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A FEW NOTES ON SUBALGEBRA LATTICES, PART I

Abstract. First, we apply results proved in [Pi61] and some results of graph theory to
formulate and prove a necessary condition for partial (and thus also total) unary algebras
to have isomorphic (strong) subalgebra lattices. Although this condition is not sufficient for
arbitrary partial unary algebras, we can form, having this fact, a lot of new partial unary
algebras with the same subalgebra lattices. Moreover, we use this result to characterize
arbitrary two partial (thus in particular also total) monounary algebras with isomorphic
(strong) subalgebra lattices. Having this result we can also describe all pairs (4, L), where
A is a partial monounary algebra and L a lattice, such that the subalgebra lattice of A is
isomorphic to L.

In the next part [Pi62] we apply the results of this paper to characterize connec-
tions between weak and strong subalgebra lattices of partial (thus also total) monounary
algebras.

An important part of Universal Algebra and the theory of partial alge-
bras is an investigation of connections between algebras and their lattices of
subalgebras. A few such results concern also classical algebras. For example,
D. Sachs in [Sach] proved that two Boolean algebras are isomorphic iff their
lattices of subalgebras are isomorphic; E. Lukdcs and P.P. Pélfy showed in
[LuPa] that the modularity of the subgroup lattice of the direct square
G X G of any group G implies that G is commutative.

In the present part we investigate subalgebra lattices of unary and mo-
nounary algebras. But we do not restrict our attention to total algebras
only, and we consider the more general case of partial algebras, because this
approach is very fruitful to our investigation. More precisely, we use some
results proved in [Pid1] and also several results of graph theory to prove one
necessary condition for arbitrary two partial (and thus also total) unary al-
gebras to have isomorphic (strong) subalgebra lattices (although in this part
we consider only the ordinary kind of subalgebras, they will be sometimes
called strong as opposed to the other kinds of partial subalgebras which will
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be considered in the second part). More precisely, we show that a contrac-
tion of a special subset of the carrier of an algebra to a point or an insertion
of such a subset in the place of an element of an algebra preserves strong
subalgebra lattices. Unfortunately, in this way we do not obtain a sufficient
condition, i.e there are partial unary algebras with isomorphic strong subal-
gebra lattices and none of them is obtained from the other in this way. But
first, having this fact we can form from any partial unary algebra a lot of
new algebras with the same strong subdigraph lattices. Secondly, for par-
tial monounary algebras this result forms also a sufficient condition. More
precisely, we use this result to completely characterize arbitrary two partial
(thus in particular also total) monounary algebras with isomorphic strong
subalgebra lattices. Moreover, having this result we can also describe all
pairs (A, L), where A is a partial monounary algebra and L a lattice, such
that the subalgebra lattice of A is isomorphic to L.

For basic notions and results concerning algebras (total and partial) see
e.g. [BRR], [Bur] and [Jén], and concerning digraphs (i.e. directed graphs)
see e.g. [Ber] and [Ore]. For any partial unary algebra A = (4, (k4)gex) of
unary type K (where K is a set of unary operation symbols), the complete
and algebraic lattice of all strong subalgebras of A under (strong subalgebra)
inclusion <; will be denoted by Ss(A). Further, for any digraph D, by yD
and EP we denote its sets of vertices and edges, respectively. In this paper
we consider, in general, infinite digraphs (i.e. VL and EP may have arbitrary
cardinality), because we use digraphs to represent partial unary algebras.
Each partial unary algebra A = (4, (k*)rck) can be represented by the
digraph D(A) obtained from A by omitting the names of all operations
(see [Bar] or [Pi61]). More formally, A is the set of all vertices of D(A),
{(a,k,b) € Ax K x A: (a,b) € k} is the set of all (directed) edges of
D(A), and for each edge (a,k,b), a is its initial vertex and b is its final
vertex.

Note that this construction is a very particular case of the Grothendieck
construction (see [BaWe] section 4.2 and 11.2), but applied to models of di-
graphs (in the category of sets and partial functions) rather than to functors.
More precisely, a partial unary algebra A of type K can be obviously repre-
sented by a model of the type digraph K with exactly one vertex and unary
operation symbols from K as edges (i.e. by a digraph homomorphism from
K into the category of sets and partial functions). Next, by the Grothendieck
construction applied to this model we get the digraph D(A) together with a
homomorphism into K. By forgetting this homomorphism we arrive at the
above construction.

