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ON VARIOUS INTEGRAL TRANSFORMATIONS
OF TEMPERED ULTRADISTRIBUTIONS

Abstract. We introduce and study Hermite expansions and various integral trans-
formations on the spaces S'(Mp) and §'{Mp} of tempered ultradistributions of Beurling
and Roumieu type. In particular, we investigate the Wigner distribution and the Fourier,
Bargmann and Laplace transforms.

1. Introduction

Beurling and Roumieu ultradistribution spaces D'Mp)and D'{Mr}, de-
fined in [3] and [31] for an arbitrary sequence (M,) of positive numbers
satisfying certain growth conditions, have been studied by many authors
and various approaches have been used in the studies (see [3], [31], [4], [23],
[10], [26]). The importance of the spaces of ultradistributions in the the-
ory of partial differential equations was acknowledged by Bjork in [4]. The
approach of Komatsu (see [23]) was chosen in [25] and [30] for introducing
and investigating the spaces &'™p) and S'{Mr} of Beurling and Roumieu
tempered ultradistributions. From the results of [25], [24] as well as of the
present paper it follows that the spaces of tempered ultradistributions and
the integral transformations on them are natural generalizations of the space
of Schwartz’s tempered distributions and the corresponding integral trans-
forms. In the special case, if the sequence (M,) is of the form M, = p°P
(p € Ng) with o > 1/2, the space §'(M») coincides with the space 3/, con-
sidered in [28], while the space S{M»} of test functions for the space S'{Mrlis
the well known Gel'fand-Shilov space S& (see [14], [11], [12], [5], [22], [8]).
Important subspaces of tempered ultradistributions were investigated and
various representation theorems for ultradistributions were obtained in [12],
(27], [7], [9] and [6].
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We shall introduce in this paper various integral transformations on
the spaces S'(M») and §"{Mr}of tempered ultradistributions of Beurling and
Roumieu type. The Hermite expansions of generalized functions (see [1}, [2],
[33]) can be regarded as a generalized integral transform in the sense of [33],
Chapt. IX. We give the Hermite expansions of elements of the basic spaces
for the spaces of tempered ultradistributions as well as of their duals. This
enables us to obtain, in a similar way as it was done in [29], results about
the Wigner distribution, the Fourier, Bargmann and Laplace transforms and
the boundary value representation of elements of S'™») and S"{Mr}(cf. [5],
[17], [18], [19]).

For the sake of simplicity we give all definitions, theorems and proofs
in the one-dimensional case, though the results can be generalized to the
multi-dimensional case.

Bjork studied in [4] the spaces S., of so-called w-tempered distributions
and Grudzinski in [16] investigated the spaces of tempered Beurling distri-
butions, being generalizations of the space of tempered distributions (see
[3]). We use in this paper a different approach to Beurling’s theory of gen-
eralized distributions and consider, in general, different problems than ones
considered in [4] and [16] with the exception of the problem of characterizing
the spaces by the Fourier transform.

Janssen and van Eijndhoven ([19]) studied the Gel’fand-Shilov inductive
limit type spaces WM™ (see [15]), where M* is the Young conjugate of a
suitable function M. They characterized them by the Fourier transform,
the Wigner distribution, the Bargmann transform and by expansions into
the Hermite series. In the special case where M(z) = az'/®, z > 0 for
1/2 < a < 1 and M, = p®P, p € Ny, both the spaces W%x and S{M»}
coincide with the Gel'fand-Shilov space §. In the general case, however,
the spaces W%x and §* are different. In the case of the space W%x, the
function M tends to infinity faster than z and slower than z2, and for S*
the role of M plays the function associated to the sequence (M),), which is
increasing and tends to infinity slower than z. For example, if M,, = p!® with
a > 1 for p € Ny, then M(x) ~ Cz'/* and Young’s conjugate for such a
function does not exist at all. Using a different method than Janssen and van
Eijndhoven’s, we prove that the theorems analogous to their results are also
true for the spaces &* (* stands for (M) or {Mp}) which are investigated
in the paper.

