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ANOTHER CARTESIAN CLOSED
CATEGORY OF PARTIAL ALGEBRAS

When investigating partial algebras from the categorical point of view,
we can consider several different kinds of morphisms between them. With
respect to various applications, especially to computer science, the usual
homomorphisms seem to be the most important morphisms between par-
tial algebras. Namely, the category of partial algebras of a given type with
homomorphisms as morphisms has some useful properties such as amnes-
ticity, transportability, completeness and cocompleteness, wellpoweredness
and cowellpoweredness, etc. But, it in general fails to have a very impor-
tant property for applications to computer science - the cartesian closedness
(this category is cartesian closed iff the type of its objects is empty). Thus,
it could be convenient to replace the category with some of its cartesian
closed subcategories. Two such subcategories have been found in (7], two
in [8] and three in [9]. In the presented note we discover another carte-
sian closed subcategory of the category of partial algebras of a given type
and discuss it in relation to those from (7], [8] and [9]. We use a new, uni-
fied and effective way for introducing the categories considered. This way
is based on the use of generalized matrices when defining the properties
of partial algebras resulting in these categories. All cartesian closed cat-
egories dealt with are initially structured and we describe their function
spaces.

For the basic categorical terminology used see [1]. Throughout the note,
all categories are considered to be constructs, i.e., concrete categories of
structured sets and structure-compatible maps. In any category, the under-
lying set of an object A is denoted by |A|. A category K is called initially
structured [5] if the following three conditions are satisfied:

(1) K is well-fibred (i.e., K is fibre-small and for each set with at most one
element, the corresponding fibre has exactly one element),
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(2) K has concrete products,
(3) K has initial subobjects.

If A, B are objects of a given category XC, we denote by Morx (4, B)
the set of all morphisms from A to B in K. Recall that a category K
with finite products is said to be cartesian closed if for any K-object B
the functor B x — : K — K has a right adjoint. It is well known ([5])
that an initially structured category KC is cartesian closed if and only if for
each pair A, B of K-objects there is a function space, i.e., a K-object AZ
with |AB| =Morx (B, A) and such that for each K-object C' we get a bijec-
tion between Morx (C x B, A) and Morx (C, AB) when assigning f* to each
f €Mork(C x B, A) where f*(c)(b) = f(c,b) whenever ¢ € |C| and b € |B|.
Namely, the functor —2 is then a right adjoint to B x —. Function spaces
in cartesian closed initially structured categories have a large collection of
pleasant properties (see [5]), which makes these categories convenient for
various applications.

The concepts concerning partial algebras are taken from [2]. Throughout
the paper, {2 will designate an arbitrary, but fixed set, and 7 will designate
an arbitrary, but fixed family of sets 7 = (K; A € £2). The family 7 will be
called a type. By a partial algebra of type 7 we understand a pair (X, (px; A €
12)) where X is a set and p is a partial K-ary operation on X (i.e., a partial
map py : X¥* — X) for each A € 2. For any A € {2 we denote by D,, the
domain of the operation pj, i.e., the subset of X ¥ having the property that
Pa(zr; k € Ky) is defined iff (zx;k € K)) € Dp,. Let G = (X, (px; X € £2))
and H = (Y, (gx; A € £2)) be partial algebras of type 7. G is called a relative
subalgebra of H if pr(zk;k € Ky) = ¢ & qu(zk;k € Ky) = = whenever
A€ 2, (z;k € K)) € XK and z € X. If, moreover, D,,, = Dy, N X¥> for
each A € {2 then G is called a closed subalgebra of H. By a homomorphism
of G into H we mean any map f: X — Y such that px(zx;k € K)) =z =
o (f(zk); k € Ky) = f(z) for each A € §2. The set of all homomorphisms
from G into H will be denoted by Hom(G, H). We denote by Pal, the
category of all partial algebras of type T with homomorphisms as morphisms.
Of course, Pal, has concrete products (given by the usual direct products)
and initial subobjects (given by relative subalgebras).

Let X, K, L be sets. By a K x L-matriz M over X we understand any
map M : K xL — X,ie, M = (zx;k € K,l € L) where zx; € X whenever
k € K and | € L. We denote by M’ the transposed matrix to M, i.e., the
L x K-matrix M’ = (zix;l € L,k € K) over X.

Let z € X be an element and M = (zx;k € K,l € L) a K x L-matrix
over X. Then M is said to be z-constant provided that zz; = z forall k € K
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and all l € L, and it is said to have z-constant diagonal provided that K = L
and z, =z for all k € K.

