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A FEW NOTES ON SUBALGEBRA LATTICES, PART I 

Abstract . First, we apply results proved in [Piol] and some results of graph theory to 
formulate and prove a necessary condition for partial (and thus also total) unary algebras 
to have isomorphic (strong) subalgebra lattices. Although this condition is not sufficient for 
arbitrary partial unary algebras, we can form, having this fact, a lot of new partial unary 
algebras with the same subalgebra lattices. Moreover, we use this result to characterize 
arbitrary two partial (thus in particular also total) monounary algebras with isomorphic 
(strong) subalgebra lattices. Having this result we can also describe all pairs (A, L), where 
A is a partial monounary algebra and L a lattice, such that the subalgebra lattice of A is 
isomorphic to L. 

In the next part [Pio2] we apply the results of this paper to characterize connec-
tions between weak and strong subalgebra lattices of partial (thus also total) monounary 
algebras. 

An important part of Universal Algebra and the theory of partial alge-
bras is an investigation of connections between algebras and their lattices of 
subalgebras. A few such results concern also classical algebras. For example, 
D. Sachs in [Sach] proved that two Boolean algebras are isomorphic iff their 
lattices of subalgebras are isomorphic; E. Lukacs and P.P. Palfy showed in 
[LuPa] that the modularity of the subgroup lattice of the direct square 
G x G of any group G implies that G is commutative. 

In the present part we investigate subalgebra lattices of unary and mo-
nounary algebras. But we do not restrict our attention to total algebras 
only, and we consider the more general case of partial algebras, because this 
approach is very fruitful to our investigation. More precisely, we use some 
results proved in [Piol] and also several results of graph theory to prove one 
necessary condition for arbitrary two partial (and thus also total) unary al-
gebras to have isomorphic (strong) subalgebra lattices (although in this part 
we consider only the ordinary kind of subalgebras, they will be sometimes 
called strong as opposed to the other kinds of partial subalgebras which will 
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be considered in the second part). More precisely, we show that a contrac-
tion of a special subset of the carrier of an algebra to a point or an insertion 
of such a subset in the place of an element of an algebra preserves strong 
subalgebra lattices. Unfortunately, in this way we do not obtain a sufficient 
condition, i.e there are partial unary algebras with isomorphic strong subal-
gebra lattices and none of them is obtained from the other in this way. But 
first, having this fact we can form from any partial unary algebra a lot of 
new algebras with the same strong subdigraph lattices. Secondly, for par-
tial monounary algebras this result forms also a sufficient condition. More 
precisely, we use this result to completely characterize arbitrary two partial 
(thus in particular also total) monounary algebras with isomorphic strong 
subalgebra lattices. Moreover, having this result we can also describe all 
pairs (A, L), where A is a partial monounary algebra and L a lattice, such 
that the subalgebra lattice of A is isomorphic to L. 

For basic notions and results concerning algebras (total and partial) see 
e.g. [BRR] , [Bur] and [Jon], and concerning digraphs (i.e. directed graphs) 
see e.g. [Ber] and [Ore], For any partial unary algebra A = [A, (kA)keK) of 
unary type K (where K is a set of unary operation symbols), the complete 
and algebraic lattice of all strong subalgebras of A under (strong subalgebra) 
inclusion < s will be denoted by S s (A) . Further, for any digraph D, by V D 

and ED we denote its sets of vertices and edges, respectively. In this paper 
we consider, in general, infinite digraphs (i.e. VD and ED may have arbitrary 
cardinality), because we use digraphs to represent partial unary algebras. 
Each partial unary algebra A = (A, {kA)k^K) can be represented by the 
digraph D(A) obtained from A by omitting the names of all operations 
(see [Bar] or [Piol]) . More formally, A is the set of all vertices of D(A), 
{(a, k, b) G Ax K x A : (a,b) £ kA} is the set of all (directed) edges of 
D(A), and for each edge (a , k , b ) , a is its initial vertex and b is its final 
vertex. 

