Zbigniew Binderman

ON RIGHT INVERSES FOR FUNCTIONAL SHIFTS

In memory of Professor Siegfried Prössdorf

Abstract. The paper is concerned with functional shifts and functional R-shifts for a right invertible operator D (cf. [30], [15]). Conditions for different kinds of invertibility of these functional shifts on a set of all D-monomials are established.

0. Let X be a linear space over the field \mathbb{C} of the complex numbers. Denote by L(X) the set of all linear operators with domains and ranges in X and by $L_0(X)$ the set of those operators from L(X) which are defined on the whole space X. By R(X) we denote the set of all right invertible operators belonging to L(X), by \mathfrak{R}_D the set of all right inverses of a $D \in R(X)$, and by \mathfrak{F}_D the set of all initial operators for D, i.e.

$$\mathfrak{R}_D:=\{R\in L_0(X):\ DR=I\},$$

$$\mathfrak{F}_D:=\{F\in L_0(X):\ F^2=F,\ FX=\ker D\ \mathrm{and}\ \exists R\in\mathfrak{R}_D\ FR=0\}.$$

In the sequel we shall assume that dim ker D > 0, i.e. D is right invertible but not invertible. If we know at least one right inverse R, we can determine the set \mathfrak{R}_D of all right inverses and the set \mathfrak{F}_D of all initial operators for a given $D \in R(X)$. The theory of right invertible operators and its applications S is presented in detail by D. Przeworska-Rolewicz in the books [24], [30].

Here and in the sequel we admit that $0^0 := 1$. We also write: \mathbb{N} for the set of all positive integers and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

¹⁹⁹¹ Mathematics Subject Classification: 47B99, 47EO5, 47G99, 34A20.

Key words and phrases: right invertible operators, functional shifts, functional R-shifts, Pommiez operator, backward shift operator.

This paper has been presented at the International Conference "Algebraic Analysis and Related Topics", held in Banach Center, Warsaw, September 21–25, 1999.

For a given operator $D \in R(X)$, $R \in \mathfrak{R}_D$ we shall denote (cf. [24], [25], [32]):

• the space of smooth elements by

$$(0.1) D_{\infty} := \bigcap_{k \in \mathbb{N}_0} D_k,$$

where $D_0 := X$, $D_k := \operatorname{dom} D^k (k \in \mathbb{N})$,

• the space of *D*-polynomials by

(0.2)
$$S := \bigcup_{i=1}^{\infty} \ker D^{i} = \inf\{R^{k}z : z \in \ker D, k \in \mathbb{N}_{0}\},$$

• the space of exponentials by

(0.3)
$$E := \bigcup_{\lambda \in \mathbb{C}} \ker(D - \lambda I),$$

ullet the space of D-analytic elements in a complete linear metric space X by

$$(0.4) \quad A_R(D) := \left\{ x \in D_\infty : x = \sum_{n=0}^\infty R^n F D^n x \right\} = \left\{ x : \lim_{n \to \infty} R^n D^n x = 0 \right\},$$

where F is an initial operator for D corresponding to an $R \in \mathfrak{R}_D$,

(0.5)
$$A(D) := \bigcup_{R \in \mathfrak{R}_{D}} A_{R}(D),$$

• in a complete linear metric space with a p-homogeneous F-norm $\|\ \|$ (0 by

$$(0.6) X_1(D) := \left\{ x \in D_\infty : \limsup_{n \to \infty} \sqrt[n]{||D^n x||} \le 1 \right\},$$

and

(0.7)
$$X_2(D) := \{x \in D_\infty : \{D^n x\} \text{ is bounded}\}.$$

In the sequel K will stand for a ring $K_r := \{h \in \mathbb{C} : 0 < |h| < r\}$, $0 < r \le +\infty$ $(K_\infty = \mathbb{C} \setminus \{0\})$. Denote by $H(\Omega)$ the class of all functions analytic on a set $\Omega \subseteq \mathbb{C}$. Suppose that a function $f \in H(K)$ has the following expansion

(0.8)
$$f(h) = \sum_{k=-n}^{\infty} a_k h^k \text{ for all } h \in K, n \in \mathbb{N}_0.$$

For an operator $D \in R(X)$ we define the set

$$(0.9) \quad S_f(D) := \Big\{ x \in D_\infty : \sum_{k=0}^\infty a_k h^k D^k x \text{ is convergent for all } h \in K \Big\}.$$

DEFINITION 0.1 (of. [12], [15]). Suppose that $D \in R(X)$, ker $D \neq \{0\}$ and $R \in \mathfrak{R}_D$ is arbitrarily fixed. A family $T_{f,K} = \{T_{f,h}\}_{h \in K} \subset L_0(X)$ is said to be a family of functional R-shifts for the operator D induced by the function f and R if

$$(0.10) \ T_{f,h}x = \sum_{k=0}^{\infty} a_k h^k D^k x + \sum_{k=1}^{n} a_{-k} h^{-k} R^k x \quad \text{ for all } h \in K; \ x \in S_f(D),$$

where $f, S_f(D)$ are determined by formulae (0.8), (0.9), respectively.

