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ON VARIOUS INTEGRAL TRANSFORMATIONS 
OF T E M P E R E D ULTRADISTRIBUTIONS 

Abstrac t . We introduce and study Hermite expansions and various integral trans-
formations on the spaces S ' ( m p ) and of tempered ultradistributions of Beurling 
and Roumieu type. In particular, we investigate the Wigner distribution and the Fourier, 
Bargmann and Laplace transforms. 

1. Introduction 
Beurling and Roumieu ultradistribution spaces £>'(Mp)and P'{mp>, de-

fined in [3] and [31] for an arbitrary sequence (Mp) of positive numbers 
satisfying certain growth conditions, have been studied by many authors 
and various approaches have been used in the studies (see [3], [31], [4], [23], 
[10], [26]). The importance of the spaces of ultradistributions in the the-
ory of partial differential equations was acknowledged by Bjork in [4]. The 
approach of Komatsu (see [23]) was chosen in [25] and [30] for introducing 
and investigating the spaces and S'{mP} of Beurling and Roumieu 
tempered ultradistributions. From the results of [25], [24] as well as of the 
present paper it follows that the spaces of tempered ultradistributions and 
the integral transformations on them are natural generalizations of the space 
of Schwartz's tempered distributions and the corresponding integral trans-
forms. In the special case, if the sequence (Mp) is of the form Mp — pap 

(p G No) with a > 1/2, the space S'(mp) coincides with the space con-
sidered in [28], while the space of test functions for the space 
the well known Gel'fand-Shilov space (see [14], [11], [12], [5], [22], [8]). 
Important subspaces of tempered ultradistributions were investigated and 
various representation theorems for ultradistributions were obtained in [12], 
[27], [7], [9] and [6]. 

2000 Mathematics Subject Classification: Primary 46F12; Secondary 44A15. 
This paper has been presented at the International Conference "Algebraic Analysis 

and Related Topics", held in Banach Center, Warsaw, September 21-25, 1999. 



642 A. Kamiriski , D. Per is ic , S. P i l ipov ic 

We shall introduce in this paper various integral transformations on 
the spaces S'̂ mP> and S'^Mp W tempered ultradistributions of Beurling and 
Roumieu type. The Hermite expansions of generalized functions (see [1], [2], 
[33]) can be regarded as a generalized integral transform in the sense of [33], 
Chapt. IX. We give the Hermite expansions of elements of the basic spaces 
for the spaces of tempered ultradistributions as well as of their duals. This 
enables us to obtain, in a similar way as it was done in [29], results about 
the Wigner distribution, the Fourier, Bargmann and Laplace transforms and 
the boundary value representation of elements of S'(Mp ) and S'{Mp}(cf. [5], 
[17], [18], [19]). 

For the sake of simplicity we give all definitions, theorems and proofs 
in the one-dimensional case, though the results can be generalized to the 
multi-dimensional case. 

Bjork studied in [4] the spaces S^ of so-called w-tempered distributions 
and Grudzinski in [16] investigated the spaces of tempered Beurling distri-
butions, being generalizations of the space of tempered distributions (see 
[3]). We use in this paper a different approach to Beurling's theory of gen-
eralized distributions and consider, in general, different problems than ones 
considered in [4] and [16] with the exception of the problem of characterizing 
the spaces by the Fourier transform. 

Janssen and van Eijndhoven ([19]) studied the Gel'fand-Shilov inductive 
limit type spaces W $ (see [15]), where M x is the Young conjugate of a 
suitable function M. They characterized them by the Fourier transform, 
the Wigner distribution, the Bargmann transform and by expansions into 
the Hermite series. In the special case where M(x) = ax 1 / 0 , x > 0 for 
1/2 < a < 1 and Mp — paP, p e N0, both the spaces and S ^ 
coincide with the Gel'fand-Shilov space In the general case, however, 
the spaces W^* and S* are different. In the case of the space W^*, the 
function M tends to infinity faster than x and slower than x2, and for S* 
the role of M plays the function associated to the sequence (Mp), which is 
increasing and tends to infinity slower than x. For example, if Mp = p\a with 
a > 1 for p € No, then M(x) ~ Cxx!a and Young's conjugate for such a 
function does not exist at all. Using a different method than Janssen and van 
Eijndhoven's, we prove that the theorems analogous to their results are also 
true for the spaces S* (* stands for (M p) or {Mp}) which are investigated 
in the paper. 