In [Pi61] we defined a special kind of subdigraphs which correspond to
strong subalgebras of partial unary algebras, and therefore they are also
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called strong. More precisely, let D and H be any digraphs. Then H is a
strong subdigraph of D (H <, D) iff H is an ordinary subdigraph of D and
for each edge e of D, if the initial vertex of e belongs to H, then e belongs
to H (in particular the final vertex of e also is in H). It is easy to see that
for two strong subdigraphs H and K of D, they are equal (H is a strong
subdigraph of K) iff V# = V& (VE C V). It is proved in [Pié1] that
for each digraph D, its set of all strong subdigraphs forms a complete and
algebraic lattice S;(D) under (strong subdigraph) inclusion <,.

Obviously (see [Pi6l]) for a partial unary algebra A and its strong
subalgebra B <; A, the digraph D(B) representing B is indeed a strong
subdigraph of D(A). Moreover, this function (assigning to each strong sub-
algebra its digraph) forms a lattice isomorphism. Thus in [Pi61] we have
obtained (by ~ we denote simultaneously isomorphism of lattices, algebras,
digraphs etc.)

THEOREM 1. For each partial unary algebra A, Ss(A) ~ S;(D(A)).

Let D be a digraph and W a set of vertices, then the contraction of W
(see e.g. [Ber]) is the operation defined by replacing W by a single point
(which will be denoted often by W) and replacing all directed edges with
endpoints in W by a single loop in W, and replacing each directed edge
going into W (resp. out of W) by a directed edge with the same initial
vertex (resp. final vertex) ending in W (resp. starting from w). The digraph
obtained from D by the contraction of W will be denoted by D/W, we will
also use the convention that D/@ = D. Obviously if D is connected, then
D/W is also connected. Further, by a simple verification we obtain that for
each subdigraph H of D, H/(VZ N W) is a subdigraph of D/W.

Of course the contraction of a set need not preserve the strong subdigraph
lattice, because, for instance, from every non—empty digraph we can obtain
a trivial digraph by contracting the set of all vertices.

Moreover, the example below shows that the operation of contraction of
a vertex set does not preserve strong subdigraphs, in general.

D: . H:
V1 () V3 V4 m ()
D/{’Uz, ’Ug}: Q
1 w V4

Then H is a strong subdigraph of D, but H/({v2,vs} N {v1,v2}) = H is not
a strong subdigraph of D/{vq,vs}.

Now we show that for a special kind of sets of vertices, the operation of
contraction preserves the strong subdigraph lattices. We start with several
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results describing when a strong subdigraph is preserved by this construc-
tion.

LEMMA 2. Let D be a digraph, H a subdigraph of D and W C VP \ V¥,
Then H is a strong subdigraph of D iff H is a strong subdigraph of D/W.

LEMMA 3. Let D be a digraph, H its strong subdigraph and W C VH. Then
H/W is a strong subdigraph of D/W.

For each digraph D and W C VP, by [W]p we denote the subdigraph
of D spanned on W, i.e. W is its set of vertices and all edges of D with
endpoints in W forms its set of edges.

LEMMA 4. Let D be a digraph, H its subdigraph, W C VE | and let H/W
be a strong subdigraph of D/W. Then [VH]p is a strong subdigraph of D.

The above three lemmas are obtained by a simple verification, and there-
fore their proofs are omitted.

LEMMA 5. Let D be a digraph and W C VP2, and let K be a subdigraph
(strong subdigraph) of D/W . Then there is a subdigraph (strong subdigraph)
H of D such that H/(W N VH) =K.

Proof. If w does not belong to K (where @ is the vertex of D/W corre-
sponding to the set W), then of course K is also a subdigraph of D. Thus
in this case we can take H = K. By L.2 we have that if K is a strong
subdigraph of D/W, then H is a strong subdigraph of D.

Thus now we can assume that @ € VX. Let U be the set of all vertices
of K without @ and of all vertices of W (i.e. U = (VK \ {@w}) U W) and
let H be the subdigraph of D with the set of vertices U (observe that U
is obviously a subset of D) and with all edges of D such that their images
(in D/W) belong to K. Then the definition of the contraction of W easy
implies that H/W = K.