Functional R-shifts are induced by functions having a removable singularities at h=0 and they have been called functional shifts (cf. [8], [30]). Obviously, it this case $f(h)=\sum_{k=0}^{\infty}a_kh^k$ for all $h\in K$ and formula (0.10) has the form

$$(0.11) T_{f,h}x = \sum_{k=0}^{\infty} a_k h^k D^k x \text{for all } h \in K; \ x \in S_f(D).$$

The definition of functional shifts is independent on $R \in \mathfrak{R}_D$. The theory of functional and sequential shifts induced by a right invertible is presented in detail in the author's works [1]–[11], [14], [30]. The theory of R-functional shifts induced by an operator $D \in R(X)$, $R \in \mathfrak{R}_D$ and a function $f \in H(K)$ having an isolated singularity at the point h = 0 can be found in [12], [13], [15], [16]. For the entire collection of shifts for right invertible operators see R. Przeworska-Rolewicz [23]-[31] and [17], [18].

THEOREM 0.1 (cf. [30]). Suppose that $D \in R(X)$, dim ker D > 0 and $T_{f,K} = \{T_{f,K}\}_{h \in K}$ is a family R-functional shifts for D induced by $f \in H(K)$. Then

(i)
$$S \subset S_f(D)$$
,

$$\ker(D - \lambda I) \subset S_f(D) \text{ for all } \lambda : \lambda K \subset K,$$

 $E \subset S_f(D) \text{ for } K = K_{\infty},$

where S, E are defined by formulae (0.2), (0.3), respectively;

(ii) if X is a complete linear metric space, $T_{f,K}$ is a family of continuous functional shifts, then

$$A(D) \subset S_f(D)$$
 if D is closed, $A_{R_1}(D) \subset S_f(D)$ if $R_1 \in R_D$ is continuous,

where A(D), $\mathbf{A}_{R_1}(D)$ are defined by formulae (0.4), (0.5), respectively;

(iii) if X is a complete linear metric space with p-homogeneous F-norm (0 then

$$X_1(D) \subset S_f(D)$$
 for $K = K_1$,
 $X_2(D) \subset S_f(D)$ for $K = K_{\infty}$,

where $X_1(D)$, $X_2(D)$ are defined by formulae 0.6, 0.7, respectively, $S_f(D)$ is determined by formula 0.9.

THEOREM 0.2 (cf. [30]). Let $D \in R(X)$, ker $D \neq \{0\}$ and let either $K' = K_1 \cup \{0\}$ or $K' = \mathbb{C}$. Let T(K') be the set of all families of functional shifts for D induced by functions analytic on the set K', i.e. $T(K') = \{T_{g,K'} : g \in H(K')\}$, where $T_{g,K'} = \{T_{g,h}\}_{h \in K'}$, $T_{g,0} := g(0)I$. Write

$$T_Y(K') = T(K')|_Y = \{T_{g,K'}|_Y : g \in H(K')\} \text{ for } Y \subset \bigcap_{g \in H(K')} S_g(D).$$

If Y is the set S of all D-monomials then

(i) the set $T_S(K')$ is a commutative algebra with the operations

$$T_{f+g,K'} = T_{f,K'} + T_{g,K'}, \quad T_{\alpha f,K'} = \alpha T_{f,K'}, \quad T_{f,K'} T_{g,K'} = T_{fg,K'},$$
where $f, g \in H(K'), \alpha \in \mathbb{C}$;

(ii) the algebras H(K') and $T_S(K')$ are isomorphic and $T: f \to T_{f,K'}|_S$ is an algebraic isomorphism from H(K') onto $T_S(K')$.

REMARK 0.1 (cf. [30]). Suppose that all assumptions of Theorem 0.2 are satisfied. Results similar to Theorem 0.2 for the set $T_S(K')$ hold for sets $T_Y(K')$, where

$$Y = \begin{cases} \ker(D - \lambda I) \neq 0 & \text{for } \lambda \in K', \\ E & \text{for } K' = \mathbb{C}, \\ S(D) = \bigcap_{g \in H(K')} S_g^{\infty}(D), \\ A_R(D) & \text{if } R \in \mathfrak{R}_D \text{ is continuous,} \end{cases}$$

$$S_f^{\infty}(D) = \left\{ x \in D^{\infty} : \sum_{k=0}^{\infty} a_k^* h^k D^{k+n} x \text{ is convergent for all } h \in K', \ n \in \mathbb{N}_0 \right\}.$$

1. In this section, we shall assume that X is a complete linear metric space, $K = K_1$ or $K = K_{\infty}$. Let $D \in R(X)$, $\ker D \neq \{0\}$ and $T_{f,K} = \{T_{f,h}\}_{h \in K}$ be a family of functional R-shifts for D induced by a function $f \in H(K)$ and $R \in \mathfrak{R}_D$.