The paper is organized as follows. In section 2 we recall the basic notions 
of L2 theory and the definitions of test function spaces. In section 3 we state 
some structural theorems (Theorems 3.1 - 3.4). Theorem 3.2 is the main 
assertion of the paper and a tool for proving other results of this and the 
next section. The proof of Theorem 3.2 is given in [21] and, since it is long 
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and complicated, will be published in a separate paper. In section 4, we 
characterize spaces of test functions by the Fourier and Laplace transforms. 

In [20], we shall study the Hilbert transform and, more generally, singular 
integral operators on the spaces of tempered ultradistributions of Beurling 
and Roumieu type. 

2. Notation 
The sets of non-negative integers, positive integers, real, complex and 

complex numbers with positive imaginary parts are denoted by No, N, R , 
C and C+, respectively. 

The letter C (without super- or subscript) denotes a positive constant, 
not necessarily the same at every occurrence. We denote by 7Z a family of 
positive sequences which increase to infinity. This set is partially ordered 
and directed by the relation rp ^ sp, which means that there exists po such 
that rp < sp for every p > po-

Since we shall often use products of functions and power factors, it will 
be convenient to have the following notation for these factors: 

Xa(x) := xa; < X (x) :=< ® >*= (1 + |x|2)q/2 

for x G R and a £ No- Moreover, we shall often write (d/dx)a<p(x) instead 
of v { a \ x ) . 

The multi-dimensional notation corresponds to this one. 
The sequence of Hermite functions ha is given by 

(1) ha(x) = e1 '/2 (e~x2)(a\ a G N, x € R . 

We will use the fact that the set of Hermite functions makes an othonormal 
base of the space L 2 ( R ) . 

The norm in Ls = L S ( R ) , s £ [1, oo], is denoted by || • ||s. 
The Fourier transform, Wigner distribution and Bargmann transform 

are defined respectively by 

( . 7 7 ) ( 0 = S e~ixif(x)dx, £ € R , / e L \ 
R 

W ( x , y-f) = -L=\ e x p ( ~ i y t ) f ( x + t/2)f(y - t/2)dt, x,y e R , / € L 2 , 
* R 

(A/)(C) = 7T-1/4 j e x P ( - l / 2 ( C 2 + x2) + v/2Cx)f(x) dx, ( € C, / £ L 2 . 
R 

For the properties of the Wigner distribution and the Bargmann transform 
we refer to [5], [17] and [18]. 

By (Mp), we denote a given sequence of positive numbers and put m p : = 
Mp/Mp_i for p 6 N. 
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The following conditions are frequently imposed on this sequence (cf. [3] 
and [23]): 

(M.l) Mp < Mp_iM p + i , p e N ; 

(M.2) Mp < AHPMqMp-q, p, q S N, 0 < q < p; 

(M.2') Mp<AHpMp-1, p € N; 
oo 

(M.3) £ Mq-i/Mq < pMp/Mp+i, pe N; 
9=p+l 

(M.3') E ^ M ^ M " 1 <cx> 

for some constants >1 > 0, i i > 0. 
Throughout the paper we assume conditions (M.l), (M.3') and, for con-

venience, Mo = 1. The letter H will always denote the constant mentioned 
in (M.21) or (M.2). The so-called associated functions for the sequence (Mp) 
are 

M(p) = sup l o g ( / / M p ) , M(p) = sup log( /p ! /M p ) , p > 0. 
peNo peNo 

For a given sequence ( M p ) and a given (ap) € 1Z, we consider the corre-
sponding sequence (N p ) , defined by Np = Mp(\\p

k=l a^) for p € N. Then the 
associated functions for the sequence (Np) are denoted by -/V(ap) and N(ap), 
respectively. 