The paper is organized as follows. In section 2 we recall the basic notions
of L? theory and the definitions of test function spaces. In section 3 we state
some structural theorems (Theorems 3.1 - 3.4). Theorem 3.2 is the main
assertion of the paper and a tool for proving other results of this and the
next section. The proof of Theorem 3.2 is given in [21] and, since it is long
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and complicated, will be published in a separate paper. In section 4, we
characterize spaces of test functions by the Fourier and Laplace transforms.

In [20], we shall study the Hilbert transform and, more generally, singular
integral operators on the spaces of tempered ultradistributions of Beurling
and Roumieu type.

2. Notation

The sets of non-negative integers, positive integers, real, complex and
complex numbers with positive imaginary parts are denoted by Ng, N, R,
C and C,, respectively.

The letter C (without super- or subscript) denotes a positive constant,
not necessarily the same at every occurrence. We denote by R a family of
positive sequences which increase to infinity. This set is partially ordered
and directed by the relation r, < s,, which means that there exists pg such
that r, < s, for every p > po.

Since we shall often use products of functions and power factors, it will
be convenient to have the following notation for these factors:

x*(z) =2z% <x>%(z)=<z>*=(1+ |.:1:|2)"‘/2

for x € R and a € Ny. Moreover, we shall often write (8/0z)%p(z) instead
of ™) (z).

The multi-dimensional notation corresponds to this one.

The sequence of Hermite functions h, is given by

(1) ho(z) = (-1)*(¥mV22al) e’ /2 (%)@ aeN, z€R.

We will use the fact that the set of Hermite functions makes an othonormal
base of the space L*(R).

The norm in L* = L*(R), s € [1,00], is denoted by || - [|s-

The Fourier transform, Wigner distribution and Bargmann transform
are defined respectively by

(Ff)E) = e f(z)dz, €€ R, fe L,
R

1 _—
V2m g
(AF)(Q) =74 § exp(~1/2(¢? + 2%) + VEz) f(z) d, (€ C, f € L.
R
For the properties of the Wigner distribution and the Bargmann transform
we refer to [5], [17] and [18].
By (M), we denote a given sequence of positive numbers and put m,, :=
My /M, _, for p e N.
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The following conditions are frequently imposed on this sequence (cf. [3]
and [23]):

(M.1) M} < My 1My, peN;
(M.2) M, < AHPMqMp—q, p,q€N,0<g<p;
(M.2") M, < AHPM,_;, peN;
[e.o]
(M.3) Z+1 Mo-1/My < pMp/Mypi1, pEN;
9=p
(M.3") Eq_ —1My < oo

for some constants A > 0, H > 0.

Throughout the paper we assume conditions (M.1), (M.3') and, for con-
venience, My = 1. The letter H will always denote the constant mentioned
in (M.2') or (M.2). The so-called associated functions for the sequence (Mp)
are

M(p) = sup log(p”/Mp), M(p) = sup log(p"p!/Mp),  p>0.

PENQ PENp
For a given sequence (Mp) and a given (ap) € R, we consider the corre-
sponding sequence (N,), defined by N, = Mp([Ti_; ak) for p € N. Then the
associated functions for the sequence (N,) are denoted by N(,, ) and N(ap),
respectively.

We say that a formal series P(£) = 3_,en, 28, € € R, is an ultrapoly-
nomial of the class (M) (resp. {Mp}) whenever the coefficients a, satisfy
the estimation |ao| < CL*M,, a € Ny, for some L > 0 and C (resp. for
every L > 0 and some C). The corresponding operator P(D) = Y, aoD®
defines an ultradifferential operator of the class (M,) (resp. {Mp}). Let us
stress once again that the symbol * is the common notation for the symbols
(Mp) and {M,}. We say that function f is is of ultrapolynomial growth of
the class * if there is an ultrapolynomial P of the class x such that

If(z)| < P(z]), =z€R.