We consider the following equation

$$(1.1) T_{f,h}x = y, h \in K; y \in X.$$

From Theorem 0.2 we can conclude

THEOREM 1.1. Suppose that $D \in R(X)$, $\ker D \neq \{0\}$ and $T_{f,K} = \{T_{f,h}\}_{h \in K}$, $T_{1/f,K} = \{T_{1/f,h}\}_{h \in K}$ are families of functional shifts for D induced by functions $f, 1/f \in H(K \cup \{0\})$ respectively. If $y \in S$ then

(i) the unique solution of equation (1.1) which belongs to the set S has the form

$$(1.2) x = T_{1/f,h}y, \quad h \in K;$$

(ii) every solution of equation (1.1) is of the form

$$(1.3) x = T_{1/f,h}y + w,$$

where $w \in \ker T_{f,h}$ is arbitrary.

EXAMPLE 1.1. Let X = H(U), where U denotes the unit disk. The set H(U) is a Fréchet space with the topology of uniform convergence on compact sets. We define the operators D, R as follows

$$(Dx)(t) = \frac{x(t) - x(0)}{t}; \quad (Rx)(t) = tx(t); \quad x \in X, \quad t \in U,$$

where

$$\frac{x(t) - x(0)}{t} \bigg|_{t=0} := x'(0).$$

The operators D, R are uniquely determined on the whole space X, i.e. $D, R \in L_0(X)$, dim ker D = 1, codim RX = 1 (cf. [21]). The operator D is called a Pommiez operator or a backward shift operator (cf. [22], [19], [20]). We can prove that $D \in R(X)$, $R \in \mathfrak{R}_D$ and

$$S = \lim\{R^k t : k = 0, 1, 2, \dots\} = \lim\{1, t, t^2, \dots\}.$$

Evidently, $\bar{S} = X$.

We take $f(h) = \frac{1}{1-h} \in X$ then $1/f(h) = 1 - h \in X$. Let $T_{f,U} = \{T_{f,h}\}_{h\in U}$, $T_{1/f,U} = \{T_{1/f,h}\}_{h\in U}$ be families of functional shifts for the operator D induced by f, 1/f, respectively. Then for $x \in X$, $h \in U$ (cf. [8]).

$$(T_{f,h}x)(t) = \sum_{n=0}^{\infty} h^n(D^n x)(t) = \begin{cases} \frac{tx(t) - hx(h)}{t - h} & \text{for } t \neq h, \\ x(h) + hx'(h) & \text{for } t = h, \end{cases}$$
$$(T_{1/f,h}x)(t) = [(I - hD)x](t) = \begin{cases} x(t) - h\frac{x(t) - x(0)}{t} & \text{for } t \neq 0, \\ x(0) - hx'(0) & \text{for } t = 0. \end{cases}$$

Theorem 1.1 implies that the equations

$$(1.4) T_{f,h}x = y, y \in X; h \in U,$$

$$(1.5) T_{1/f,h}x = u, \ u \in X; \ h \in U,$$

have the unique solutions for $y, u \in S$ which are determined by the formulae

(1.6)
$$x(t) = \begin{cases} y(t) - h \frac{y(t) - y(0)}{t} & \text{for } t \neq 0, \\ y(0) - h y'(0) & \text{for } t = 0, \end{cases}$$

(1.7)
$$x(t) = \begin{cases} \frac{tu(t) - hu(h)}{t - h} & \text{for } t \neq h, \\ u(h) + hu'(h) & \text{for } t = h, \end{cases}$$

respectively.

Observe that for $h \in U$ we have $\ker T_{f,h} = \ker T_{1/f,h} = \{0\}$. This implies that equations (1.4), (1.5) with $y, u \in X$ have the unique solutions which are determined by formulae (1.6), (1.7), respectively.

EXAMPLE 1.2 (cf. [9], [30]). Let X, U and f be defined as in Example 1.1. Let $D = \frac{d}{dt}$. Then $R = \int_0^t \in \mathfrak{R}_D$, $S = \lim\{R^k 1 : k \in \mathbb{N}_0\} = \lim\{1, t, \frac{t^2}{2!}, \frac{t^3}{3!}, \dots\}$ and $\bar{S} = X$. Let $T_{f,U} = \{T_{f,h}\}_{h \in U}, T_{1/f,U} = \{T_{1/f,h}\}_{h \in U}$ be families of functional shifts for the operator D induced by the functions f, 1/f respectively. Then for all $x \in S$, $h \in U$ the following formulae holds:

$$(T_{f,h}x)(t) = \sum_{n=0}^{\infty} h^n(D^nx)(t) = \sum_{n=0}^{\infty} h^nx^{(n)}(t),$$

and

$$(T_{1/f,h}x)(t) = [(I - hD)x](t) = x(t) - hx'(t),$$

respectively.