Now assume that K is a strong subdigraph of D/W. Then [U]p is a
strong subdigraph of D by L.4. Thus it is sufficient to prove H = [U]p.
Of course each edge of H/W belongs to {U]p. On the other hand, take an
arbitrary edge e of [U]p and let € be its image in D/W. Then it is easy to
see that endpoints of € belong to K, so € is also in K (because K <; D/W).
Hence, ¢ is an edge of H. This shows that the sets of edges of H and [U]p
are equal. Thus H = [U]p, since their sets of vertices are equal. m

Before next results recall (see e.g. [Ber]) that a digraph D is strongly
connected iff for any two distinct vertices v, w, there is a path from v to
w. It is not difficult to prove (see also [Ber]) that a digraph D is strongly
connected iff D is connected and every edge lies on a (directed) cycle. We
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assume that a path (cycle) does not encounter the same vertex twice (except
the first and the last vertex).

LEMMA 6. Let D be a digraph, H its strong subdigraph and let W C VP
have common vertices with H and [W]p be a strongly connected digraph.
Then W C VH,

Proof. Let v € VENW and take w € W. Then there is a path (es, ..., ep)
from v to w. Since the initial vertex of e; is equal v and v € V# and H <; D,
we obtain by a simple induction that the final vertex of e; belongs to H for
t=1,...,n. Thus, in particular, w is in H. =

Now we can formulate and prove the first important result.

THEOREM 7. Let D be a digraph and let W C VP be a set such that [W]p
is strongly connected. Then S;(D) ~ S;(D/W).

Let ¢ be the function of the set of all strong subdigraphs of D into the
set of all strong subdigraphs of D/W such that o(H) = H/(VE NnW).

Of course we show that ¢ is the desired lattice isomorphism. Observe
first that ¢ is correctly defined. To this purpose take an arbitrary strong
subdigraph H of D. Then W C VH or W N V¥H = @, by L.6. Hence, using
L.2 and L.3, we obtain that ¢(H) is indeed a strong subdigraph of D/W.
In particular, o(H) = H or p(H) = H/W.

Now take two strong subdigraphs H, K of D and assume that o(H) =
o(K). If w (where @ is the vertex of D/W corresponding to the set W)
does not belong to ¢(H), then W and H, K are disjoint, so H = o(H) =
¢(K) = K. Thus we can assume that w belongs to ¢(H). Then W and H,
and also W and K have common vertices, so W is contained in H and K,
by L.6. Hence, since other vertices of ¢(H) and ¢(K) (i.e. different from w)
are the same as in H and K, respectively, we deduce that the sets of vertices
of H and K are equal. This implies that H = K, because they are strong
subdigraphs of D.

Thus we have shown that ¢ is injective, so by L.5 ¢ is a bijection of the
set of all strong subdigraphs of D onto the set of all strong subdigraphs of
D/W.

Now we must only prove that ¢ and its inverse ¢! preserve (strong
subdigraph) inclusion <;. Take two arbitrary strong subdigraph H and K of
D, and observe that H <, K iff V¥ C VX, and analogously ¢(H) <, ¢(K)
iff vetH) C yeE) Thus it is sufficient to show that the vertex set of H is
contained in K iff p(K) contains the vertex set of o(H). But this fact easily
follows from the definition of the contraction of W (in a similar way as in
the proof that ¢ is injective), because H (K) contains W or H (K) and W
is disjoint. This completes the proof. m
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Now, using the above graph theorem, we can formulate and prove the
first algebraic result of this paper concerning unary partial algebras. More
precisely

THEOREM 8. Let A and B be partial unary algebras (which can be of dif-
ferent types) satisfying the following condition: D(B) =~ D(A)/W for some
subset W of A such that [W]pay is strongly connected. Then S;(B) ~
Ss(A).

Proof. follows directly from Th.1 and Th.7. n

Now take an arbitrary digraph D and observe that we can apply the
operation of the contraction of a vertex set to each of its connected compo-
nents (i.e. maximal connected subdigraphs) separately. More formally, let
{D;}ier be the family of all the connected components of D and let {W;};er
be an arbitrary family of subsets of the vertex set of D such that W; is
contained in D; for each ¢ € I. Then we can take the family {D;/W,};er of
digraphs, and next we can take the disjoint union of this family. The digraph
so obtained will be denoted by D/{W;};c;. Note that if W is a subset of D;
for some j € I, then D/W = D/{W;}icr, where W; = W and W; = § for
each i # j.

Now we prove a result analogous to Th.7 for this generalized construc-
tion. Observe first that the following fact holds:

PROPOSITION 9. Let D be a digraph and {D;}icr a family of its connected
components. Then S;(D) =~ [];c; Ss(D;).