We say that a formal series = ^ a e N o ^ £ R, is an ultrapoly-
nomial of the class ( M p ) (resp. {Mp}) whenever the coefficients aa satisfy 
the estimation | a a | < CLaMa, a £ No, for some L > 0 and C (resp. for 
every L > 0 and some C). The corresponding operator P(D) = ^2aaaDa 

defines an ultradifferential operator of the class (Mp) (resp. {Mp}). Let us 
stress once again that the symbol * is the common notation for the symbols 
(Mp) and {Mp}. We say that function / is is of ultrapolynomial growth of 
the class * if there is an ultrapolynomial P of the class * such that 

\f(x)\ < P(\x\), x e R . 

Let us recall the definition of Beurling and Roumieu spaces of ultradif-
ferentiable functions (see [23]). If K is a compact subset of R, h > 0 and (p 
is C°°-function we let 

d"<p(x) | 
IMkfc = sup 

«eN, 
xeK 
aeN0 h " M a 

Denote by T^^h the space of C°°-functions (p on R with supp ip C K and 
"K,h < oo• The basic spaces of functions of the class (Mp) and of the class 
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{Mp} are defined by 

£ ( M p ) = i n d l i m ^ c c R p r o j l i m ^ o ^ ^ , 

VWP)} = i n d l i m ^ c c R i n d l i m ^ o o ^ ^ . 

The notation K CC R means that K is compact and grows up to R . 
For properties of the space V'* = Z>'*(R), the definition and properties 

of £'* = £ '*(R) we refer to [23]. 
As in [27] and [29], we define, for s € [1, oo], 

V [ y = p r o j l i m ^ , V ™ = ind lim 
h—>U ' h—> oo ' 

where is the space of smooth functions tp such that 

(2) Ml-* = sup < oo, 
aeN0 haMa 

equipped with the norm || • \\ls,h- For the spaces T>*LS, we denote the corre-
sponding strong duals by V*Lt, where t — s/(s — 1); they are subspaces of 
Beurling and Roumieau spaces of ultradistributions. We denote by B* the 
completion of V* in V*Lao. The strong dual of B* is denoted by V*Li. 

Recall that a locally convex topological vector space is an (F-S)-space 
(resp. an (LS)-space) if it is a projective limit (resp. inductive limit) of a 
countable, compact specter of spaces. If the mentioned specter is also nuclear 
the space is an (FN)-space (resp. an (LN)-space) - for more details see [13]. 

Let us remark that the basic spaces and ultrapolynomials are defined 
in d-dimensional case via the multi-indexed sequence ( M a ) , where Ma = 
Mai • ... • Mad for a = ( a i , . . . , a¿) £ N d . For example, the seminorm 

II * IIK,h is defined on the space by 

K,h = sup 
da<p(x) 

aeNd haMa 

x eK 

where ha — fiai+-+ad Notice that under the condition (M.2) the above 
defined multi-indexed sequence (M a ) and the sequence (M a i + . . . + Q d ) define 
the same spaces of ultradistributions and ultrapolynomials (see [26]). 

The Wigner distribution and the Bargman transform are investigated in 
[5], [17] and [18] only in the one-dimensional case. However, their 
¿-dimensional analogues may be simply examined. 



646 A. Kamiriski , D. Per i s ic , S. P i l i p o v i c 

3. Structural theorems 
Let us start from the definitions of the spaces and and 

various families of norms in these spaces. 

DEFINITION 3.1. Fix m > 0 and r E [1, oo). The spaces S™p'm = <Sr
Mp,T"(R), 

^{Mp),m _ g(Mp),rn ̂ p^j are defined to be the sets of all smooth functions </? 
on R such that 

crmAv) •= ( £ w r r ( \ \ < x > % ( a ) y r ) <oo; 

ma+>3 

oo{<P) •= sup || < X <P(a) lloo < OO, 
a,/3eN0 M a M p 

respectively, equipped with the topologies induced by the families Er = 
{<7m>r : m > 0}, Eoo = {crm oo : m > 0} of norms, respectively. 

