& G. M. Kelly [4]. A tensor product is a symmetric monoidal structure ex-
tendable to a structure of closed category. For example, if X and Y are two 
topological spaces, then taking o n I x 7 the initial topology with respect to 
the class of all maps f : XxY —> Z, Z € Top0, such that / (o , - ) : Y —> Z 
and /(—, 6) : X —> Z are continuous maps for each a € X, b € Y, a tensor 
product X <g> Y is obtained. We notice that this topology is somehow dual 
of the product topology. 

Tensor products in categories were considered after that by G. M. Kelly 
[6]. G. M. Kelly studies the associativity and left and right identities. In-
teresting results have been obtained by J. Cincura. In [1], it is proven that 
in the category Top of topological spaces and in the category of To-spaces, 
there exists only one tensor product (up to isomorphism). In [2], it is es-
tablished that the category of pseudoradial spaces admits at most two ten-
sor products and that the category of Hausdorff pseudoradial spaces ad-
mits exactly two tensor products. B. A. Davey and G. Davis in [3] consider 
the tensor product in a variety A; as a free /c-algebra. These authors prove 
a lot of good properties for their tensor product when k is an entropic 
variety. 
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Recently, D. Jagiello in [5] has defined a new tensor product in a concrete 
category and has given sufficient conditions (Theorem 2 of [5]) for a concrete 
category to have arbitrary tensor products. As application of this theorem, 
it is proven that the category Comp of compact topological spaces has tensor 
products. 

In this Note, we consider the notion of tensor product according 
to [5]. For this there are studied some important properties: commutativ-
ity, associativity, epifunctoriality and zero object. There are also consid-
ered examples and special properties of tensor products and of concrete 
categories with tensor products for: arbitrary topological spaces, compact 
spaces, left modules, right if-comodules and left if-modules, for H a Hopf 
algebra. 

2. Concrete tensor products 
We remind that a concrete category U is a pair (U, U), with U a category 

and U : U —> Ens a faithful covariant functor. 
Firstly, we recall according to [5] the notion of concrete tensor product, 

some notations and results that are used in this paper. 
Given the sets M i , . . . , Mn, and rrij € Mj,j = 1 , . . . , i — 1, i + 1,..., n, let 

Kmi 777 * i Tn • i m -Mi —y Mi x • • • x Mn be the function of sets defined 
by 

(!) ^m;,...,mi_1,mi+1,...,mn (®t) = • • • , TTH-l, ™i+l, mn), for Xi G M;. 

Let (U, U) be a concrete category and the class of objects of U. 

DEFINITION 1. [5]. Let A\,..., An, B e U°. A function of sets 

(p : U{A\) x • • • x U(An) —> U(B) 

is called an n-morphism for the concrete category (U,U ) if for any i = 
1 , . . . , n and any aj 6 U(Aj), j = 1 , . . . , i — 1, i + 1 , . . . , n , there exists a 
morphism in U, 7ai,...ai_i,oi+i,...,a„ : A i B s u c h t h a t f H O W A + I , . » ^ = 

Ai \ 

DEFINITION 2 [5]. L e t 
An) be a sequence of objects of the cat-

egory U. By a tensor product (concrete tensor product) of this sequence 
we call a pair (T, r ) with T E U° and r : U(Ai) x • • • x U{An) —> U{T) 
an n-morphism for (U,U), having the following universality property: for 
any object X G 

and any n-morphism <p : U(A{) x • • • x U(An) —> 
U(X) there exists exactly one morphism ( : T —> X such that 
U(C)r = <p. 
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The concrete tensor product, if it exists, is unique up to an isomorphism, 
as it follows from [5, Th.l]. 

If (T, T) is a concrete tensor product of the sequence { A \ , . . . ,An), we 
shall sometimes denote T = A\ ® • • • <8> An. 

The concrete tensor product is a covariant multifunctor. 
The first property, that we prove and that is mentioned also in [5] is 

commutativity. 