Proof. This isomorphism ¢ is given by a function assigning to each strong
subdigraph H of D the sequence of all its connected components (H;);¢s in
such a way that H; is a subdigraph (perhaps empty) of D; for all i € I, i.e.
H; =HnND,.

Obviously ¢ is correctly defined, since if H is a strong subdigraph of
D, then each of its connected components is also a strong subdigraph of
D, so in particular also of some corresponding connected component of D.
 is surjective, because if (H;);cr is a sequence of strong subdigraphs (i.e.
H; <; D, fori € I), then the disjoint sum H of the family {H,};cs is a strong
subdigraph of D and of course ¢(H) = (H;);es. It is trivial that ¢ is an
injection, since each digraph has exactly one decomposition onto connected
components. Moreover, ¢ and its inverse ¢! preserve the relation <j, since
for each strong subdigraphs H and K of D, H <; K iff VH C VK iff
VH C Vi for all i € T iff H; <; K; for i € I, where {H;}ier and {K;}ier
are the families of connected components of H and K, respectively. m

Before the next result observe that for any digraph D, its connected
component H and subset W C V¥ (W] and [W]p are equal.
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THEOREM 10. Let D be a digraph, {D;}icr the family of all its connected
components and let {W;}icr be a family of subsets of VP such that for
each 1 € I, W; is contained in D; and [W;]p is strongly connected. Then
SS(D) jad SS(D/{Wi}iEI)-

Proof. Th.8 implies that S;(D;) and S;(D;/W;) are isomorphic for ¢ € I.
Thus the direct products [I;c; Ss(D;) and [[;c; Ss(D;/W;) are isomorphic,
so S;(D) ~ S;(D/{Wi}icr), by P.9. =

Now we can formulate our second algebraic result on partial unary alge-
bras.

THEOREM 11. Let partial unary algebras A and B (which can be of differ-
ent types) satisfy the following condition: D(B) ~ D(A)/{W;}icr for some
family {W;}ier of subsets of A such that for each i € I, W; is contained
in D;(A) (where {D;(A)}ier is the family of all connected components of
D(A)) and [Wi]p(a) is strongly connected. Then Ss(B) ~ S;(A).

Proof. follows directly from Th.1 and Th.10. =

It is easy to see that the necessary condition in the above theorem is
not sufficient, i.e. there are partial unary algebras with isomorphic strong
subalgebra lattices and there is no family {W,};cr of sets as in the theorem
such that D(B) is isomorphic to D(A)/{W;}ics. But, having Th.8 and this
theorem we can construct from a given partial unary algebra A a lot of new
partial unary algebras with strong subalgebra lattices isomorphic to S;(A).
To this purpose we must only contract any subset of A such that each two of
its elements generate the same strong subalgebra (note that this set need not
form itself a strong subalgebra). Of course we can apply this construction to
each connected component of A separately. Conversely, we can also insert
such a subset (i.e. satisfying the above condition) in the place of an element
of A, and again we can blow up in this way each connected component of
A separately. Obviously these two constructions do not preserve types of
algebras, in general.

Moreover,we now show that for partial monounary algebras the above
theorem forms also a sufficient condition. Let A be a partial monounary
algebra (i.e. a partial algebra with one partial unary operation). Then its
digraph D(A) is a functional digraph (i.e. at most one edge starts from
any vertex) and of course if A is total, then D(A) is total (i.e. exactly one
edge starts from each vertex). Observe that the inverse fact is also true.
More precisely, for every functional digraph D, there is a partial monounary
algebra A corresponding to D, i.e. D(A) is isomorphic to D.

It is obvious and well-known that for every functional digraph D, each
of its connected components contains at most one directed cycle. Thus we
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can contract each non—trivial cycle (i.e. with at least two vertices), and
the digraph so obtained will be denoted by T?(D). Moreover, Ts*(D) is
a digraph obtained from T¢(D) by omitting all loops. Observe also that
T¢(D) has no non-trivial directed cycles, so Ts?(D) has no directed cycles
(including loops).

THEOREM 12. Let D be a functional digraph. Then
Ss(D) = S;(T4(D)) ~ S,(Ts*(D)).