Note that this construction is a very particular case of the Grothendieck 
construction (see [BaWe] section 4.2 and 11.2), but applied to models of di-
graphs (in the category of sets and partial functions) rather than to functors. 
More precisely, a partial unary algebra A of type K can be obviously repre-
sented by a model of the type digraph K with exactly one vertex and unary 
operation symbols from K as edges (i.e. by a digraph homomorphism from 
K into the category of sets and partial functions). Next, by the Grothendieck 
construction applied to this model we get the digraph D(A) together with a 
homomorphism into K . By forgetting this homomorphism we arrive at the 
above construction. 

In [Piol] we defined a special kind of subdigraphs which correspond to 
strong subalgebras of partial unary algebras, and therefore they are also 
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called strong. More precisely, let D and H be any digraphs. Then H is a 
strong subdigraph of D (H < s D) iff H is an ordinary subdigraph of D and 
for each edge e of D, if the initial vertex of e belongs to H, then e belongs 
to H (in particular the final vertex of e also is in H). It is easy to see that 
for two strong subdigraphs H and K of D, they are equal (H is a strong 
subdigraph of K) iff VH = VK (VH C VK). It is proved in [Piol] that 
for each digraph D, its set of all strong subdigraphs forms a complete and 
algebraic lattice S s (D) under (strong subdigraph) inclusion < s . 

Obviously (see [Piol]) for a partial unary algebra A and its strong 
subalgebra B < s A, the digraph D(B) representing B is indeed a strong 
subdigraph of D(A). Moreover, this function (assigning to each strong sub-
algebra its digraph) forms a lattice isomorphism. Thus in [Piol] we have 
obtained (by ~ we denote simultaneously isomorphism of lattices, algebras, 
digraphs etc.) 

THEOREM 1. For each partial unary algebra A, S s(A) ~ S s(D(A)). 

Let D be a digraph and W a set of vertices, then the contraction of W 
(see e.g. [Ber]) is the operation defined by replacing W by a single point 
(which will be denoted often by w) and replacing all directed edges with 
endpoints in W by a single loop in w, and replacing each directed edge 
going into W (resp. out of W) by a directed edge with the same initial 
vertex (resp. final vertex) ending in w (resp. starting from w). The digraph 
obtained from D by the contraction of W will be denoted by D / W , we will 
also use the convention that D/0 = D. Obviously if D is connected, then 
D / W is also connected. Further, by a simple verification we obtain that for 
each subdigraph H of D, H/(VH n W) is a subdigraph of D/W. 

Of course the contraction of a set need not preserve the strong subdigraph 
lattice, because, for instance, from every non-empty digraph we can obtain 
a trivial digraph by contracting the set of all vertices. 

Moreover, the example below shows that the operation of contraction of 
a vertex set does not preserve strong subdigraphs, in general. 

D: . . H: . 

Vl V2 Vz Vi V\ V2 

T>/{V2,VZ}-. . Q „ 
Ul W V4 

Then H is a strong subdigraph of D, but H/({^2, V3 } fl {i>i, }) = H is not 
a strong subdigraph of D/{^2,^3}. 

Now we show that for a special kind of sets of vertices, the operation of 
contraction preserves the strong subdigraph lattices. We start with several 
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results describing when a strong subdigraph is preserved by this construc-
tion. 

LEMMA 2. Let D be a digraph, H a subdigraph of D and W C VD \ VH. 
Then H is a strong subdigraph of D i f f H is a strong subdigraph of D / W . 

LEMMA 3. Let D be a digraph, H its strong subdigraph and W C VH. Then 
H / W is a strong subdigraph of D / W . 

For each digraph D and W C VD, by [W]D we denote the subdigraph 
of D spanned on W, i.e. W is its set of vertices and all edges of D with 
endpoints in W forms its set of edges. 

LEMMA 4. Let D be a digraph, H its subdigraph, W C V H , and let H / W 
be a strong subdigraph of ~D/W. Then \VH]D is a strong subdigraph of D. 