PROPOSITION 1. Let (U,U) be a concrete category with concrete tensor pro-

ducts. Then, for any A\, A2 €U°, we have: A\ ® A2 cz A2 <8> Ai. 

P r o o f . Let U(A\) x U(A2) U(Ai <g> A2) be the 2-morphism from the 
definition of tensor product and similarly, U(A2) x U(A\) —^ U{A2 <81 Ai). 

Denote ip : U{A{) x TJ{A2) —> U(A2 <8> Ai) the function defined by 
(x,y) 1—> T2(y,x). It is easy to check that ip is a 2-morphism. Similarly, we 
define tp : U(A2) x U(A{) —> U(A\ <g> A2) by (y, x) 1—> Ti(x,y), which is a 
2-morphism. It results that there exist exactly one morphism / : A\®A2 —> 
A2 <8> Ai and one morphism g : A2® A\ —• A\ <8> A2 such that U(/)TI = ip 
and U(g)T2 = ip. It follows that U { g ) U ( f ) n = N U ( g f ) n = TX. 

From the universality property, it results that gf = IA1®A2- Analogously, 
FG = 

We shall now give more properties of concrete tensor product. 

THEOREM 1. Let (li,XJ) be a concrete category that has a zero object 
N and concrete tensor products. Then, for any object A G U°, we have: 
A ® N ~ N . 

P r o o f . Because N is a zero object, it results that there exist exactly one 
morphism f : A® N —• N and one morphism g : N —> A® N. It follows 
that fg : N —> N is a morphism fg = IN-

On the other hand, for any x e U(A), let 7r^(A° : U(N) —> U{A) x U{N) 
defined by y 1—> (x,y). As r : U(A) x U(N) —> U(A®N) is a 2-morphism, 
it results that it exists gx : N —• A® N, morphism in (U,U), such that 
t t t x ^ = U(gx). But, N is an initial object. It follows that gx = g, for any 
x e U(A) = » V ( x € U(A)), U{g) = t t t ^ N ) . 

Let <p:U(A) x U(N)-+U(N) be the function of sets defined by (x,y)i— 
We have: U{g)<p = T-KXW<P and (T7TX ' ' N ^ip) (x 0 , y0) = {TTTXON) y0) = 

r-KxoN\yo) = r{x0,yo), for any (x0,yo) G U(A) xU(N). Thus, T7rx = r 

=> U(g)<p = T U ( f ) R = U(f)U(g)<p = U{fg)<p = U(lN)<p = <p. W e 

obtain that U ( g f ) r = U ( g ) U ( f ) r = U(g)<p = r . 
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From the following diagram 
r 

U(A)XU(N) -U(A®N) 

X \ C/(lAxN)' ' U(gf) 
\ R 1 1 

1 1 

^ U(A®N) 

it results that gf = IA®N- We have obtained that A® N ~ N. 

D E F I N I T I O N 3. Let (U, U) be a concrete category with concrete tensor pro-
ducts. We say that the 2-tensor product in (U, U) is special if for any 
A i , A 2 , A z E l P , with 

T-.U{A1) x U{A2)-+U{A1®A2) a n d T':U{A2) X U(A3)^U(A2 ® A3), 

and any functions of sets 

<p : U(A1 ® A2) x U(A3) —> U(B), <p' : U(Al) x U(A2 ® A3) —• tf (B) , 

we have the following implications: 

(i) If V(z e U(A3)) . ax®A2^ B) such that ^ U { M ® A 2 ) = 

U a n d (po(r x l[/(^3)) is a 3-morphism then <p is a 2-morphism. 
(ii) I fV(x € U(Ai)) •. A2®A3-^ B) such that = 

U{lx2®Ai) a n d ¥>' 0 (l(7(Ai) x T ' ) is a 3-morphism then tp' is a 2-
morphism. 

T H E O R E M 2 . Let (U,U) be a concrete category with 2-tensor products such 
that the 2-tensor product is special. Then (Ai ® A2) ® A3 ca A\ ® (A2 ® .A3), 
for any A1,A2,A3 <E U°. 

