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A N O T H E R CARTESIAN CLOSED 
CATEGORY OF PARTIAL ALGEBRAS 

When investigating partial algebras from the categorical point of view, 
we can consider several different kinds of morphisms between them. With 
respect to various applications, especially to computer science, the usual 
homomorphisms seem to be the most important morphisms between par-
tial algebras. Namely, the category of partial algebras of a given type with 
homomorphisms as morphisms has some useful properties such as amnes-
ticity, transportability, completeness and cocompleteness, wellpoweredness 
and cowellpoweredness, etc. But, it in general fails to have a very impor-
tant property for applications to computer science - the cartesian closedness 
(this category is cartesian closed iff the type of its objects is empty). Thus, 
it could be convenient to replace the category with some of its cartesian 
closed subcategories. Two such subcategories have been found in [7], two 
in [8] and three in [9]. In the presented note we discover another carte-
sian closed subcategory of the category of partial algebras of a given type 
and discuss it in relation to those from [7], [8] and [9]. We use a new, uni-
fied and effective way for introducing the categories considered. This way 
is based on the use of generalized matrices when defining the properties 
of partial algebras resulting in these categories. All cartesian closed cat-
egories dealt with are initially structured and we describe their function 
spaces. 

For the basic categorical terminology used see [1]. Throughout the note, 
all categories are considered to be constructs, i.e., concrete categories of 
structured sets and structure-compatible maps. In any category, the under-
lying set of an object A is denoted by \A\. A category JC is called initially 
structured [5] if the following three conditions are satisfied: 

(1) K is well-fibred (i.e., K. is fibre-small and for each set with at most one 
element, the corresponding fibre has exactly one element), 
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(2) JC has concrete products, 
(3) JC has initial subobjects. 

If A, B are objects of a given category JC, we denote by Mor/c(vl, B) 
the set of all morphisms from A to B in JC. Recall that a category JC 
with finite products is said to be cartesian closed if for any /C-object B 
the functor B x — : JC —> JC has a right adjoint. It is well known ([5]) 
tha t an initially s t ructured category JC is cartesian closed if and only if for 
each pair A,B of /C-objects there is a function space, i.e., a /C-object AB 

with \AB\ =MOT/C{B,A) and such tha t for each /C-object C we get a bijec-
tion between M o r ^ ( C x B, A) and Mor/c(C, AB) when assigning / * to each 
/ e M o r ^ C x B,A) where / * (c)(6) = f(c,b) whenever c G \C\ and 6 G \B\. 
Namely, the functor —B is then a right adjoint to B x —. Function spaces 
in cartesian closed initially s tructured categories have a large collection of 
pleasant properties (see [5]), which makes these categories convenient for 
various applications. 

The concepts concerning part ial algebras are taken from [2]. Throughout 
the paper, Q will designate an arbitrary, but fixed set, and r will designate 
an arbitrary, but fixed family of sets r = {Ky, A G fi). The family r will be 
called a type. By a partial algebra of type r we understand a pair ( X , (p\] A G 
J?)) where X is a set and p\ is a partial K\-ary operation on X (i.e., a partial 
map p\ : XKx —> X ) for each A G i7. For any A G Q we denote by DPx the 
domain of the operation px, i.e., the subset of XKx having the property tha t 
P\{xk\k G Kx) is defined iff {xk\k G K\) G DPx. Let G = (X, (py, A G Q)) 
and H = (Y, (q\] A G J7)) be partial algebras of type r . G is called a relative 
subalgebra of H if px{xk',k G Kx) = x qx(xk',k G K\) = x whenever 
A G J2, (xk',k G Kx) and x G X. If, moreover, DPx = Dqx fl XKx for 
each A G O, then G is called a closed subalgebra of H. By a homomorphism 
of G into H we mean any map / : X —> Y such tha t px{xk', k G Kx) = x 
Qx{f(xk)',k G Kx) = f ( x ) for each A G £2. The set of all homomorphisms 
from G into H will be denoted by Hom(G,H). We denote by PalT the 
category of all partial algebras of type r with homomorphisms as morphisms. 
Of course, PalT has concrete products (given by the usual direct products) 
and initial subobjects (given by relative subalgebras). 

Let X,K,L be sets. By a K x L-matrix M over X we understand any 
map M : K x L —> X , i.e., M = (xki\k G K,l G L) where x^i G X whenever 
k G K and I G L. We denote by M' the transposed matr ix to M, i.e., the 
L x i f -ma t r ix M' = (xik\l G L,k G K) over X. 

Let x 6 I be an element and M = (Xkf, keK,leL)&Kx L-matr ix 
over X. Then M is said to be x-constant provided tha t Xki = x for all k G K 
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and all I G L, and it is said to have x-constant diagonal provided that K = L 
and Xkk = x for all k 6 K. 