The above three lemmas are obtained by a simple verification, and there-
fore their proofs are omitted. 

LEMMA 5. Let D be a digraph and W C VD, and let K be a subdigraph 
(strong subdigraph) of ~D/W. Then there is a subdigraph (strong subdigraph) 
H of D such that H / ( W n VH) = K . 

P r o o f . If tZ7 does not belong to K (where w is the vertex of D / W corre-
sponding to the set W), then of course K is also a subdigraph of D. Thus 
in this case we can take H = K. By L.2 we have that if K is a strong 
subdigraph of D / W , then H is a strong subdigraph of D. 

Thus now we can assume that w 6 VK. Let U be the set of all vertices 
of K without w and of all vertices of W (i.e. U = ( V K \ {u?}) U W) and 
let H be the subdigraph of D with the set of vertices U (observe that U 
is obviously a subset of D) and with all edges of D such that their images 
(in D / W ) belong to K. Then the definition of the contraction of W easy 
implies that H / W = K. 

Now assume that K is a strong subdigraph of D / W . Then [U]D is a 
strong subdigraph of D by L.4. Thus it is sufficient to prove H = [U 
Of course each edge of H / W belongs to [U]D• On the other hand, take an 
arbitrary edge e of [U]D and let e be its image in D / W . Then it is easy to 
see that endpoints of e belong to K, so e is also in K (because K < s D / W ) . 
Hence, e is an edge of H. This shows that the sets of edges of H and [U]D 
are equal. Thus H = \U]D, since their sets of vertices are equal. • 

Before next results recall (see e.g. [Ber]) that a digraph D is strongly 
connected iff for any two distinct vertices v,w, there is a path from v to 
w. It is not difficult to prove (see also [Ber]) that a digraph D is strongly 
connected iff D is connected and every edge lies on a (directed) cycle. We 
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assume that a path (cycle) does not encounter the same vertex twice (except 
the first and the last vertex). 

LEMMA 6. Let D be a digraph, H its strong subdigraph and let W C VD 

have common vertices with H and \W]d be a strongly connected digraph. 
Then W C VH. 

P r o o f . Let v E VH fl W and take w eW. Then there is a path ( e i , . . . , en ) 
from v to w. Since the initial vertex of e\ is equal v and v £ VH and H < s D , 
we obtain by a simple induction that the final vertex of ei belongs to H for 
i = 1 , . . . , n. Thus, in particular, w is in H. • 

Now we can formulate and prove the first important result. 

THEOREM 7. Let D be a digraph and let W C VD be a set such that \W\D 
is strongly connected. Then S s ( D ) ~ S i ( D / W ) . 

Let ip be the function of the set of all strong subdigraphs of D into the 
set of all strong subdigraphs of D / W such that y?(H) = H/(VH n W). 

Of course we show that <p is the desired lattice isomorphism. Observe 
first that <p is correctly defined. To this purpose take an arbitrary strong 
subdigraph H of D. Then W C VH or W n VH = 0, by L.6. Hence, using 
L.2 and L.3, we obtain that <p(H) is indeed a strong subdigraph of D f W . 
In particular, <p(H) = H or </?(H) = H / W . 

Now take two strong subdigraphs H, K of D and assume that </?(H) = 
<p(K). If w (where w is the vertex of D/W corresponding to the set W) 
does not belong to y (H) , then W and H, K are disjoint, so H — «^(H) = 
</?(K) = K. Thus we can assume that w belongs to ^>(H). Then W and H, 
and also W and K have common vertices, so W is contained in H and K, 
by L.6. Hence, since other vertices of <p(H) and v'(K) (i.e. different from w) 
are the same as in H and K, respectively, we deduce that the sets of vertices 
of H and K are equal. This implies that H = K, because they are strong 
subdigraphs of D. 

Thus we have shown that tp is injective, so by L.5 ip is a bijection of the 
set of all strong subdigraphs of D onto the set of all strong subdigraphs of 
D / W . 