By Theorem 1.1 we obtain that the equations of the form (1.4) (1.5) have the unique solutions for $y, u \in S$, which are determined by the formulae

$$x(t) = y(t) - hy'(t), \quad h \in U,$$

and

$$x(t) = \sum_{n=0}^{\infty} h^n u^{(n)}(t), \quad h \in U,$$

respectively.

Observe that

$$\ker T_{1/f,h} = \begin{cases} \{0\} & \text{for } h = 0, \\ \{Ce^{t/h}\} & \text{for } 0 \neq h \in U, \end{cases}$$

where C denote arbitrary scalars. Clearly, for $0 \neq h \in U$

$$\ker T_{1/f,h} \subset S_{1/f} \setminus S$$
 and $\ker T_{1/f,h} \cap S_f(D) = \{0\}.$

Theorem 1.1 implies that every solution of equation (1.5) with $u \in S$, $0 \neq h \in U$ is of the form

$$x(t) = Ce^{t/h} + \sum_{n=0}^{\infty} h^n u^{(n)}(t),$$

where C is an arbitrary scalar.

Obviously, we have also that the formula

$$x(t) = Ce^{t/h} - \frac{1}{h}e^{t/h} \int_{0}^{t} e^{-s/h} u(s) ds,$$

where, as above, C is an arbitrary scalar, determines all solution of equation (1.5) with $u \in X$ and $0 \neq h \in U$.

Moreover, this shows that the family $T_{f,U} = \{T_{f,h}\}_{h \in U}$, where $T_{f,h}$ is defined as follows $T_{f,0} = I$,

$$(T_{f,h}x)(t) = \Big(\sum_{n=0}^{\infty} h^n x^{(n)}(0)\Big) e^{t/h} - \frac{1}{h} e^{t/h} \int_{0}^{t} e^{-s/h} x(s) ds \quad 0 \neq h \in U; \ x \in S$$

is a family of functional shifts for D = d/dt induced by the function $f = (1-h)^{-1}$.

2. In this section we assume that X is a complete linear metric space. Let a function $f \in H(K)$, where K denotes either the ring K_1 or the ring $K_{\infty} = \mathbb{C} \setminus \{0\}$, has the expansion

(2.1)
$$f(h) = \sum_{k=-n}^{\infty} a_k h^k; \quad h \in K,$$

where $a_{-n} \neq 0$, i.e. f has a pole of order $n \in \mathbb{N}$ at h = 0.

PROPOSITION 2.1. Suppose that $D \in R(X)$, dim ker D > 0 and $T_{f,K} = \{T_{f,h}\}_{h \in K}$, $W_{f,K} = \{W_{f,h}\}_{h \in K}$ are families of functional R-shifts for D and f, induced by $R_1, R_2 \in \mathfrak{R}_D$, respectively. Then for $h \in K$

$$(T_{f,h}-W_{f,h})(S_f(D))\subset \ker D^n$$
,

where the set $S_f(D)$ is defined by formula (0.9). In other words: A difference of two families of functional R-shifts for a given element $x \in S_f(D)$ is a subset of the set of constants for D^n .

Proof. Let $x \in S_f(D)$; $h \in K$ be arbitrarily fixed. Then by the definition we have

$$T_{f,h}x - W_{f,h}x = \sum_{k=1}^{n} a_{-k}h^{-k}(R_1^k x - R_2^k x).$$

Hence,

$$D^{n}(T_{f,h} - W_{f,h})x = \sum_{k=1}^{n} a_{-k}h^{-k}(D^{n}R_{1}^{k} - D^{n}R_{2}^{k})x$$
$$= \sum_{k=1}^{n} a_{-k}h^{-k}(D^{n-k} - D^{n-k})x = 0.$$

Let $T_{f,K} = \{T_{f,h}\}_{h \in K}$, $T_{g,K} = \{T_{g,h}\}_{h \in K}$ be families of functional R-shifts for D, R induced by functions f, g, respectively, where $g \in H(K)$ has a pole of order $m \in \mathbb{N}$ at h = 0. We can show (cf. [15]) that in general, on the set S, we have

$$T_{f,h}T_{g,h} \neq T_{g,h}T_{f,h}, T_{f,h}T_{g,h} \neq T_{fg,h} \text{ for } h \in K.$$

In connection with the above, we suppose that the function $1/f \in H(K)$, where $f \in H(K)$ is determined by formula (2.1). In this case 1/f has the following expansion

$$(2.2) 1/f(h) = \sum_{k=n}^{\infty} b_k h^k; \quad h \in K,$$

where the coefficients b_k $(n \leq k \in \mathbb{N})$ satisfies the equations

(2.3)
$$a_{-n}b_n = 1,$$

$$\sum_{k=n}^{l+n} a_{l-k}b_k = 0 \text{ for } l \in \mathbb{N}.$$

In order to show the right invertibility of the operators $T_{1/f,h}$ $(h \in K)$ on the set S, we will prove the next two propositions.