P r o o f . Let U(A2) x U(A3) U(A2 ® i7(Ax) x J7(A2 ® ¿ 3 ) 
U(A1 ® (A2 ® A3)) , tf(Ai) x C/(A2) l/(Ai ® A2) and U(A1 ® A2) x 
U(A3) f/((yli ® A2) ® A3) be the 2-morphisms from the definition of 
tensor products. Let 0 e U(A3). Let uz : U{A{) x U(A2) —> U(A\ ® 
{A2 ® A3)) be the function defined by (X ,y) 1—> T2{X, T\(y, z)). We check 
that uz is a 2-morphism. For any 7r^"4^ : U(A\) —• ^(-¿ l ) x U(A2), 
ai 1—• (ai ,a 2 ) , (uzTr$Al)){ai) = r 2 (ai , n(a2, z)) = ^(7^( a 2 ) Z ) ) (ai) from 
the fact that r2 is a 2-morphism. Also, because T\ and T2 are 2-morphisms, 
f o r a n y v r ^ : U{A2) — U(AI)XU(A2), a2 (a 1 ; a 2 ) , (uz7r£ (yl2))(a2) = 
r2(ai,ri(a2,2:)) = U(aai)(n(a2, z)) = U(aai)U{(3z)(a2) = U(aaiPz)(a2) = 

We have shown that uz is a 2-morphism. From the following diagram, 
it exists exactly one morphism vz : A\ ® A2 —> A\ ® (A2 ® A3) such that 
U(VZ)T3 = uz. 
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U(A1)XU(A2)-
T3 

(2) 

UiA^Az) 

' U(vz) 

I 

I 
U(AI®(A2®A3)) 

We define U{Ay ® A2) x U{A3) ® (A2 ® A3)) by y>(w,z) = 
U(VZ)(OJ). Check that </? is a 2-morphism. Because the 2-tensor product is 
special, it is sufficient to prove that ip o (73 x l[/(^3)) is a 3-morphism. We 
have that 

(<po(r3 x lu(Aa)))(x,y,z) = tp{r3(x,y),z) = U(vZ)(T3(x,y)) = uz(x,y), 

f o r a n y (x,y,z) € U{Ai) x U{A2) x U{A3). 

For any t t ^ : U{AX) —» 1 7 ^ ) x x t/(A3), 01 .—• (01,02,03), 
we have: 

(r3 x 1 ^ 3 ) ) o t t ^ ^ O ! ) = Ua3(01.02) = ^ ( l ^ X o i ) 

as ua3 is a 2-morphism. 

Similarly, ^(r3 x l ^ ) ) ^ ) = ^ U ) ) " 

Finally, for any t t ^ ^ , 

«03(01.02) = T2(ai,Ti(a2,a3)) = i7(a^) (n (o2 ,03)) = 

= £ / « M ^ 2 ) ( o 3 ) = U{a\^){az) 

v( r3 x l ^ ) ) ^ ) = U{aM. 
We have obtained that tp is a 2-morphism. 

Let g : {A\®A2)®Az —• A\®(A2®A3) be the morphism in U uniquely 
defined such that the following diagram is commutative: 

T4 
U{A1®A2)XU{A3)-

(3) 

UdA^Ai^Ai) 

' U{g) 
I 
I 

U(Al®{A2®A3)) 

In the same way, consider for any x € U(A\), 8X : U(A2) x U(A3) —> 
U({A\ ® A2) ® A3), (y, z) 1—> 74(73(0;, y), z), that is a 2-morphism. It follows 
that there exists exactly one morphism \ix : A2®A$ —> {A\®A2)®A3 such 
that U{nx)n = 6x- Now, let xp : U{A{) x U(A2® A3) —• *7((Ai® A2)® A3), 
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(x,a) i—• U(nx)(a). tp is a 2-morphism because ip o (1 u{A{) x r i ) is a 3-
morphism. It follows that there exists only one morphism / : A\ ® {A2 <%> A3) 
—> (Ai <S> A2) ® A3 such that the following diagram is commutative: 