Now we must only prove that ip and its inverse ip'1 preserve (strong 
subdigraph) inclusion < s . Take two arbitrary strong subdigraph H and K of 
D, and observe that H < s K iff VH C VK; and analogously y (H) <s <p(K) 
iff y<e(H) c Thus it is sufficient to show that the vertex set of H is 
contained in K iff y ( K ) contains the vertex set of </?(H). But this fact easily 
follows from the definition of the contraction of W (in a similar way as in 
the proof that ip is injective), because H (K) contains W or H (K) and W 
is disjoint. This completes the proof. • 
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Now, using the above graph theorem, we can formulate and prove the 
first algebraic result of this paper concerning unary partial algebras. More 
precisely 

THEOREM 8. Let A and B be partial unary algebras (which can be of dif-
ferent types) satisfying the following condition: D ( B ) ~ D ( A ) / W for some 
subset W of A such that \W\D{A) i-s strongly connected. Then S s(B) ~ 
S s(A). 

P r o o f , follows directly from Th.l and Th.7. • 
Now take an arbitrary digraph D and observe that we can apply the 

operation of the contraction of a vertex set to each of its connected compo-
nents (i.e. maximal connected subdigraphs) separately. More formally, let 
{Dj}j e j be the family of all the connected components of D and let {Wj}ie/ 
be an arbitrary family of subsets of the vertex set of D such that Wi is 
contained in Dj for each i e I. Then we can take the family {Dj /Wj}^ / of 
digraphs, and next we can take the disjoint union of this family. The digraph 
so obtained will be denoted by D/{Wj}j e / . Note that if W is a subset of D j 
for some j e J, then B/W = D/{Wj} i e j , where Wj = W and Wt = 0 for 
each i j. 

Now we prove a result analogous to Th.7 for this generalized construc-
tion. Observe first that the following fact holds: 

PROPOSITION 9. Let D be a digraph and { D j } j e / a family of its connected 
components. Then S s (D) ~ r i te jSs(Dj) . 
P r o o f . This isomorphism tp is given by a function assigning to each strong 
subdigraph H of D the sequence of all its connected components (Hj)j e / in 
such a way that H j is a subdigraph (perhaps empty) of Dj for all i 6 I, i.e. 
H , = H n D , 

Obviously ip is correctly defined, since if H is a strong subdigraph of 
D, then each of its connected components is also a strong subdigraph of 
D, so in particular also of some corresponding connected component of D. 
<p is surjective, because if (Hj) j e / is a sequence of strong subdigraphs (i.e. 
Hi < s Dj for i G /) , then the disjoint sum H of the family {Hj}jg/ is a strong 
subdigraph of D and of course <^(H) = (Hj)j£ / . It is trivial that if is an 
injection, since each digraph has exactly one decomposition onto connected 
components. Moreover, ip and its inverse ip~1 preserve the relation < s , since 
for each strong subdigraphs H and K of D, H < s K iff VH C VK iff 
YHI g YKI for a l H G J i f f H . < s for • G w h e r e {^>¿6/ and {Kj} i e / 
are the families of connected components of H and K, respectively. • 

Before the next result observe that for any digraph D, its connected 
component H and subset W C VH, [W]H and \W\D are equal. 
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T H E O R E M 1 0 . Let D be a digraph, { D J } J G / the family of all its connected 
components and let be a family of subsets of VD such that for 
each i £ I, Wi is contained in D^ and [Wj]£> is strongly connected. Then 
S A ( D ) ~ S S ( D / { W I } I 6 7 ) . 

P r o o f . Th.8 implies that S S ( D j ) and S S ( D J / W J ) are isomorphic for i 6 I. 
Thus the direct products n i e / S s ( D j ) and S s(Di/Wi) are isomorphic, 
so S , ( D ) ~ S F L (D/{Wi} i e / ) , by P.9. . 

Now we can formulate our second algebraic result on partial unary alge-
bras. 