Let M = (zx;;k € K,l € L) be a K x L-matrix over X and ¢ an L-ary
partial operation on X. Then M is said to be g-operational if (xg;;l € L) €
D, for each k € K. Let p be a K-ary partial operation on X. Then M is said
to be pg-operational provided that it is g-operational and (g(zgi;{ € L); k €
K) € D,. We put pg(M) = p(q(zr;! € L); k € K). Finally, M is said to be
diagonally p-operational provided that K = L and (zxk; k € K) € D,. We
then put A,(M) = p(zkk; k € K).

DEFINITION. A partial algebra (X, (pa; A € £2)) of type 7 is called

(1) idempotent if for any A € 2 and any z € X we have p)(zx;k € K)\) ==z
whenever z = z for all k € K (cf. [7]),

(2) commutative if for any A\, p € 2 and any pyp,-operational K x K-
matrix M over X such that M’ is py-operational it holds that M’ is p,px-
operational and pap, (M) = p.pa(M') (cf. [7]),

(3) diagonal if, for every A\ € {2, any papy-operational K X K)-matrix M
over X is diagonally py-operational and papx(M) = Ap, (M) (cf. [7]),

(4) strongly diagonal if, for every A € {2 and arbitrary z € X, any pj-
operational Kyx K -matrix M over X is pypy-operational with pyp (M) =z
iff it is diagonally py-operational with A,, (M) = z,

(5) weakly diagonal if, for every A € {2, any pypx-operational K x Ky-matrix
M over X is diagonally p-operational with pxpx(M) = A, (M) provided
that M’ is papx-operational with papx(M) = papa(M'),

(6) locally diagonal if for any A € §2, any z € X and any pj-operational
K, x Ky-matrix M over X with z-constant diagonal it holds that M is
papa-operational and papr(M) = z,

(7) locally antidiagonal if for any A € £2, any z € X and any p,px-operational
K x Kx-matrix M over X with z-constant diagonal, from pxpx (M) = z it
follows that M is z-constant,

(8) weakly locally antidiagonal if for any A € {2, any z € X and any pxpx-
operational K x K-matrix M over X with z-constant diagonal and with
the property that M’ is pypx-operational too, from papx (M) =prpr(M') =z
it follows that M is z-constant.

REMARKS. 1) In the previous Definition, only the strong diagonality is a new
property. All the other properties are equivalent to the corresponding ones
from [7], [8] and [9]. More precisely, the idempotency has been introduced in
[7] in the same way, and the diagonality is equivalent to the diagonality in-
troduced in [7]. The commutative partial algebras are nothing else than the
partial algebras that are said to fulfil the interchange law in [7]. The weak
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diagonality is equivalent to the weak diagonality from [8]. The local diag-
onality, local antidiagonality and weak local antidiagonality are equivalent
to the same notions defined in [9].

2) Clearly, strong diagonality implies diagonality, diagonality implies
weak diagonality, local antidiagonality implies weak local antidiagonality,
and the conjunction of idempotency and strong diagonality implies local
diagonality. For total algebras the commutativity introduced coincides with
the commutativity studied in [4] and the conjunction of idempotency and
diagonality coincides with the diagonality discussed in [6]. The mono-binary
commutative total algebras are nothing else than the medial groupoids in-
vestigated in [3]. For mono-K-ary partial algebras the strong diagonality
implies the commutativity. Of course, for total algebras the diagonality co-
incides with the strong diagonality.

EXAMPLES. 1. Let X be a set and p a binary relation on X. Let p be the
binary partial operation on X given by
D, = p, and p(z,y) = z whenever (z,y) € D,
and let ¢ be the binary partial operation on X dual to p, i.e.,
Dy = p, and ¢(z,y) = y whenever (z,y) € D,.
Then (X, p, q) € Pal(32) and we have:

a) (X, p, q) is commutative,

b) p is reflexive iff (X, p, q) is idempotent,

c) p is transitive iff (X, p, q) is diagonal,

d) if p is symmetric, then (X, p, q) is locally diagonal,

e) if p is transitive and symmetric, then (X, p, ¢) is strongly diagonal,

f} p is a tolerance relation iff (X, p,¢) is idempotent and locally diagonal,
g) p is antisymmetric iff (X, p, ¢) is weakly locally antidiagonal.

Of course, the statements a) - g) remain valid when replacing (X, p, ¢) with
(X,p) or (X, q) respectively.

2. Let (G, p) be a partial rectangular band, i.e., G = X xY where X,Y
are sets and p is the binary partial operation on G given by ((z1,¥1), (2, ¥2))
€ D, iff y1 = z2, and then p((z1,y1), (z2,¥2)) = (21, y2). Clearly, (G,p) €
Pal(;) is weakly diagonal.