T2 

U{A1)xU{A2®A3y •U(A1®(A2®A3)) 

(4) 
u ( f ) 

It remains to prove that fg = l ^ ® ^ ) ® ^ and gf = l ^ ® ^ ® ^ ) - We have: 
U(f)(T2(x,Ti(y,z))) = Sx(y, z) = r 4 ( r 3 ( x , y ) , z) and ulg)(T4(T3(x,y), z) = 
T2{x,Ti(y,z)). It follows that 

U{gf)(T2(x,Ti(y,z)) = T2(x,Ti(y,z)), 

for any (x,y,z) G U(Ai) x U{A2) x U(A3). 
Let x G U(A!) and 9X : U(A2 <g> Ay) —• XJ{Ax ® (A2 ® A3)) be defined 

by A 1—• T2(x, a) . It results that 

(OxTi)(y,z) = T2{x,TX{y,z)) V(s G [ / (^ i ) ) , t / ( 5 / )0 s r i = 

But 0 xr i is a 2-morphism. From the diagram 
n 

U(A2)XU(A3)—= - U(A2®A3) 

(5) 

and the fact that 0X = U(ax), where a x : ® —> -<4i ® (A 2 <g> A3) 
morphism in (I/, U), it results that 

ax = gfoix =^6X = U(gf)Ox ==» r2(x,a) = U(gf)(T2(x,a)), 
for any x G U(Ai) and A G U(A2 ® A-$). It results that T2 = U(gf)R2 and 
from the universality property, it follows that gf = 1ai®(A2®^3)- Similarly, 
f9 = \AI®A2)®Az-

DEFINITION 4. We say that a 2-tensor product R : U{A\) x U(A2) —> 
U(A\®A2) in a concrete category (U, U) is dense if for every morphism / : 
A —> Ai®A2 for which I m r C Im{/ ( / ) , it follows that U ( f ) is surjective. 

THEOREM 3. Let (U,U) be a concrete category with 2-tensor products such 
that U preserves epimorphisms. Then, if r : U(A\) x U(A2) —• U(A\®A2) 
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is dense and f : A'^ —> A\ is an epimorphism, it results that the morphism 

f <g> 1A2 : A[ ®A2 — • Ai <g> A2 

is also an epimorphism. 

P r o o f . We recall that / ® is defined in this way: let us consider ip : 

U ( A [ ) x U(A2)-*U(AI®A2) defined by tp = T o ( U { f ) x 1 U{A2))-Then is a 2-
morphism: <p(a[,a2) = r(C/(/)(a'1), a2 ) = tf(7«a)(tf(/)(ai)) = ¡ 7 ( 7 a 2 / ) K ) 

and <p(a\, a2) = U(7[/(/)(a' ) ) ( a2) because r is a 2-morphism. It follows that 
there exists only one morphism / : A[ <S> A2 —• AI<G>A2 such that U ( f ) r ' = 

<p, where r ' : U(A[) x U(A2) —> U(A[ ®A2) is from the definition of tensor 
product. We denote / by / ® AS / is an epimorphism, it results that 
U ( f ) is surjective. This implies that U ( f ) x 1 U(A2) is surjective. We have 
that U(F® 1U(A2))t' = T ( u ( f ) x 1A2)- It results that I m r C Imj7(/<8> 1 ^ ) 
and because r is dense, it follows that U(f 12> is surjective. As U is 
faithful, / ® 1a2 is an epimorphism. 

3. Examples 

In this section, U is the forgetful functor. 

a) Tensor products of sets 

PROPOSITION 2. For any A\,..., An € Ens0, Ai x • • • x An = A\® • • -®An. 

P r o o f . It is obvious because every function of sets ip : Ai x • • • x An —> B 

is an n-morphism. 

b) Tensor products of topological spaces. It can be shown that for two 
arbitrary topological spaces X and Y, the pair (XigiY, where 
is obtained like in the introduction, is a concrete tensor product in Top. We 
shall refer to this as the canonical tensor product in Top. We shall explain 
this tensor product in the situation when X is a discrete topological space. 