DEFINITION 3.2. The spaces S W J = R) and SiMP> = <SiMP>(R) are 
defined to be the projective (as m —> oo) and inductive (as m —> 0) limits 
of the spaces «S^^'"1, respectively. 

The dual spaces of and are denoted by and S ' ^ * , 
respectively. 

It follows from the results given in this paper that if condition (M.2') is 
satisfied, then S ^ = R) and S ^ = R) are the projective 
(as m —> oo) and inductive (as m —» 0) limits, respectively, of the spaces 
g(Mp)>m f o r a n a rbitrary r E [l,oo]. 

We will consider various norms in the spaces and . For given 
m > 0, (ap) E 7?. and associated functions M and 7V(ap), denote ej\iyTn(t) := 
exp[M(m|i|)] and e^ i (aj>)(i) := exp[W(aj>)(|t|)]. 

DEFINITION 3.3. For an arbitrary function ip E £(MP) with tp = £„eNo 

and arbitrary numbers r E [l,oo) and m E (0, oo), we define the following 
norms: 

Thr\\x?<Pia)\\r-> <ooM:=8up ^_||xVq)IIOO; 

< r ( v ) : = E x n c r l l ^ ) < o o ( v ) = = « i p - — I I ^ W l l « , 

and, moreover, 
m' 

(<p) := sup — 11v(a)eM,m||oo; 0m(<p) •= Y] \dn\2e2M,m{V2n + 1)]. 
«eN0 M a 
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Before giving the next definition let us introduce, for given sequences 
(ap), (bp) G TZ, the following notation: 

•= II dp, Bp := JJ bp 

p=l p=l 

if a,/3 € N and, moreover, Aq 1 Bq. 

DEFINITION 3 .4 . For an arbitrary function tp e S ^ with if — XMENO dnhn, 
an arbitrary number r G [l,oo) and arbitrary sequences (ap), (bp) € TZ, we 
define the following norms: 

or(ap),(6p),r(y) == £ 
a,/3eN0 

< (̂ap),(6p),oo (v) == SUp 

< X > ^ y (a )llr, 
MaAaMpBp ' 

C7(ap),(6p),r(¥') 

a,/3e N0 MaAaMpBp 

HxV a ) l lr 
MN An Mr Br ' 

<7(ap),(&p)>o» - SUP 

a,/3GN0 -a^alVlpnp 

I I X ^ ( Q ) | | c 

<J(ap),(6f,),r(¥') Z ) 

A,/3EN0 MaAaMpBp'' 

l l (xM ( a ) l |r . 

cr, (ap),(6p),oo (p) := sup 

C/36N MaAaMpBp' 

IKxM(a)lloo 

and, moreover, 

A,/3EN0 MaAaMpBp 

" ( a ^ M v ) := sup 
a,/3eNo IWa-ftot 

6(ap)(<P) •= J2 ldn|2e2^,(ap)(V2nTI). 
n£N0 

DEFINITION 3 . 5 . Now let us introduce the following notation for various 
families of norms: 

EL 

K 

— {&m,r 

= Wm,r 

= {um,r 

m > 0 } , Sr : = {<J(ap),(bp),r • (Op), (bp) € Kh 

m > 0 } , ¿'r := W{apUbp),r : (ap), (bp) e 11}, 

m > 0 } , t'l := Kap),(6p),r : (ap), (bp) £ 11} 
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for r 6 [1, oo] and, moreover, 

T := {vm : m> 0}, f : = {v(ap)i(bp) : (ap), (bp) £ 11}, 

G : = { 0 m - . m > 0}, 0 := {0(ap) : (ap) G K}. 

In the sequel we will need the following two theorems. The proof of the 
first one is given in [30]. The proof of the second one is given in [21] and will 
be published in a forthcoming paper. 

THEOREM 3.1 (see [30]). Let (ap), (bp) € 71 and let ) be the space of 
smooth functions <p on R such that 0"(ap),(6p),oo(v) < oo, equipped with the 
topology induced by the norm <7(a ^^ ))<x>. Then 

^ > = p r o j l i m ( a p ) i ( 6 p ) 6 ^ ( 6 p ) . 