T H E O R E M 1 1 . Let partial unary algebras A and B (which can be of differ-
ent types) satisfy the following condition: D ( B ) ~ D ( A ) / { W I } J £ / for some 
family {Wi}j£/ of subsets of A such that for each i E I, Wi is contained 
in D J ( A ) (where { D J ( A ) } J G / is the family of all connected components of 
D ( A ) J and [ W I ] / ? ^ ) is strongly connected. Then S S ( B ) ~ S S ( A ) . 

P r o o f , follows directly from Th . l and Th.10. • 

It is easy to see that the necessary condition in the above theorem is 
not sufficient, i.e. there are partial unary algebras with isomorphic strong 
subalgebra lattices and there is no family {Wj}jg/ of sets as in the theorem 
such that D ( B ) is isomorphic to D(A)/{Wi} j e/. But, having Th.8 and this 
theorem we can construct from a given partial unary algebra A a lot of new 
partial unary algebras with strong subalgebra lattices isomorphic to S S ( A ) . 

To this purpose we must only contract any subset of A such that each two of 
its elements generate the same strong subalgebra (note that this set need not 
form itself a strong subalgebra). Of course we can apply this construction to 
each connected component of A separately. Conversely, we can also insert 
such a subset (i.e. satisfying the above condition) in the place of an element 
of A, and again we can blow up in this way each connected component of 
A separately. Obviously these two constructions do not preserve types of 
algebras, in general. 

Moreover,we now show that for partial monounary algebras the above 
theorem forms also a sufficient condition. Let A be a partial monounary 
algebra (i.e. a partial algebra with one partial unary operation). Then its 
digraph D(A) is a functional digraph (i.e. at most one edge starts from 
any vertex) and of course if A is total, then D(A) is total (i.e. exactly one 
edge starts from each vertex). Observe that the inverse fact is also true. 
More precisely, for every functional digraph D, there is a partial monounary 
algebra A corresponding to D, i.e. D(A) is isomorphic to D. 

It is obvious and well-known that for every functional digraph D, each 
of its connected components contains at most one directed cycle. Thus we 
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can contract each non-trivial cycle (i.e. with at least two vertices), and 
the digraph so obtained will be denoted by Td(D). Moreover, Tsd(D) is 
a digraph obtained from Td (D) by omitting all loops. Observe also that 
T (D) has no non-trivial directed cycles, so Tsd(D) has no directed cycles 
(including loops). 

T H E O R E M 12. Let D be a functional digraph. Then 

S s (D) ~ S s(Td(D)) ~ Ss(Tsd(D)). 

P r o o f . Observe that each non-trivial directed cycle of D forms a strongly 
connected digraph and any two different directed cycles belong to two dis-
tinct connected components. Thus the first isomorphism is implied by Th.10. 
Moreover, the second isomorphism is easy to see, since Tsd(D) is obtained 
from Td(D) by omitting only loops. • 

Now take a partial monounary algebra A and let 

Td(A) := Td (D(A)) and Tsd(A) := Tsd(D(A)) 

Then the above results for functional digraphs imply that Td(A) and Tsd(A) 
are functional digraphs without non-trivial directed cycles, and Tsd(A) has 
no loops either. Moreover, Th.l and Th.12 imply 

T H E O R E M 13. Let A be a partial monounary algebra. Then 

S s(A) = S s(Td(A)) ~ S s(Tsd(A)). 

Now we show that Tsd(A) uniquely determines the strong subalgebra 
lattice S s(A) for any partial monounary algebra A. More formally, we prove 
that two monounary partial algebras A and B have isomorphic strong sub-
algebra lattices if their digraphs Tsd(A) and Tsd(B) are isomorphic. To 
this purpose we start with the following result from [JoSe] (see also [Jon]) 
characterizing the strong subalgebra lattice of a partial monounary algebra. 