PROPOSITION 3. Let X be a discrete topological space and Y an arbitrary 

topological space. 

IfVY is the topological sum {(x,y) | y 6 y } and r : X xY —• \JY 
X ,„ X 

xex 
is the map given by r(x,y) = (x,y), then (V Y, r ) = X ® Y in (Top,i7). 

X 

Particularly, if X = {*} is a singleton, then {*} ®Y = Y. 

P r o o f . First we prove that r is a 2-morphism. The function Y —> V 7 

defined by y \—> (x, y), where x € X is fixed, is continuous because { ( x , y) \ 
y € V } is a subspace of the sum V Y homeomorphic with Y. Also, because 

X 

X is discrete, the following function X —> V 7 , defined by x i—> (x ,y) , for 
X 

y EY fixed, is continuous. 
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Let tp : X x Y —> Z be a 2-morphism in (Top,{7). It follows that 
the functions X —• Z defined by x i—> <p(x, y) and Y —> Z given by 
y I—• ip(x,y) are continuous. Define 7 : V Y — • Z by 7 ( x ,y ) = ip(x,y). 

This is continuous because Y —• V 7 —• Z, y 1—• (x,y) 1—> <p(x,y), 

x € X fixed, is continuous. We have: (C(7 )r ) (x ,y) — U('y)(x,y) = ¡p(x,y), 

so U{I)T = (p. Uniqueness: let 7 ' : V 7 —> Z with 

C7(7')r = V = > Utf){x,y) = £ % ) ( * , y) = > = £ % ) V = 7-

REMARK 1. For the canonical tensor product (X i <g> X2,r ) in Top, r is 
surjective and then we can apply Theorem 2. 

PROPOSITION 4. Lei X,Y,X' 6 Comp0, where Comp is f/ie category of com-

pact Hausdorff spaces. Assume that T(X X Y) is dense in a tensor product 

X ®Y (cf. [5], in Comp there exist tensor products). Then, if f : X' —> X 

is a continuous surjection, the map /<g>ly : X'®Y —> X®Y is surjective. 

P r o o f . The following diagram is commutative: 

X'xY - X'®Y 

(6) 

XxY - - X®Y 

We have that, for any x € X, there exists x' € X' such that f(x') = x. 

It follows that r(x,y) = T{f{x'),y) = r ( / x 1 Y)(x',y) = (/® lY)(r'(x', y)). 

We obtain that T(X X 7 ) C Im(/ <G> l y ) . 
Now let z G X ® Y. Because R(X x Y) is dense in X ® Y, it follows that 

there exists a generalized sequence (ZI)IEI C T(X X Y) such that Z{ —> z. It 
results that there exists (Ci)ie/ s u ch that z% = (/®ly) (Ci)- Because X'®Y is 
a compact, (Ci)ie/ has a generalized subsequence )JE J such that —> ( 
in X' ® Y. As / (8> l y is continuous, it follows that Zj . —+ (/ <8> ly ) (£ ) . We 
obtain that 2 = (/ <g> ly ) (C ) as X <8> Y is separate. 

c) Left A-modules, H-comodules and H-modules. 

Another example of concrete tensor product can be given in the category 
of H-comodules, where H is a Hopf algebra. 