Let us recall the definition of Beurling and Roumieu spaces of ultradif-
ferentiable functions (see [23]). If K is a compact subset of R, h > 0 and ¢
is C*°-function we let

_ | 0%(z) |
”SOHK,h = aseuPO hoM,
zeK

Denote by DEK i ) the space of C*°-functions ¢ on R with supp ¢ C K and
llellxp < 0. The basic spaces of functions of the class (M,) and of the class
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{M,} are defined by
DMp) = ind limg c cRPIO; limh_,o'D%),
DM} = ind limgccrind limp oD -
The notation K CC R means that K is compact and grows up to R.
For properties of the space D™* = D"*(R), the definition and properties
of £™ = £ (R) we refer to [23].
As in [27] and [29], we define, for s € [1, 0],

’D(Ls ») = = proj hm ’D(Ls ») 'Dg’lp }— ind hli_)n;o D(Lﬁ/{‘;},

where D( 5 ) is the space of smooth functions ¢ such that

%plls
@) leloes = sup Lo < o

equipped with the norm || - ||1s . For the spaces D}, we denote the corre-
sponding strong duals by D'}., where t = s/(s — 1); they are subspaces of
Beurling and Roumieau spaces of ultradistributions. We denote by B* the
completion of D* in D} . The strong dual of B* is denoted by D'71.

Recall that a locally convex topological vector space is an (F-S)-space
(resp. an (LS)-space) if it is a projective limit (resp. inductive limit) of a
countable, compact specter of spaces. If the mentioned specter is also nuclear
the space is an (FN)-space (resp. an (LN)-space) - for more details see [13].

Let us remark that the basic spaces and ultrapolynomials are defined
in d-dimensional case via the multi-indexed sequence (M,), where M, =

Ma .t Ma for a = Qaiy...,04) € Nd, For example, the seminorm
1 d
|l - |x,r is defined on the space ’D%)(Rd) by
| 0%() |
= sup ———"—,
Il k., ad\% 3R
€K

where h* = h*tt-+t2d Notice that under the condition (M.2) the above
defined multi-indexed sequence (M, ) and the sequence (Mq, +.. +a,) define
the same spaces of ultradistributions and ultrapolynomials (see [26]).

The Wigner distribution and the Bargman transform are investigated in
[5], [17] and [18] only in the one-dimensional case. However, their
d-dimensional analogues may be simply examined.
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3. Structural theorems
Let us start from the definitions of the spaces S(M») and S{Mr} and
various families of norms in these spaces.

DEFINITION 3.1. Fix m > 0 and r € [1, 00). The spaces Sp»™ = S}»™(R),

S&Mp)’m = SéoM”)’m(R) are defined to be the sets of all smooth functions ¢
on R such that

mets 1/r
omel@)i= (3 g (l<x > o) <o
a)ﬂENO o 'B
mets
- 8 )
Om, = sup <x>" @ < 00,
m W(cp) BN, MaMﬂ ” “00

respectively, equipped with the topologies induced by the families X, =
{oms: m >0}, oo = {Om00 : m > 0} of norms, respectively.

DEFINITION 3.2. The spaces S(Mr) = S(Mp)(R) and S{Mp} = SIMpH(R) are
defined to be the projective (as m — oo0) and inductive (as m — 0) limits

(MP))m :
of the spaces S, , respectively.
The dual spaces of (M) and S{Mr} are denoted by S'(M») and S'{Mr},
respectively.

It follows from the results given in this paper that if condition (M.2') is
satisfied, then SMr) = S(Mp)(R) and S{Mr} = §S{Mp}(R) are the projective
(as m — o0) and inductive (as m — 0) limits, respectively, of the spaces
SMp™ for an arbitrary r € [1, oo].

We will consider various norms in the spaces S(M») and S{M»}. For given
m > 0, (ap) € R and associated functions M and N(, ), denote eprm(t) :=

exp[M(mlt|)] and en,(q,)(t) := exp[N(q,) (It])]-

2
DEFINITION 3.3. For an arbitrary function ¢ € S(M») with ¢ L > neNg Inhn,
and arbitrary numbers r € [1,00) and m € (0,00), we define the following
norms:

a+ ma+[3
o (9) =% [P @ ol () == sup 10 |0
™ a,ﬁ;No M"‘Mﬁ i e a,8eNg M‘IMJB =
" L ma+,@ 8, \(a))| . n i a+h B8, \(a)
om (@) =) A Mﬁll(x &Y rs o o) =S 31 Mﬁll(x ©) oo

ayﬁeNO

and, moreover,

ma
vm(p) = sup Tl @ersmllosi (@) = 3 ldnleartm(v2n+ D))
acNo @ n€ENp
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Before giving the next definition let us introduce, for given sequences
(ap), (bp) € R, the following notation:

a B
Aa = H ap, Bﬁ = H bp
p=1 p=1
if ,8 € N and, moreover, Ag := 1 =: By.
2
DEFINITION 3.4. For an arbitrary function ¢ € S(M?) with ¢ L > neNg dnhn,

an arbitrary number r € [1,00) and arbitrary sequences (ap), (bp) € R, we
define the following norms:

| < x> o],
O(ap),(b ,r(‘p) = )
(ap).(85) a’ge_:No M. A5,

O (ap),(by),00(®) := sup 1< x> oo
(ap),(bp),00 a,BEND MaAaMng ’