PROPOSITION 2.2. Suppose that $D \in R(X)$ and an $R \in \mathfrak{R}_D$ is arbitrarily fixed. Let $T_{f,K} = \{T_{f,h}\}_{h \in K}$ be a family of functional R-shifts for the operator D induced by the function $f \in H(K)$ and R. Let $T_{1/f,K} = \{T_{1/f,h}\}_{h \in K}$ be a family of functional shifts for D induced by the function $1/f \in H(K)$. Then on the set S

(2.4)
$$T_{1/f,h}T_{f,h} = I \quad \text{for all } h \in K.$$

Proof. Let $h \in K$, $x \in S$ be arbitrarily fixed. This implies that there exists a number $n \leq q \in \mathbb{N}$ such that $D^{q+1}x = 0$. We have

$$(T_{1/f,h}T_{f,h})x = T_{1/f,h}(T_{f,h}x)$$

$$= \sum_{k=n}^{\infty} b_k h^k D^k \Big(\sum_{j=1}^n a_{-j} h^{-j} R^j x + \sum_{j=0}^{\infty} a_j h^j D^j x \Big)$$

$$= \sum_{k=n}^{\infty} \sum_{j=1}^n a_{-j} b_k h^{k-j} D^{k-j} x + \sum_{k=n}^{\infty} \sum_{j=0}^{\infty} a_j b_k h^{k+j} D^{k+j} x.$$

Our assumptions and equations (2.3) together imply

$$\begin{split} \sum_{k=n}^{\infty} \sum_{j=1}^{n} a_{-j} b_{k} h^{k-j} D^{k-j} x \\ &= \sum_{j=1}^{n} \sum_{k=n}^{q+n} a_{-j} b_{k} h^{k-j} D^{k-j} x = \sum_{j=1}^{n} \sum_{l=n-j}^{q+n-j} a_{-j} b_{l+j} h^{l} D^{l} x \\ &= \sum_{j=1}^{n} \sum_{l=n-j}^{q} a_{-j} b_{l+j} h^{l} D^{l} x = \sum_{r=0}^{n-1} \sum_{l=r}^{q} a_{r-n} b_{l+n-r} h^{l} D^{l} x \\ &= \sum_{j=1}^{n-1} \left(\sum_{l=r}^{n-1} a_{r-n} b_{l+n-r} h^{l} D^{l} x + \sum_{l=n}^{q} a_{r-n} b_{l+n-r} h^{l} D^{l} x \right) \\ &= \sum_{l=0}^{n-1} \left(\sum_{r=0}^{l} a_{r-n} b_{l+n-r} \right) h^{l} D^{l} x + \sum_{l=n}^{q} \left(\sum_{r=0}^{n-1} a_{r-n} b_{l+n-r} \right) h^{l} D^{l} x \\ &= a_{-n} b_{n} x + \sum_{l=n}^{q} \left(\sum_{r=0}^{n-1} a_{r-n} b_{l+n-r} \right) h^{l} D^{l} x \\ &= x + \sum_{l=n}^{q} \left(\sum_{r=0}^{n-1} a_{r-n} b_{l+n-r} \right) h^{l} D^{l} x, \\ \sum_{k=n}^{\infty} \sum_{j=0}^{\infty} a_{j} b_{k} h^{k+j} D^{k+j} x \\ &= \sum_{k=n}^{\infty} \sum_{j=0}^{q} a_{j} b_{k} h^{k+j} D^{k+j} x = \sum_{k=n}^{q} \sum_{j=0}^{q} a_{j} b_{k} h^{k+j} D^{k+j} x \\ &= \sum_{k=n}^{q} \sum_{l=k}^{n} a_{l-k} b_{k} h^{l} D^{l} x = \sum_{k=n}^{q} \sum_{l=k}^{q} a_{l-k} b_{k} h^{l} D^{l} x \\ &= \sum_{l=n}^{q} \left(\sum_{k=n}^{l} a_{l-k} b_{k} \right) h^{l} D^{l} x. \end{split}$$

Hence,

$$(T_{1/f,h}T_{f,h})x = x + \sum_{l=n}^{q} \left(\sum_{r=0}^{n-1} a_{r-n}b_{l+n-r}\right) h^l D^l x + \sum_{l=n}^{q} \left(\sum_{k=n}^{l} a_{l-k}b_k\right) h^l D^l x$$

$$= x + \sum_{l=n}^{q} \left(\sum_{r=0}^{n-1} a_{r-n}b_{l+n-r} + \sum_{k=n}^{l} a_{l-k}b_k\right) h^l D^l x$$

$$= x + \sum_{l=n}^{q} \left(\sum_{k=l+1}^{l+n} a_{l-k}b_k + \sum_{k=n}^{l} a_{l-k}b_k\right) h^l D^l x$$

$$= x + \sum_{l=n}^{q} \left(\sum_{k=n}^{l+n} a_{l-k}b_k\right) h^l D^l x = x.$$

Proposition 2.3. Suppose that all assumptions of Proposition 2.2 are satisfied. Then on the set S

$$(2.5) T_{f,h}T_{1/f,h} = I - \sum_{k=n}^{\infty} \sum_{j=1}^{n} \sum_{n=0}^{j-1} a_{-j}b_k h^{k-j} R^p F D^{p+k-j}, \quad h \in K,$$

where $F \in \mathfrak{F}_D$ is an initial operator for D corresponding to the operator $R \in \mathfrak{R}_D$.