Let M = (Xki \ k G K, I G L) be a K x L-matrix over X and q an L-ary 
partial operation on X. Then M is said to be q-operational if (x^; I G L) G 
Dg for each k G K. Let p be a K-ary partial operation on X. Then M is said 
to be pq-operational provided that it is g-operational and (q(xki',l G L)\k G 
K) G Dp. We put pq(M) = p{q{xkV, I G L)\k G K). Finally, M is said to be 
diagonally p-operational provided that K = L and (Xkk] k G K) G Dp. We 
then put AP{M) = p(xkk', k € K). 

DEFINITION. A partial algebra (X, (py,X G f2)) of type r is called 

(1) idempotent if for any A G 17 and any x G X we have p\(xk; k G K\) = x 
whenever Xk = x for all k G K\ (cf. [7]), 
(2) commutative if for any A, fi G f2 and any p^i^-operational j(x x 

matrix M over X such that M' is p^-operational it holds that M' is p^p\-
operational and pxp^M) = pfipx(M') (cf. [7]), 
(3) diagonal if, for every A G fi, any pAPA-operational K\ x ^ - m a t r i x M 
over X is diagonally pA-operational and p\p\{M) = APx (M) (cf. [7]), 
(4) strongly diagonal if, for every A G fi and arbitrary x G X, any p\-
operational i£"Axi£"A-ma,trix M over X is p,\PA-operational with p\p\(M) = x 
iff i t is diagonally p ^ - o p e r a t i o n a l with Apx (M) = x, 
(5) weakly diagonal if, for every A G J?, any p^PA-operational K\ x Z^-raatrix 
M over X is diagonally pA-operational with p\p\(M) = Apx (M) provided 
that M' is pAPA-operational with p\p\(M) = p\p\(M'), 
(6) locally diagonal if for any A G 1?, any x G X and any ^-operational 
K\ x i^A-matrix M over X with x-constant diagonal it holds that M is 
PAPA-operational and p\p\(M) — x, 
(7) locally antidiagonal if for any A G Q, any x G X and any pAPA-operational 
K\ x i^A-matrix M over X with x-constant diagonal, from p\p\(M) — x it 
follows that M is x-constant, 
(8) weakly locally antidiagonal if for any A G £2, any x G X and any P\P\-
operational K\ x i^A-matrix M over X with x-constant diagonal and with 
the property that M' is pAPA-operational too, frompAPA(-^0 =P\P\(M') = x 
it follows that M is x-constant. 

REMARKS. 1) In the previous Definition, only the strong diagonality is a new 
property. All the other properties are equivalent to the corresponding ones 
from [7], [8] and [9]. More precisely, the idempotency has been introduced in 
[7] in the same way, and the diagonality is equivalent to the diagonality in-
troduced in [7]. The commutative partial algebras are nothing else than the 
partial algebras that are said to fulfil the interchange law in [7]. The weak 



692 J. S l a p a l 

diagonality is equivalent to the weak diagonality from [8]. The local diag-
onality, local antidiagonality and weak local antidiagonality are equivalent 
to the same notions defined in [9]. 

2) Clearly, s trong diagonality implies diagonality, diagonality implies 
weak diagonality, local antidiagonality implies weak local antidiagonality, 
and the conjunction of idempotency and strong diagonality implies local 
diagonality. For to ta l algebras the commutat ivi ty introduced coincides with 
the commutat ivi ty studied in [4] and the conjunction of idempotency and 
diagonality coincides with the diagonality discussed in [6]. The mono-binary 
commutat ive total algebras are nothing else than the medial groupoids in-
vestigated in [3]. For mono- i i - a ry part ial algebras the strong diagonality 
implies the commutativi ty. Of course, for total algebras the diagonality co-
incides with the strong diagonality. 

EXAMPLES. 1. Let X be a set and p a binary relation on X. Let p be the 
binary partial operat ion on X given by 

Dp = p, and p(x, y) = x whenever (x, y) 6 Dp 

and let q be the binary part ial operation on X dual to p, i.e., 
Dq = p, and q(x,y) = y whenever (x,y) £ Dq. 

Then ( X , p , q ) & Pal(2,2) and we have: 

a) ( X , p , q ) is commutat ive, 
b) p is reflexive iff (X,p, q) is idempotent , 
c) p is transitive iff ( X , p , q ) is diagonal, 
d) if p is symmetric, then ( X , p , q) is locally diagonal, 
e) if p is transitive and symmetric, then (X, p, q) is strongly diagonal, 
f ) p is a tolerance relation iff (X, p, q) is idempotent and locally diagonal, 
g) p is ant isymmetric iff (X, p, q) is weakly locally antidiagonal. 

Of course, the s ta tements a) - g) remain valid when replacing ( X , p , q ) with 
(X,p) or (X,q) respectively. 

2. Let (G,p ) be a part ial rectangular band, i.e., G = X x Y where X, Y 
are sets and p is the binary part ial operation on G given by ((21,2/1), (X2,2/2)) 
<5 Dp iff 2/1 = x2, and then p ( (x i , j/i), (x2,2/2)) = (2:1,2/2). Clearly, (G,p) € 
Pal(2) is weakly diagonal. 