THEOREM 3.2. The following equivalence relations between the families of 
norms defined above hold true: 

1. The families Eoo and E'^ (resp. ¿oo and S'^) of norms in the space 
(resp. SM.}) are equivalent; 

2. If condition (M.2') holds, then for every r € [l,oo] the families Sr, 
S'r and T (resp. Er, E'r and T) of norms in the space (resp. ) 
are equivalent; 

3. If condition (M.2) holds, then the families S2, and 0 (resp. £2, 
¿2 and 0) of norms in the space (resp. ) are equivalent; 

4• If condition (M.2) holds and, given a smooth function (p on R , p\$(ip) 
< 00 and qx^afy) < 00 for every (resp. some) A > 0 and all a, [3 G No, then 
r\(ip) < 00 for every (resp. some) A > 0, where 

, - l l x V ^ l h , , l l x ^ ' ^ l b 

: = S , I P T S T ' = S 

r x M . = y i W ' l b 

REMARK 3 .1 . Notice that: 
1° If condition (M.2') is fulfilled, then the space i n the definition 

of S* can be replaced by SrMp^'m, r G [1, 00]; 
2° Part 3 of Theorem 3.2 gives a characterization of Hermite expan-

sions of elements of the space of test functions for the space of tempered 
ultradistributions; 

3° The last part of Theorem 3.2 is an analogue of the following result of 
Kashpirovski: = Sa n Sa (see [22]; see also [11]). 
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It was observed in [25] that S ^ and are (F-S)-spaces, while 
¿ji-Mp} and are (LS)-spaces. Moreover, if (M.2') is satisfied, we have 
the following embeddings: a) V* S* ^ £*, b) S* ^ S, c) £'* ^ S'* ^ 
V* and d) S' <—> S'*, where the symbol A <—> B means that the inclu-
sion mapping of the space A into the space B is continuous and that A is 
dense in B (see [25]). The following theorem, proved in [25] (Part 1) and 
in [30] (Part 2) gives a characterization of Hermite expansions of tempered 
ultradistributions: 

THEOREM 3 .3 . Let f G V'{Mp) (resp. f G V'W). 
1. If condition (M.2) is satisfied, then f G S'^Mp\resp. f G S'^mp>) if 

and only if 
f = dnhn, inS'* 

nE N0 

and, for some (resp. every) 8 > 0, we have 

] T \dn\2 exp(-2M(6V2n + 1)) < oo. 

2. If conditions (M.2) and (M.3) are satisfied, then f G S'* if and only 
if f is of the form f = P(D)F, where P is an ultradifferentiable operator of 
the class * and F is a continuous function on R of ultrapolynomial growth 
of the class *. 

THEOREM 3 . 4 . If condition ( M . 2 ) is satisfied, then ¿>(mP) and are 
(FN)-spaces and <S'(mP) are (LN)-spaces, respectively. 

P r o o f . If (M.2) is fulfilled, then the spaces S ^ 
and S( M p } are isomorphic 

to the projective and inductive limits of the Kothe spaces e2(bk) and f ( c k ) 
(see [13]), respectively, where (bk) and (ck) are sequences of the form: 

h = (h,k,b2,k, • • •)> bn,k = exp(M(AV2n + 1)), A;, n G N, 

and 

Cfc = ( c i , f e , c 2 ) f c , . . . ) , Cn,k = exp(M(V2n + 1/fc)), k,n G N. 

The isomorphism is established by the mapping ip (dn), where 
oo 

<P = dnhn 
n=0 

(see Part 3 of Theorem 3.2). In order to prove the assertion it is enough to 
show that 
(3) bn,k/K,i < oo and cnyk/cnj < oo 

neNo n£No 
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for some I > k (see e.g. [13], p. 112). The inequalities 

M(kp) + M(p) <2M((k + l)p), p> 0 

and 

2 M ( p ) < M(Hp) + log A, p> 0 

(see Proposition 3.6 in [23]) imply that 

E E e x p ( - M ( v ^ T + T ) ) < oo. 
N 6 N 0

 n<1 ne N 0 

for I > H(k + 1), which proves the first inequality in (3). The second one 
follows in a similar way. 