Proof. Let $h \in K$; $x \in S$ be arbitrarily fixed and let $D^{q+1}x = 0$ for a $n < q \in \mathbb{N}$. Write

$$T_{f,h}T_{1/f,h}x = T_{f,h}(T_{1/f,h}x)$$

$$= \left(\sum_{j=1}^{n} a_{-j}h^{-j}R^{j} + \sum_{j=0}^{\infty} a_{j}h^{j}D^{j}\right)\left(\sum_{k=n}^{\infty} b_{k}h^{k}D^{k}x\right)$$

$$= \sum_{j=1}^{n} a_{-j}h^{-j}R^{j}\left(\sum_{k=n}^{q} b_{k}h^{k}D^{k}x\right) + \sum_{j=0}^{\infty} a_{j}h^{j}D^{j}\left(\sum_{k=n}^{q} b_{k}h^{k}D^{k}x\right)$$

$$= \sum_{j=1}^{n} \sum_{k=n}^{q} a_{-j}b_{k}h^{k-j}R^{j}D^{k}x + \sum_{j=0}^{\infty} \sum_{k=n}^{q} a_{j}b_{k}h^{k+j}D^{k+j}x$$

$$= \sum_{j=1}^{n} \sum_{k=n}^{q+n} a_{-j}b_{k}h^{k-j}R^{j}D^{k}x + \sum_{j=0}^{q} \sum_{k=n}^{q} a_{j}b_{k}h^{k+j}D^{k+j}x$$

$$= \sum_{j=1}^{n} \sum_{k=n}^{q+n} a_{-j}b_{k}h^{k-j}R^{j}D^{j}D^{k-j}x + \sum_{k=n}^{q} \sum_{j=0}^{q} a_{j}b_{k}h^{k+j}D^{k+j}x.$$

By the Taylor Expansion Formula for right invertible operators (cf. [24]) and equations (2.3) we obtain

$$\begin{split} T_{f,h}T_{1/f,h}x \\ &= \sum_{j=1}^{n} \sum_{k=n}^{q+n} a_{-j}b_{k}h^{k-j} \Big(I - \sum_{p=0}^{j-1} R^{p}FD^{p}\Big)D^{k-j}x + \sum_{l=n}^{q} \Big(\sum_{k=n}^{l} a_{l-k}b_{k}\Big)h^{l}D^{l}x \\ &= x + \sum_{l=n}^{q} \Big(\sum_{r=0}^{n-1} a_{r-n}b_{l+n-r}\Big)h^{l}D^{l}x - \sum_{k=n}^{q+n} \sum_{j=1}^{n} \sum_{p=0}^{j-1} a_{-j}b_{k}h^{k-j}R^{p}FD^{p+k-j}x \\ &+ \sum_{l=n}^{q} \Big(\sum_{k=n}^{l} a_{l-k}b_{k}\Big)h^{l}D^{l}x \\ &= x + \sum_{l=n}^{q} \Big(\sum_{k=n}^{l+n} a_{l-k}b_{k}\Big)h^{l}D^{l}x - \sum_{k=n}^{q+n} \sum_{j=1}^{n} \sum_{p=0}^{j-1} a_{-j}b_{k}h^{k-j}R^{p}FD^{p+k-j}x \\ &= x - \sum_{k=n}^{q+n} \sum_{j=1}^{n} \sum_{p=0}^{j-1} a_{-j}b_{k}h^{k-j}R^{p}FD^{p+k-j}x, \end{split}$$

where F is an initial operator for D corresponding to R.

Proposition 2.2 and Proposition 2.3 together imply

THEOREM 2.1. Suppose that all assumptions of Proposition 2.2 are satisfied and $F \in \mathfrak{F}_D$ is an initial operator for D corresponding to the operator $R \in \mathfrak{R}_D$. Then

- (i) the operator $T_{1/f,h}$ ($h \in K$) is right invertible on the set S and the operator $T_{f,h}$ is a right inverse of $T_{1/f,h}$,
 - (ii) the operator

(2.6)
$$F_{1/f,h} := \sum_{k=n}^{\infty} \sum_{j=1}^{n} \sum_{p=0}^{j-1} a_{-j} b_k h^{k-j} R^p F D^{p+k-j}, \quad h \in K$$

is an initial operator $T_{1/f,h}$ corresponding to the operator $T_{f,h}$.