8,

/ IxP o'l

Oy e (@) = Jx ¥l

(ap), (bp).r a,ﬁze%o MqAaMpgBg
8@

/ _ X" loo .

Olap) (op)0(P) = SUR 5o B

" _ 10P0) @l .
e ()= 2 YA ps

" . I (xP0) @)oo
O (ap)(bp),00(P) = O MaAuMyBs

a,feEN

and, moreover,

o en(6y) lloo
Ulay) (5p)(#) i= sup Lt

>ﬁ€N0 M A ,
O(ay)(#) = D ldnl’eon,(a,)(V2n +1).

n€Ng

DEeFINITION 3.5. Now let us introduce the following notation for various
families of norms:

Zi={omr: m>0}, 5, := {0(a,),8p) * (ap), (bp) € R},
Zri={ome: m>0}, Z={o Ea,,) (b (ap), (bp) € R},
27,! = {le,r rm > 0}> Z” = { (ap),(bp)or (aP)’ (bP) € R}
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for r € [1,00] and, moreover,

Y :={vy : m > 0}, T:= {V(a,)bp) * (ap) (Bp) € R},
O := {0, : m >0}, 0 := {0(,) : (ap) €R}.

In the sequel we will need the following two theorems. The proof of the
first one is given in [30]. The proof of the second one is given in [21] and will
be published in a forthcoming paper.

THEOREM 3.1 (see [30]). Let (ap), (by) € R and let 5(%’,)(1»,,) be the space of
smooth functions ¢ on R such that 0(a) (b,),00(®) < 00, equipped with the
topology induced by the norm o(g,) (b,),00- Lhen

SiMp} proj Hm(ap),(bp)eRS((xi)(bp)‘
THEOREM 3.2. The following equivalence relations between the families of
norms defined above hold true:

1. The families Lo, and X' (resp. Soo and %) of norms in the space
SMp) (resp. SMr}) are equivalent;

2. If condition (M.2') holds, then for every r € [1, oo] the families X,
2 and T (resp. £,, £ and T) of norms in the space SM?) (resp. SIMr})
are equivalent;

3. If condition (M.2) holds, then the families o, 5 and © (resp. X9,
2} and ©) of norms in the space SMp) (resp. SIMe}) are equivalent;

4- If condition (M.2) holds and, given a smooth function ¢ on R, px g(p)
< 00 and gy o(p) < oo for every (resp. some) A > 0 and all o, f € Ny, then
Ta(p) < 0o for every (resp. some) A > 0, where

P2 [Pt
= su , a = su ,
pA,,B(()O) aelgo /\C! Ma qA) (Lp) ﬂerE’o )\ﬂ Mﬂ

Z ”Xﬁ ||2
a,8eNo /\a+ﬂ M, Mﬂ
REMARK 3.1. Notice that:

1° If condition (M.2') is fulfilled, then the space SZM” ™ in the definition
of 8* can be replaced by S(M")’m € {1, oo;

2° Part 3 of Theorem 3.2 gives a characterization of Hermite expan-
sions of elements of the space of test functions for the space of tempered
ultradistributions;

3° The last part of Theorem 3.2 is an analogue of the following result of
Kashpirovski: §§ = §* N S, (see [22]; see also [11]).