T H E O R E M 14. A complete lattice L = (L, <l) is isomorphic to the strong 
subalgebra lattice S s(A) for some partial monounary algebra A i f f L is 
algebraic, distributive and 

(1) every element of L is a join of completely join-irreducible elements, 
(2) for each completely join-irreducible element i, the set of all com-

pletely join-irreducible elements which are less or equal than i (with respect 
to the lattice ordering <£) is totally ordered by <l and is finite or isomor-
phic to the set of all non-positive integers with the natural less-or-equal 
order. 

Recall that an element I of L is completely join-irreducible iff for any 
subset K of L, I = \J K (i.e. I is the supremum of K) implies I € K. Re-
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call also that for any two elements i,j of L, j is covered by i (or i covers 
j) iff j <L i and there is no element k of L distinct from i and j and 
j <L k <L i. 

Secondly, for an algebraic and distributive lattice L satisfying (1), (2) 
of Th.14 a partial monounary algebra A = (A, (kA)) such that S s(A) is 
isomorphic to L can be constructed as follows: A is the set of all completely 
join-irreducible elements of L and for every a € A, if a is minimal in A (with 
respect to <L), then the unary operation kA on a is not defined; if a is not 
minimal, then kA(a) is the unique element of A covered by a (observe that 
(2) of Th.14 implies that every element i G A is either minimal or covers 
a unique element of A). Note that D(A) is a functional digraph without 
directed cycles (nor loops). 

Of course A can be completed to a total monounary algebra A (for every 
minimal element a € A we set kA(a) equal to a), but then the functional 
digraph corresponding to this total monounary algebra has loops. 

Observe that with every algebraic and distributive lattice L = (L, <l) 
satisfying (1), (2) of Th.14 we can associate a functional digraph Ds(L) 
in the following way: we first consider the partial monounary algebra A 
defined above, and next we set Ds(L) = D(A). In other words, Ds(L) is a 
digraph such that the set of all completely join-irreducible elements of L is 
its set of all vertices, the set of pairs (p,q), where p and q are completely 
join-irreducible elements and p covers q, is its set of all (directed) edges and 
for every edge (p, q), pis its initial vertex and q is its final vertex. Note that 
by Th.l, since S5(A) is isomorphic to L, we have that S s(Ds(L)) is also 
isomorphic to L. 

Note also that Ds(L) can be easily completed to a total functional 
digraph D(L) by adding a loop to each vertex without a starting edge. 
More precisely, to the edge set of Ds(L) we add all pairs (p,p), where p 
is completely join-irreducible and is minimal in the set of all completely 
join-irreducible elements. Obviously this digraph is equal to the digraph 
representing the total monounary algebra A corresponding to L (defined 
above). 

L E M M A 15. Let D be afunctional digraph without directed cycles (nor loops). 
Then Ds(S s(D)) ~ D, i.e. the digraph obtained from the strong subdigraph 
lattice of D is isomorphic to D. 

P r o o f . First, for each vertex v of D, we denote by (V)D the least strong 
subdigraph containing v. 

Secondly, in [Piol] we proved that a vertex u belongs to (v)p iff u = v 
or there is a path from v to u. (This is a graph-theoretical generalization of 
the classical result on the generation of (strong) subalgebras and its proof 
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is similar.) Hence, if there is a path from v to u, then the vertex set of 
(U)D is contained in (V)D- SO (U)D <S (V)D, since they are strong subdi-
graphs. 

Thirdly, in the same way as for unary (total) algebras (see e.g. [Jon]) 
we obtain that a strong subdigraph H of D is a completely join-irreducible 
element of S s (D) iff H = (V)D for some vertex of D. 

Fourthly, it is obvious and well-known that for every functional di-
graph G, each of its regular edges is an isthmus. Recall (see e.g. [Ber]) 
that e is an isthmus iff e is regular (i.e. is not a loop) and e is the only 
directed path from its initial vertex to its final vertex. 

Observe that in our case, each edge of D is an isthmus, because D has 
no loops. 

Now we use the above facts to prove several connections between D and 
its strong subdigraph lattice S s (D) . 