R E M A R K 3 . 2 . All the definitions given in this section can be easily gener-
alized to the d-dimensional case. For example S^Ip'rn(~Rd) with r > 0 and 
m > 0 is the space of all smooth functions cp on R d satisfying 

/ ma+P \1//r 

<W(?>) = E I I J T W < x > 0 V1 ^ | r d x ) < 

equipped with the topology induced by the norm a m ¡ r . We used above the 
usual convention aP = a

( } l + - + ( 3 d for a G R and ¡3 = (¡3i,... ,/3d) € Nq. 
Moreover, in the d-dimensional case, we have the multi-indexed sequence 

of Hermite functions defined by 

ha(x) = hai{xi)ha2(x2) • • • • • had(xd), 

where a = (c t i , . . . , ad) G N á , x = (x\,..., xj) € R d and hai(xi) are given 
by (i). 

It is easy to verify that the proofs of the theorems of this section are 
valid in the (¿-dimensional case. They can be written down in the same way 
if we use the fact that the multi-indexed sequences (Ma) and (MQl+ . . .+Qd) 
with a = ( a i , . . . , a<¿) G N d determine the same spaces of ultradistributions, 
under the assumption that condition (M.2) is satisfied. 

4. Integral transforms 
Suppose that conditions (M.l), (M.2) and (M.3') are fulfilled. The 

Fourier transform is an isomorphism of S* onto itself. In the next theorem 
we give the characterizations which are similar to the ones given in [19]. 

T H E O R E M 4 . 1 (characterization via the Fourier transform). A function (p 
belongs to <S(mP) (resp. if and only if it is square integrable and for 
every (resp. some) h > 0, 

<p(x) = O ( e x p ( ~ M { h | x I))) and (Tip) (x) = O ( e x p ( - M ( h \ x |))). 
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Proof . The assertion follows from Parts 1 and 3 of Theorem 3.2. 

THEOREM 4 . 2 (characterization via the Wigner distribution). A function 
<p e (resp. (p G if and only if for every (resp. some) A > 0 

W(x,y;<p) = 0 (exp(-M(A(x 2 + y 2 ) 1 / 2 ) ) ) . 

Proof . The assertion follows from Parts 2 and 4 of Theorem 3.2, properties 
of the function M and the preceding theorem. 

THEOREM 4 . 3 (characterization via the Bargmann transform). A function 
<p G < S W {resp. <p G if and only if for every (resp. some) A > 0 
there exists C such that 

|(A^)(C)| < Cexp Qici2 - M(A|C|)) , C e c . 

P r o o f . The assertion follows from Parts 2 and 4 of Theorem 3.2, properties 
of the function M and Theorem 4.1. 

As usual, we define the Fourier transform of / G S'* by 

(see [25]). 

Assume that (M. 1), (M.2) and (M.3) are satisfied. 
Denote by S'_* the subspace of S'* consisting of elements supported by 

[0, oo). Let g G <5^. For fixed y > 0 we define g exp(—y •) as an element of 
by 

{gexp(—y •), ip) = (g, gexp(-y-)(p), <p G S*, 
where q is an element of £* such that g(x) = 1, if x G (—e, oo) and g(x) = 0, 
if x G (—oo, — 2E), for some £ > 0. 

An example of a function satisfying the above conditions is Q = / * UI, 
where u is a function with the properties: u> G V*, = 1, supp u> C 
[—e/2, e/2] (for the existence of such a function see [23], Theorem 4.2). The 
function g defined above belongs to 5* (see [23], Theorem 6.10) and, more-
over, f(x) = 1 for x > — 3e/2 and f(x) — 0 for x < —3e/2. It is easy to see 
that the definition does not depend on the choice of Q. 

As in the case of <S+ (see e.g. [32]) we define the Laplace transform of 
g e <s;* by 

(jCg)(0 = T(g exp ( -y -)){x), C = x + iy G C+. 