3. Let X be a set and p the binary partial operation on the power-set 
VX of X given by {A, B) e Dp iff A = B or A and B are nonempty with 
A n B = 0, and then p(A,B) = A D B. Then (PX,p) E Pal ( 2) is locally 
antidiagonal. 

We denote by IPalT, CPalT, DPalr, SdPalT, WdPalT, LdPalr, LaPalT 

and WlaPalT the categories of idempotent , commutative, diagonal, strongly 
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diagonal, weakly diagonal, locally diagonal, locally antidiagonal and weakly 
locally antidiagonal partial algebras of type r , respectively - all considered 
to be full subcategories of Pal r . Further, we put ICPalT = IPalT H CPalT, 
ICDPalT = IPalT fl CPalT fl DPalT, etc. Obviously, all these categories are 
well-fibred and closed under formation of products and initial subobjects 
in PalT. Therefore they are initially structured. Though the following two 
statements give new results for the category ISdPalT only, they are formu-
lated generally so as to include also the corresponding results from [7], [8] 
and [9]. 

THEOREM. The categories IPalT, IDPalT, ICDPalr, ISdPalT, IWdPalT, 
ILdPalT, ILaPalT and IWlaPalT are cartesian closed and in each of them 
the function space GH of a pair of objects G — (X,(px;X G fl)), H — 
(Y,(qy, A € Q)) is defined by GH = (Hom(H, G), (r\; A G J?)} where, for 
every A £ fi, rx is the K\-ary partial operation on Hom(H,G) given as 
follows: for any (fk\k 6 Kx) G (H o m ( H , G ) ) K x and any f G Hom(H,G), 
rx{fk\ k G Kx) = f iff the implication qx{yk\k G Kx) = y Px(fk{yk)',k G 
Kx) — f(y) is satisfied. 

P r o o f . For IPalT and ICDPalT the statement follows from [7], for IDPalT 

and IWdPalT it follows from [8], and for ILdPalT, ILaPalr and IWlaPalT 

it follows from [9]. We will prove the statement for ISdPalT. As ISdPalT is 
a full subcategory of the cartesian closed category IDPalT, it is sufficien to 
show that the class of objects of ISdPalT is closed under formation of func-
tion spaces in IDPalr. So, let G = (X, (px; A G J?)) and H = (Y, (qx\ A G J?)} 
be objects of ISdPalT and let GH = (Hom(H, G), (rA; A G Q)) be their func-
tion space in IDPalT. Let A G Q and / G Hom(H, G) be arbitrary elements 
and let M = (fki',k G Kx,l G Kx) be an rA-operational matrix. If M is 
rArA-operational with r A r A (M) = / , then the diagonality of GH implies 
that M is diagonally rA-operational with Arx (M) = f . Conversely, let M 
be diagonally rA-operational with Arx (M) = f , and for each k G Kx put 
fk = rx(fki;l E Kx). Let ( y k ; k G Kx) G Dqx, qx{yk]k G Kx) = y. As H is 
idempotent, for any k G Kx we have qxiyi] I G Kx) = yk whenever yi = yk 

for each I G Kx- Thus, px{fki\I £ Kx) = fk{yk) for each k G Kx and the ma-
trix M* = (fki(yk)',k G Kx,l G kx) is ^-operational. Further, Arx(M) = 
rx(fkk\k e Kx) = f implies APx(M*) = px{fkk{yk)\k G Kx) = f(y). 
Hence M* is diagonally pA-operational. Since G is strongly diagonal, M* is 
pApA-operational with pxpx(M*) = f(y). As pxpx(M*) = px(px{fki{yk); I € 
Kx)-,k G Kx) = px(fk(yk)', k G Kx), we have rx{fk\k G Kx) = / . Con-
sequently, rxrx(M) = rx(rx(fkr,l G Kx)\k G Kx) = rx(fk-,k G Kx) = f . 
Hence M is rArA-operational with rxrx(M) = / . We have shown that GH 

is strongly diagonal. Therefore ISdPalT is cartesian closed. 
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C L A I M . In IDPalr, ICDPalT, ISdPalT and IWdPalT each function space GH 

is a relative subalgebra of the direct product G'^ ' . In ICDPalT each function 
space GH is even a closed subalgebra of the direct product G ' h L 

P r o o f . In [8] it is shown that in IWdPalT each function space GH is a 
relative subalgebra of the direct product G'^ ' . SO the same is valid also 
for IDPalT and ICDPalT because these categories are full subcategories of 
IWdPalr having inherited function spaces. The statement that in ICDPalT 

each function space GH is a closed subalgebra of is also proved in [8]. 

Further initially structured and cartesian closed full subcategories of Pali-
can be obtained as intersections of those from the Theorem. 
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