3. Let X be a set and p the binary partial operation on the power-set
PX of X given by (A,B) € D, iff A= B or A and B are nonempty with
AN B =0, and then p(A4,B) = AN B. Then (PX,p) € Pal(y) is locally
antidiagonal.

We denote by IPal., CPal,, DPal., SdPal., WdPal., LdPal., LaPal,
and WlaPal, the categories of idempotent, commutative, diagonal, strongly
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diagonal, weakly diagonal, locally diagonal, locally antidiagonal and weakly
locally antidiagonal partial algebras of type 7, respectively - all considered
to be full subcategories of Pal,. Further, we put ICPal, = IPal, N CPal,,
ICDPal,. = IPal, 1 CPal, N DPal,, etc. Obviously, all these categories are
well-fibred and closed under formation of products and initial subobjects
in Pal.. Therefore they are initially structured. Though the following two
statements give new results for the category ISdPal. only, they are formu-
lated generally so as to include also the corresponding results from [7], [8]
and [9].

THEOREM. The categories IPal,, IDPal., ICDPal., 1SdPal,, IWdPal,,
ILdPal., ILaPal, and IWlaPal, are cartesian closed and in each of them
the function space G of a pair of objects G = (X,(px; A € 2)), H =
Y, (gx; A € 2)) is defined by GE = (Hom(H,G),(rx; ) € 2)) where, for
every A € £2, 5 is the Kx-ary partial operation on Hom(H,G) given as
follows: for any (fr;k € K)) € (Hom(H,G))%> and any f € Hom(H,G),
rA(fr; k € Ky) = f iff the implication qx(yx; k € K»)) =y = pa(fe(ye); k €
K») = fly) is satisfied.

Proof. For IPal, and ICDPal, the statement follows from (7], for IDPal,
and IWdPal, it follows from (8], and for ILdPal,, ILaPal, and IWlaPal,
it follows from [9]. We will prove the statement for ISdPal.. As ISdPal, is
a full subcategory of the cartesian closed category IDPal,, it is sufficien to
show that the class of objects of ISdPal, is closed under formation of func-
tion spaces in IDPal,. So, let G = (X, (px; A € 2)) and H = (Y, (gx; A € £2))
be objects of ISdPal, and let G¥ = (Hom(H, G), (ra; A € 2)) be their func-
tion space in IDPal.. Let A € 2 and f € Hom(H, G) be arbitrary elements
and let M = (fu;k € Kx,l € K,) be an ry-operational matrix. If M is
rarxa-operational with ryr (M) = f, then the diagonality of GH implies
that M is diagonally r)-operational with A, (M) = f. Conversely, let M
be diagonally rx-operational with A,, (M) = f, and for each k € K put
fe = T,\(fkl;l S K,\). Let (yk;k € K,\) < qu q,\(yk;k € K,\) =y.As His
idempotent, for any k € K we have gx(yi;! € K)) = yr whenever y; = yi
for each ! € K. Thus, pa(fri;! € K»)) = fx(yx) for each k € K and the ma-
trix M* = (fri(ye); k € Ka,l € ky) is pa-operational. Further, A, (M) =
Ta(ferik € K») = f implies A, (M*) = pr(frx(yr)ik € Ki) = f(y).
Hence M™ is diagonally py-operational. Since G is strongly diagonal, M* is
papx-operational with papa(M*) = f(y). As papa(M*) = pa(pa(fu(ye); ! €
K,\);’C € K,\) = p,\(fk(yk);k < K)\), we have T,\(fk;k S K)‘) = f Con-
sequently, rara(M) = ra(ra(fi;l € Kajk € Ky) = ma(fisk € Ky) = f.
Hence M is rary-operational with ry7y(M) = f. We have shown that GH
is strongly diagonal. Therefore ISdPal; is cartesian closed.
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CrLAIM. In IDPal,, ICDPal,, ISdPal, and IWdPal, each function space G¥
is a relative subalgebra of the direct product G'¥!. In ICDPal, each function
space G¥ is even a closed subalgebra of the direct product G!H!.

Proof. In [8] it is shown that in IWdPal, each function space G¥ is a
relative subalgebra of the direct product G!H!. So the same is valid also
for IDPal, and ICDPal, because these categories are full subcategories of
IWdPal, having inherited function spaces. The statement that in ICDPal,
each function space G¥ is a closed subalgebra of G!f! is also proved in [8].

Further initially structured and cartesian closed full subcategories of Pal,
can be obtained as intersections of those from the Theorem.
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