Clearly, if y > 0 is fixed, the right hand side is an element of S'*. 
Let 

(4) G(C) = (0»wexp(tC-)>. { = x + iy€ C+ , 
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where u is as above. The function G is holomorphic on C + and does not 
depend on u. 

The next two theorems, that we give here for the sake of completness, 
were proved in [29] in the one-dimensional case for the spaces of Beurling-
Gevrey tempered ultradistributions Y>'a = S^p°'P'> with a > 1/2, supported 
by [0, oo). The proofs in the general case are analogous. 

T H E O R E M 4 . 4 . Let g G s![Ma) (resp. g G S a n d let G be defined by 
(4). Then 

1. for every e > 0 there are a k > 0 and a C > 0 (resp. for every e > 0 
and every k > 0 there exists a C > 0) such that 

|G(C)| < Cexp [ey + (M{k\x\) + M ( ^ M - 1 ) ) ] , t = x + iyeC+-, 

2. for every fixed y > 0, we have (Cg)(• + iy) = G(- + iy); 
3. there exists a tempered ultradistribution h =: G(- + i0) € S'^Mp"> (resp. 

h eS'^f}) such that 

G(- + iy)->h = G(- + iQ) a s y - > 0 + 

in the sense of convergence in <S'(Mp) (resp. in S'{Mp}) and 

h = G(- + ¿0) = Tg\ 

4• if Gk(0 = (Cgk)(C) for C G C+, k = 1,2 and Gi(- + ¿0) = G2(- + ¿0), 
then gi = g2. 

Applying the above theorem one can represent tempered ultradistribu-
tions, similarly as it was done in [29] in a particular case (i.e. for elements 
of iS'^f^with the sequence (Mp) given by Mp = pap for p G N) as boundary 
values of appropriate harmonic functions in the upper half-plane, expanded 
into series of Hermite functions of the second type. 

Let b > 0 (resp. (bp) 6 TV) be given and let Pf, (resp. P(bp)) be an entire 
function such that, for some constants L > 0 and C, we have 

(5) |P6(C)| < CexpM(L|C|) (resp. |P(6p)(C)| < CexpN{bp)(L\(\j) 

for all € C, and 

(6) expM(6|C|) < Pb(0 (resp. expiV(6p)(|C|) < P(bp)(0) 

for all £ = x + iy G C such that |x| > \y\. In case that conditions (M. 1), 
(M.2) and (M.3) are satisfied, an example of such an entire function is 

OO >2 OO >2 

W O = n a + ¿ r ) (resp. ( 0 = n . (1 + ¿ r ) ) . f e C. a=l a a=l " oc 
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Prom [23, p. 91], it follows that, in the Roumieu case, the entire function 
P/b \ satisfies (5). Moreover, we have 

na+ 
a = l blml 

1 + c2 

b2aml 

blml 
= exp[2iV ( b p )(|C!)] 

> sup TT 
/ 3 e N a = 1 

0 

> sup J J 
/ 3 E N A = 1 

for £ = x + iy € C such that \x\ > |y|. This means that also (6) is fulfilled 
by the function P(bp) • A similar reasoning can be made in the Beurling case 
for the function P(,. 

THEOREM 4.5 (characterization via the Laplace transform). Let G be a 
holomorphic function on C + . Then G is the Laplace transform of some 
g E (resp. S'*) if and only if for every e > 0 there are a k > 0, an 
ultradifferential operator Pb and a constant C > 0 (resp. for every e > 0 
there exist an ultradifferential operator P(bp) that for every k > 0 there is a 
constant C > 0) such that 

G(- + iy) 

resp. 

Pb(- + iy) 
G(- + iy) 

< C exp(ey + M(k\y\~ )), y> 0 

P(bp)(- + iy) 
< C exp(ey + M(k\y\~ )), y> 0 

Moreover, (!Fg) = lim3/_>0+ + w) in (resp. in S'*). 

REMARK 4.1. The proofs of the theorems of this section also hold in the 
d-dimensional case. Moreover, they can be written down in the same way if 
we use the conventions mentioned at the end of the previous section. 
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