Proof. Observe that each non-trivial directed cycle of D forms a strongly
connected digraph and any two different directed cycles belong to two dis-
tinct connected components. Thus the first isomorphism is implied by Th.10.
Moreover, the second isomorphism is easy to see, since Tsd(D) is obtained
from T¢(D) by omitting only loops. =

Now take a partial monounary algebra A and let
T(A) := THD(A)) and Ts%(A):= Ts}D(A))

Then the above results for functional digraphs imply that T4A) and Ts%A)
are functional digraphs without non-trivial directed cycles, and Ts?(A) has
no loops either. Moreover, Th.1 and Th.12 imply

THEOREM 13. Let A be a partial monounary algebra. Then
Ss(A) = S;(TY(A)) =~ S;(Ts%(A)).

Now we show that Ts%(A) uniquely determines the strong subalgebra
lattice Ss(A) for any partial monounary algebra A. More formally, we prove
that two monounary partial algebras A and B have isomorphic strong sub-
algebra lattices if their digraphs Ts?(A) and Ts%(B) are isomorphic. To
this purpose we start with the following result from [JoSe] (see also [Jén])
characterizing the strong subalgebra lattice of a partial monounary algebra.

THEOREM 14. A complete lattice L = (L, <p) 1is isomorphic to the strong
subalgebra lattice Ss(A) for some partial monounary algebra A iff L is
algebraic, distributive and

(1) every element of L is a join of completely join—irreducible elements,

(2) for each completely join—irreducible element i, the set of all com-
pletely join—irreducible elements which are less or equal than i (with respect
to the lattice ordering <r) is totally ordered by <p and is finite or isomor-
phic to the set of all non—positive integers with the natural less—or—equal
order.

Recall that an element [ of L is completely join—irreducible iff for any
subset K of L, I = \/ K (i.e. l is the supremum of K) implies [ € K. Re-
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call also that for any two elements 7,5 of L, j is covered by ¢ (or ¢ covers
j) iff 5 <p 7 and there is no element k of L distinct from ¢ and j and
J<rk<ri

Secondly, for an algebraic and distributive lattice L satisfying (1), (2)
of Th.14 a partial monounary algebra A = (A4, (k%)) such that S (A) is
isomorphic to L can be constructed as follows: A is the set of all completely
join—irreducible elements of L and for every a € A, if a is minimal in A (with
respect to <r), then the unary operation k4 on a is not defined; if a is not
minimal, then k“(a) is the unique element of A covered by a (observe that
(2) of Th.14 implies that every element ¢ € A is either minimal or covers
a unique element of A). Note that D(A) is a functional digraph without
directed cycles (nor loops).

Of course A can be completed to a total monounary algebra A (for every

minimal element a € A we set k4(a) equal to a), but then the functional
digraph corresponding to this total monounary algebra has loops.

Observe that with every algebraic and distributive lattice L = (L, <p)
satisfying (1), (2) of Th.14 we can associate a functional digraph Ds(L)
in the following way: we first consider the partial monounary algebra A
defined above, and next we set Ds(L) = D(A). In other words, Ds(L) is a
digraph such that the set of all completely join—irreducible elements of L is
its set of all vertices, the set of pairs (p,q), where p and ¢ are completely
join—irreducible elements and p covers g, is its set of all (directed) edges and
for every edge (p, q), p is its initial vertex and q is its final vertex. Note that
by Th.1, since S,(A) is isomorphic to L, we have that S;(Ds(L)) is also
isomorphic to L.

Note also that Ds(L) can be easily completed to a total functional
digraph D(L) by adding a loop to each vertex without a starting edge.
More precisely, to the edge set of Ds(L) we add all pairs (p,p), where p
is completely join—irreducible and is minimal in the set of all completely
join—irreducible elements. Obviously this digraph is equal to the digraph
representing the total monounary algebra A corresponding to L (defined
above).

LEMMA 15. Let D be a functional digraph without directed cycles (nor loops).
Then Ds(S;(D)) ~ D, i.e. the digraph obtained from the strong subdigraph
lattice of D is isomorphic to D.

Proof. First, for each vertex v of D, we denote by (v)p the least strong
subdigraph containing v.

Secondly, in [Pié1] we proved that a vertex u belongs to (v)p iff u = v
or there i a path from v to u. (This is a graph—theoretical generalization of
the classical result on the generation of (strong) subalgebras and its proof
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is similar.) Hence, if there is a path from v to u, then the vertex set of
(u)p is contained in (v)p. So (u)p <s (v)p, since they are strong subdi-
graphs.

Thirdly, in the same way as for unary (total) algebras (see e.g. [J6n])
we obtain that a strong subdigraph H of D is a completely join—irreducible
element of S;(D) iff H = (v)p for some vertex of D.