REMARK 2.1. Suppose that all assumptions of Theorem 2.1 are satisfied. Then the operator $F_{1/f,h}$ $(h \in K)$ defined by formula (2.6) preserve constants of the operator D, i.e.

$$F_{1/f,h}z = z$$
 for all $z \in \ker D$, $h \in K$.

Theorem 2.1. implies (cf. [24]).

THEOREM 2.2. Suppose that all assumptions of Proposition 2.2 are satisfied. Then

(i) the equation

$$T_{f,h}x = y, y \in S; h \in K$$

has the unique solution of the form

$$x = T_{1/f,h}y;$$

(ii) every solution of the equation

$$T_{1/f,h}x = y, y \in S; h \in K$$

is of the form

$$(2.7) x = T_{f,h}y + v,$$

where $v \in \ker T_{1/f,h}$ is arbitrary and $T_{f,K} = \{T_{f,h}\}_{h \in K}$ is induced by arbitrarily fixed $R \in \mathfrak{R}_D$.

REMARK 2.2. The inclusion $\ker D^n \subset \ker T_{1/f,h}$, and Proposition 2.1 imply that a change of the right inverse $R \in \mathfrak{R}_D$ implies only a change of the constant v (which is arbitrarily fixed) in formula (2.7).

EXAMPLE 2.1. Suppose that X, K, D, R are defined as in Example 1.1. Take f(h) = (1 - h)/h. Then 1/f(h) = h/(1 - h) and $f \in H(K)$, $1/f \in H(K \cup \{0\})$. We have

$$f(h) = \frac{1}{h} - 1$$
, $1/f(h) = h + h^2 + \cdots$ for $h \in K$.

The equality (cf. [8])

$$\sum_{n=0}^{\infty} h^n(D^n x)(t) = \begin{cases} (t-h)^{-1} (tx(t) - hx(h)) & \text{for } t \neq h, \\ x(h) + hx'(h) & \text{for } t = h, \ h \in K; \ x \in X \end{cases}$$

implies for $h \in K$; $x \in X$

$$\sum_{n=1}^{\infty} h^n(D^n x)(t) = \begin{cases} h \frac{x(t) - x(h)}{t - h} & \text{for } t \neq h, \\ h x'(h) & \text{for } t = h. \end{cases}$$

This proves that $S_{1/f}(D) = X$. Obviously, also $S_f(D) = X$.

Moreover, this shows that the families $T_{f,K} = \{T_{f,h}\}_{h \in K}$, $T_{1/f,K} = \{T_{1/f,h}\}_{h \in K}$, where $T_{f,h}, T_{1/f,h}$ are defined as follows

$$(T_{f,h}x)(t) = \frac{t-h}{h}x(t), \quad h \in K; \quad x \in X,$$

and

$$(T_{1/f,h}x)(t) = \begin{cases} h \frac{x(t) - x(h)}{t - h} & \text{for } t \neq h, \\ hx'(h) & \text{for } t = h, \end{cases} \quad h \in K; \ x \in X$$

are the unique family of functional R-shifts for D induced by the function f and the operator R and the unique family of functional shifts for D induced by the function 1/f, respectively.

For $h \in K$, $x \in X$ we have

$$(T_{f,h}T_{1/f,h}x)(t) = x(t) - x(h),$$

and

$$(T_{1/f,h}T_{f,h}x)(t) = x(t).$$

This implies that for $h \in K$ the operator $T_{1/f,h}$ is right invertible on X and $T_{f,h}$ is a right inverse of $T_{1/f,h}$. The operator

$$(F_{1/f,h}x)(t) = x(t) - (T_{f,h}T_{1/f}x)(t) = x(h), h \in K; x \in X$$

is the initial operator for $T_{1/f,h}$ corresponding to the operator $T_{f,h}$.

Evidently, the every solution of the equation

$$T_{1/f,h}x = y, y \in X; h \in K,$$

is of the form

$$x(t) = (T_{f,h}y)(t) + C = \frac{t-h}{h}y(t) + C,$$

where $C \in \mathbb{C}$ is arbitrary.