Take two vertices v,u of D and assume (V)D = (U)D- Then there are 
paths from v to u and from u to v. But D has no directed cycles, so v = u 

Let v and u be vertices of D such that there is an edge from v to u. 
Then (U)D <S (V)D, because this edge forms a path from v to u. Moreover, 
we show that {U)D is covered by {V)D- TO see this take a strong subdigraph 
H of D such that H is a completely join-irreducible element in S s (D) and 

s H < s (V)D- Then H — (W)D for some vertex w. Assume that w is 
different from u, v. Then there is a path from v to w and a path from w 
to u. Since D has no directed cycles, these two paths form a path (with at 
least three vertices) from v to u. But this is impossible, since every edge of 
D is an isthmus. Thus w = v or w = u, so H = {V)D or H = (u}£>. 

Now take two completely join-irreducible elements (U)D, (V)D of S s (D) 
such that (U)D is covered by {V)D- In particular, u belongs to {V)D, so 
there is a path from v to u. Assume that this path has a vertex w differ-
ent from v and u. Then there are paths from v to w and from w to u, 
so (U)D <S (W)O <S (V)D and these three strong subdigraphs of D are 
pairwise different. This contradiction proves that this path is an edge from 
v to u. 

Summarizing, we have shown that the function <p from the vertex set 
of D into the set of all completely join-irreducible elements of S s (D) as-
signing to each vertex v the strong subdigraph (V)D is a bijection and for 
any two vertices v, u, there is an edge in D from v to u iff there is an edge 
in Ds(S s(D)) from {V)D to (U)D (i-e. (V)D covers (U)D). This implies that 
D and Ds(S s (D)) are isomorphic, since these digraphs are functional (in 
particular, for any two vertices there is at most one edge from the first to 
the other). • 
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Now take two complete lattices L and K and assume that they are 
isomorphic and that ip is this lattice isomorphism. Then <p restricted to the 
set of all completely join-irreducible elements of L is a bijection of this 
set to the set of all completely join-irreducible elements of K. Moreover, ip 
preserves the covering relation. These two facts easily imply that ip induces 
also an isomorphism of the digraphs Ds(L) and Ds(K) (and also of D(L) 
and D(K). 
THEOREM 16. Let D be afunctional digraph. Then Ds(Ss(D)) ~ Tsd(D). 

Proof. By Th.12 Ss(D) and Sa(Tsd(D)) are isomorphic, so Ds(Ss(D)) and 
Ds(Ss(Tsd(D))) are isomorphic. Hence, using L.15, we obtain our thesis. • 

Th.l and Th.16 imply the following algebraic result: 

THEOREM 17. Let A be a partial monounary algebra. Then 
Ds(Ss(A)) ~ Tsd(A). 

Now we can formulate and prove the two main results of this paper. 
THEOREM 18. Let A and B be partial monounary algebras. Then 

S s ( A ) ~ S s ( B ) iff Tsd(A) ~ Tsd(B). 
Proof. Of course two isomorphic digraphs have isomorphic strong subdi-
graph lattices. Hence, using Th.l and Th.16, we obtain the implication <=. 
On the other hand, if the strong subalgebra lattices of A and B are iso-
morphic, then the digraphs corresponding to these lattices Ds(Ss(A)) and 
Ds(Ss(B)) are isomorphic. Thus by Th.17 we deduce the implication =». • 
THEOREM 19. Let A be a partial monounary algebra and let an algebraic 
and distributive lattice L satisfy (1) and (2) of Th.\A. Then 

Ss(A) ~ L iff Tsd(A) ~ Ds(L). 
Proof. Since the strong subdigraph lattice of Ds(L) is isomorphic to L, 
and moreover, two isomorphic digraphs have isomorphic strong subdigraph 
lattices, the implication <= is implied by Th.13. On the other hand, if Ss(A) 
and L are isomorphic, then the digraphs Ds(Ss(A)) and Ds(L) are isomor-
phic. Thus by Th.17 we infer the implication =>. • 
Remark. Obviously we can also formulate and prove (in the same way) 
analogous results for digraphs and their strong subdigraph lattices. 
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