Fourthly, it is obvious and well-known that for every functional di-
graph G, each of its regular edges is an isthmus. Recall (see e.g. [Ber])
that e is an isthmus iff e is regular (i.e. is not a loop) and e is the only
directed path from its initial vertex to its final vertex.

Observe that in our case, each edge of D is an isthmus, because D has
no loops.

Now we use the above facts to prove several connections between D and
its strong subdigraph lattice S;(D).

Take two vertices v,u of D and assume (v)p = (u)p. Then there are
paths from v to u and from w to v. But D has no directed cycles, so v = u

Let v and u be vertices of D such that there is an edge from v to w.
Then (u)p <, (v)p, because this edge forms a path from v to u. Moreover,
we show that (u)p is covered by (v)p. To see this take a strong subdigraph
H of D such that H is a completely join—irreducible element in S;(D) and
(u)p <s H <, (v)p. Then H = (w)p for some vertex w. Assume that w is
different from w, v. Then there is a path from v to w and a path from w
to u. Since D has no directed cycles, these two paths form a path (with at
least three vertices) from v to w. But this is impossible, since every edge of
D is an isthmus. Thus w = v or w = u, so H= (v)p or H = (u)p.

Now take two completely join-irreducible elements (u)p, (v)p of Ss(D)
such that (u)p is covered by (v)p. In particular, u belongs to (v)p, so
there is a path from v to u. Assume that this path has a vertex w differ-
ent from v and w. Then there are paths from v to w and from w to wu,
so (u)p <s (w)p <s (v)p and these three strong subdigraphs of D are
pairwise different. This contradiction proves that this path is an edge from
v to u.

Summarizing, we have shown that the function ¢ from the vertex set
of D into the set of all completely join—irreducible elements of Sg(D) as-
signing to each vertex v the strong subdigraph (v)p is a bijection and for
any two vertices v, u, there is an edge in D from v to u iff there is an edge
in Ds(Ss(D)) from (v)p to (u)p (i.e. (v)p covers (u)p). This implies that
D and Ds(S;(D)) are isomorphic, since these digraphs are functional (in
particular, for any two vertices there is at most one edge from the first to
the other). =



Subalgebra lattices, I 705

Now take two complete lattices L and K and assume that they are
isomorphic and that ¢ is this lattice isomorphism. Then ¢ restricted to the
set of all completely join—irreducible elements of L is a bijection of this
set to the set of all completely join—irreducible elements of K. Moreover, ¢
preserves the covering relation. These two facts easily imply that ¢ induces
also an isomorphism of the digraphs Ds(L) and Ds(K) (and also of D(L)
and D(K).

THEOREM 16. Let D be a functional digraph. Then Ds(S;(D)) ~ Ts%(D).

Proof. By Th.12 S;(D) and S,(Ts%(D)) are isomorphic, so Ds(S;(D)) and
Ds(S,(Ts%(D))) are isomorphic. Hence, using L.15, we obtain our thesis.

Th.1 and Th.16 imply the following algebraic result:

THEOREM 17. Let A be a partial monounary algebra. Then
Ds(S,(A)) ~ Ts?(A).

Now we can formulate and prove the two main results of this paper.

THEOREM 18. Let A and B be partial monounary algebras. Then
Ss(A) ~ Ss(B) if Ts%(A)~ Ts%(B).

Proof. Of course two isomorphic digraphs have isomorphic strong subdi-
graph lattices. Hence, using Th.1 and Th.16, we obtain the implication <.
On the other hand, if the strong subalgebra lattices of A and B are iso-

morphic, then the digraphs corresponding to these lattices Ds(S;(A)) and
Ds(S;(B)) are isomorphic. Thus by Th.17 we deduce the implication =. =

THEOREM 19. Let A be a partial monounary algebra and let an algebraic
and distributive lattice L satisfy (1) and (2) of Th.14. Then

Ss(A)~L iff Ts%(A)=~Ds(L).

Proof. Since the strong subdigraph lattice of Ds(L) is isomorphic to L,
and moreover, two isomorphic digraphs have isomorphic strong subdigraph
lattices, the implication <= is implied by Th.13. On the other hand, if S;(A)
and L are isomorphic, then the digraphs Ds(S;(A)) and Ds(L) are isomor-
phic. Thus by Th.17 we infer the implication =. u

Remark. Obviously we can also formulate and prove (in the same way)
analogous results for digraphs and their strong subdigraph lattices.
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