PROPOSITION 5. Let V,W be k-linear spaces and H a Hopf algebra with 

eu the unity. V and W are right H-comodules with the maps py : V —• 

V ®kH,v 1—• v® e# and respectively, pw '• W —> W ®k H, w 1—• w® 

Then (gifc W as H-comodule is the concrete tensor product of V and W 

in the category of right H-comodules, MH. 
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P r o o f . V<S>kW becomes a right i i-comodule via pv®kw '• V®kW —• 
V <g)fc W H, v®w i—> v® w®eu- Let r : V x W —> V <S»fc W from the 
definition of tensor product in the category of fc-linear spaces. Let us verify 
that r is a 2-morphism in M.H. Let v € V be fixed and / : W —> V <£>k W, 
f(w) = v <g) w. f is a morphism in MH. Indeed, / is a /c-linear map and the 
following diagram is commutative: 

pw 

(7) 

v®kw 

W®kH 

f®k 1H 

V®kW®kH 

Similarly, g : V —> V ®k W, v i—> v ® w is a morphism in MH. Let 
M E ( M H ) ° and ip : V x W —> M be a 2-morphism in MH. It fol-
lows that ip is a bilinear map over k. From the universality property for 
fc-linear spaces, there exists exactly one /c-linear map ip '• V®kW —> M 
such that tpr = (p. We check that ip is a morphism in MH. We have: 
(if> ®fe 1 H){pv®kw(v ® w)) = {ip ®k 1 H){V en) = ip(v ® w) ® en = 
tp(v, w) ® en = PM&iv, w)) = PM(I/,('u ® w)) because <p is a 2-morphism in 
Mh. Thus, the following diagram commutes: 

PV0k w v®kw 

(8) 

V®kW®kH 

4>®k 1H 

M®kH 

The uniqueness is obvious. 

R E M A R K 2. In this situation, the concrete tensor product coincides with the 
tensor product of right if-comodules met in [7]. 

R E M A R K 3. Proposition 5 is valid also for H only a bialgebra. 

We shall now give examples of categories with concrete tensor products. 
D. Jagiello gives in his paper sufficient conditions for a concrete category to 
have concrete tensor products (cf. Theorem 2 from [5]). We shall use this 
for other examples. 

P R O P O S I T I O N 6 . Let A be a ring with unity 1 ^ 0 . Then A-M., the category 
of left A-modules, has concrete tensor products. 
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P r o o f . We verify the following conditions (cf. Theorem 2 from [5]). 

(i) aM. is complete with respect to inputs because it has products and 
equalizers. 

(ii) a-M is complete with respect to coequalizers. Every pair of morphisms 
/ 

M * N has a coequalizer (iV/Im(/ — g)\p)-
9 

(iii) U : a-M- —> Ens, the forgetful functor, has a left adjoint 
L : Ens —> a-M, the free functor: 

X •—» L ( X ) 

f l W ) 

Y L(Y) 

where L(X) is the free left A-module with basis X. 
(iv) U preserves epimorphisms because epimorphisms in a-M- are surjective 

morphisms. 
(v) Every injection is an embedding (a morphism £ : M —> N is called 

an embedding if for any function of sets / : P —> M such that £ / is 
a morphism, it follows that / is a morphism). 

(vi) For each M 6 (A-M)0, the class of all the structures of left A-modules 
on M is a set. Indeed, it is known that for any structure on a group 
M corresponds a ring morphism A —> End(M) and conversely. Also, 
the class of all the group structures on the set M is a set. 

REMARK 4. By following the proof of Theorem 2 from [5], it results that for 
any M i , . . . , M n G { a M ) ° , Mi <g> • • • <g>Mn = L(Mi x • • • x M n ) / N , where N 

is the submodule of L{M\ x • • • x Mn) generated by the elements: 

( a i , . . . , a» + Oj , . . . , a n ) — ( o i , . . . ,di,..., a n ) — ( o i , . . . , a* , . . . , an), 
( a i , . . . , A a i , . . . ,an) - A(a i , . . . , Oj, . . . , On)-

REMARK 5. The associativity holds because the 2-tensor product is special. 

REMARK 6. Because of Remark 4, every 2-tensor product is dense. 

REMARK 7. By a similar proof like that of Proposition 6, it follows that the 
category of groups Gr has concrete tensor products. 