References

- [1] Z. Binderman, Complex R-shifts for right invertible operators, Demonstratio Math. 23 (1990), 1043-1053.
- [2] Z. Binderman, On some properties of complex R-shifts, Demonstratio Math. 25 (1992), 207-217.
- [3] Z. Binderman, Cauchy integral formula induced by right invertible operators, Demonstratio Math. 25 (1992), 671-690.
- [4] Z. Binderman, Functional shifts induced by right invertible operators, Math. Nachr. 157 (1992), 211-224.
- [5] Z. Binderman, Periodic solutions of equations of higher order with a right invertible operator induced by functional shifts, Ann. Univ. M. Curie-Sklodowska 46 (1993), 9-22.
- Z. Binderman, Some properties of operators of complex differentiation and shifts,
 Sci. Bull. Lodz. Technical Univ. Math. 24 (1993), 5-18.
- [7] Z. Binderman, On periodic solutions of equations with right operators induced by functional shifts, Demonstratio Math. 26 (1993), 535-543.
- [8] Z. Binderman, A unified approach to shifts induced by right invertible operators, Math. Nachr. 161 (1993), 239-252.
- [9] Z. Binderman, On some functional shifts induced by operators of complex differentiation, Opuscula Math. 14 (1993), 45-57.
- [10] Z. Binderman, Some remarks on sequential shifts induced by right invertible operators, Funct. Approx. 22 (1993), 71-84.
- [11] Z. Binderman, Applications of sequential shifts to an interpolation problem, Collect. Math. 44 (1993), 47-57.
- [12] Z. Binderman, Some fundamental properties of functional R-shifts for right invertible operators, Comm. Math. 33 (1993), 9-22.
- [13] Z. Binderman, A note of functional R-sfifts for right invertible operators, Discuss. Math. 14 (1994), 63-76.

- [14] Z. Binderman, On summation formulas induced by functional shifts of right invertible operators, Demonstratio Math. 28 (1995), 301-314.
- [15] Z. Binderman, On isomorphisms of spaces of functional R-shifts for right invertible operators, in: Different Aspects of Differentiability, Proc. Intern. Conf. Warszawa, September 1993. Ed. D. Przeworska-Rolewicz. Dissertations Math. 340, Warszawa, 1995, 23-36.
- [16] Z. Binderman, Remarks on functional R-shifts for right invertible operators, in: Proc. Intern. Conf., Different Aspects of Differentiability II. Warszawa, September 1995. Integral Transforms and Special Functions, 1-2, vol 4, 1996, 39-48.
- [17] Z. Binderman and D. Przeworska-Rolewicz, The limit property and perturbations of functional shifts, Demonstratio Math. 28 (1995), 835-851.
- [18] Z. Binderman and D. Przeworska-Rolewicz, Almost quasinilpotent right inverses, In: Proc. Intern. Conf. Different Aspects of Differentiability II. Warszawa, September 1995. Integral Transforms and Special Functions, 1-2, vol 4, 1996, 23-38.
- [19] I. H. Dimovski Convolutional Calculus, Kluwer Acad. Publishers, Dordrecht, 1990, (1st. ed. Publish. House of the Bulg. Acad. Sci., Sofia), 1982.
- [20] R.G. Douglas and H.S. Shapiro and A.L.Shields, Cyclic vectors and invariant subspaces for the bacward shift operator, Ann. 1' Inst. Fourier 20, 1 (1970), 37-76.
- [21] M.K. Fage and N.I. Nagnibida, An Equivalence Problem of Ordinary Linear Differential Operators, Nauka, Novosibirsk, 1987 (In Russian).
- [22] N. Linchuk, Representation of commutants of the Pommiez operator and their applications, Mat. Zametki 44 (1988), 794-802 (in Russian).
- [23] D. Przeworska-Rolewicz, Shifts and Periodicity for Right Invertible Operators Research Notes in Mathematics, vol 43, Pitman Avanced Publishing Program, Boston-London-Melbourne, 1980.
- [24] D. Przeworska-Rolewicz, Algebraic Analysis, PWN-Polish Scientific Publishers and D. Reidel. Warszawa-Dordrecht, 1988.
- [25] D. Przeworska-Rolewicz, Spaces of D-paraanalytic Elements, Dissertationes Math. 302, Warszawa, 1990.
- [26] D. Przeworska-Rolewicz, True shifts, J. Math. Anal. Appl. 170 (1992), 27-48.
- [27] D. Przeworska-Rolewicz, The operator $\exp(hD)$ and its inverse formula, Demonstratio Math. 26 (1993), 545-552.
- [28] D. Przeworska-Rolewicz, Functional stability of linear systems, Demonstratio Math. 28 (1995), 449-464.
- [29] D. Przeworska-Rolewicz, Conditions for interpolation by polynomials in right invertible operators to be admissible, Math. Balcanica 4, 9 (1995), 353-363.
- [30] D. Przeworska-Rolewicz, Logarithms and Antilogarithms, An Algebraic Approach with Appendix by Z. Binderman, Kluwer Acad. Publishers, Dordrecht, 1998.
- [31] D. Przeworska-Rolewicz, Isomorphisms preserving Leibniz condition, Fractional Calculus and Applied Analysis, vol 2, No 2, (1999), 149-161.
- [32] S. Rolewicz, Metric Linear Spaces, 2nd extended ed. PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht, 1985.

WARSAW UNIVERSITY OF AGRICULTURE

Nowoursynowska 166

02-787 WARSZAWA, POLAND

E-mail: binder@bri.kei.sggw.waw.pl