Moreover, a canonical tensor product can be obtained. If G and H 
are arbitrary groups, one considers the free group generated by G x H, 
Gp{G x H}, and the normal subgroup N generated by the elements: 

(9i92,h)(g2,h)~1(gi,h)~1 a n d (g, hih2){g, h2)~l{g, h i ) ' 1 

for any g,91,92 £ G and h,hi,h2 £ H. Then Gp{G x H } / N verifies the 
universality property for the groups G and H. 
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By taking G = {e } a trivial group, we have G ® H = G, in concordance 
with Theorem 1. 

P R O P O S I T I O N 7 . Let V, W be k-linear spaces and H a Hopf algebra. V 

and W are left H-modules with the structures: h • v — e(h)v, respectively 

h • w = e{h)w, for any h E H, v e V, w 6 W. Then V , as left 

H-module, is the concrete tensor product ofV and W in h-M-. 

P r o o f . V <S>k W becomes an if-module via h, • (v ® w) — T,hiv ® h2W (in 
the sigma notation), where Ah = S/ii <g> /12 (A : H —> H <g)fc i i from the 
definition of a A;-coalgebra). In terms of maps, if <fiv '• H <S>kV —> V and 
<j>w H ®kW —> W are the two given module actions, then 

<t>v®kw - (<t>v ® <t>w) 0 ( I f f ® M ® 1 w) 0 ( A ® lv ®k w) 

(where /x : H V —> V H is the twist map) is the left if-module 
structure on V W, as in the following diagram 

A®ly g,fc w 
H®kV®kW - H®kH®kV®kW 

I 
(9) 4>v®kw ! 

I 
t 4>v®<Pw 

V®kW * {H ®kV)®k{H ®kW) 

We have: h-(v®w) = Tle{hi)v®h2W = Ev®e{hi)h<2W = v ® {T,e{hi)h2)w = 
v ® hw and h • (v ® w) = h • v <g> w, similarly. 

Verify that r : V x W —> V <S>k W is a 2-morphism in First, r is 
a bilinear map over k. Also, V(/i e H, v € V, w € W), r(hv, w) = hv®w = 

h- (v ®w) = hr(v, w) = r(v, /ru;). 

Let : V x W —> M be a 2-morphism in There exists exactly 
one morphism of /c-linear spaces tp : V ®kW —> M such that ipr = tp. ip is 
a morphism in h -M. : ip(h • (v (g> w)) = ip(hv ® w) — <p(hv, w) — h<p(v, w) : 

h • %f)(v ® w) V(/i Ç. H, u & V ®k W), ip(hu) = hip(u). Uniqueness is 
obvious. 

REMARK 8. The concrete tensor product in h-M. coincides with the tensor 
product of .ff-modules from [7] only in the situation of Proposition 7. In 
general, V <g)fc W W V as ii-modules, so that the commutativity is not 
satisfied. Thus, the tensor product in [7] is not concrete. 



718 I. Pop 

References 

[1] J . Cincura, Tensor products in the category of topological spaces, Comment. Math. 
Univ. Carolinae, vol. 20, No.3 (1979), 431-446. 

[2] J . Cincura, Tensor products in categories of topological spaces, J . Appl. Categ. Struct. 
5, No.2 (1997), 111-122. 

[3] B. A. Davey, G. Davis, Tensor products and entropic varieties, Algebra Universalis 
21(1985), 68-88. 

[4] S. E i lenberg , and G. M. Kel ly , Closed categories, Proc. of the Conf. on Categorial 
Algebra, La Jolla 1965, Springer Verlag, New York 1966, 421-562. 

[5] D. J a g i e l l o , Tensor products in concrete categories, Demonstratio Math. 32, No.2 
(1999), 273-280. 

[6] G. M. Kelly, Tensor Products in Categories, J . Algebra 2(1965), 15-37. 
[7] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS No.82 (1993), 

American Mathematical Socrety, Providence, R.I. 
[8] G. Radu, Algebra Categoriilor §i Functorilor, Editura Junimea, Ia§i, 1988. 

FACULTY OF MATHEMATICS 
"AL.I. CUZA UNIVERSITY" 
6600 IA§I, ROMANIA 

Received March 28, 1999. 