Integral transformations 649

It was observed in [25] that S(Mp) and S"{Mr} are (F-S)-spaces, while
StMp} and S'(Mp) are (LS)-spaces. Moreover, if (M.2') is satisfied, we have
the following embeddings: a) D* < S* — £*,b) §* = S, ¢) £ — ™ —
D™ and d) &' — &', where the symbol A — B means that the inclu-
sion mapping of the space A into the space B is continuous and that A is
dense in B (see [25]). The following theorem, proved in [25] (Part 1) and
in [30] (Part 2) gives a characterization of Hermite expansions of tempered
ultradistributions:

THEOREM 3.3. Let f € D' (M) (resp. f € D’{Mp})
1. If condition (M.2) is satisfied, then f € Sl(MP)(’I‘esp fe S/{M,,}) if
and only if

f= > dnhn, inS™

neNp
and, for some (resp. every) & > 0, we have
D" ldnl|* exp(—2M(6v2n + 1)) < 00
. n€Np

2. If conditions (M.2) and (M.3) are satisfied, then f € 8’ if and only
if f is of the form f = P(D)F, where P is an ultradifferentiable operator of
the class * and F' is a continuous function on R of ultrapolynomial growth
of the class *.

THEOREM 3.4. If condition (M.2) is satisfied, then SMy) gnd "M} gre
(FN)-spaces S1Me} gnd S'M») gre (LN)-spaces, respectively.

Proof. If (M.2) is fulfilled, then the spaces S(M») and S{Ms} are isomorphic
to the projective and inductive limits of the Kothe spaces £2(by) and £2(cy)
(see [13]), respectively, where (by) and (ci) are sequences of the form:

by = (bl,k, b2,k, . .), bn,k = exp(M(kv 2n + 1)), k,neN,

and

ck =(C1 g C2ks---)y  Cnk =exp(M(v2n+1/k)), k,neN.
The isomorphism is established by the mapping ¢ — (d,), where

oo
= dnhn

n=0
(see Part 3 of Theorem 3.2). In order to prove the assertion it is enough to
show that
(3) Z bnk/bpy < 0o and Z Cnk/Cng < 00

nENyp n€Ng
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for some [ > k (see e.g. [13], p. 112). The inequalities
M(kp) + M(p) <2M((k+1)p), p>0

and
2M(p) < M(Hp) +1log A, p>0

(see Proposition 3.6 in [23]) imply that

Z Onk < Z exp(—M(v2n +1)) < oo.

n€Np bn,l n€Ng
for I > H(k + 1), which proves the first inequality in (3). The second one
follows in a similar way.

REMARK 3.2. All the definitions given in this section can be easily gener-

alized to the d-dimensional case. For example S "™(RY) with 7 > 0 and
m > 0 is the space of all smooth functions ¢ on R satisfying

a+p 1/r
ome@)=( 3§ 1o <2 P @@ [ dz) | <o,
a,,@ENg R4 ot

equipped with the topology induced by the norm oy, ,. We used above the
usual convention a® = af1**84 for a € R and 8 = (B1,...,84) € N§.

Moreover, in the d-dimensional case, we have the multi-indexed sequence
of Hermite functions defined by

ha(z) = hay (21)hay (z2) < - . - - hay(za),
where a = (a1, ...,0q) € N, z = (z1,...,24) € R? and hq,(z;) are given
by (1).

It is easy to verify that the proofs of the theorems of this section are
valid in the d-dimensional case. They can be written down in the same way
if we use the fact that the multi-indexed sequences (M) and (Mo, +..4ay)
with a = (aq,...,aq) € N9 determine the same spaces of ultradistributions,
under the assumption that condition (M.2) is satisfied.

4. Integral transforms

Suppose that conditions (M.1), (M.2) and (M.3") are fulfilled. The
Fourier transform is an isomorphism of &* onto itself. In the next theorem
we give the characterizations which are similar to the ones given in [19].

THEOREM 4.1 (characterization via the Fourier transform). A function ¢
belongs to SMe) (resp. SIMp}) if and only if it is square integrable and for
every (resp. some) h > 0,

o(z) = O (exp(=M(h |z |))) and (Fo)(z) = O (exp(-M(h |z ).



Integral transformations 651

Proof. The assertion follows from Parts 1 and 3 of Theorem 3.2.

THEOREM 4.2 (characterization via the Wigner distribution). A function
¢ € SMp) (resp. ¢ € SIMr}) if and only if for every (resp. some) X > 0

W(z,y; ) = O(exp(—M(A(z? + 17)'/2))).

Proof. The assertion follows from Parts 2 and 4 of Theorem 3.2, properties
of the function M and the preceding theorem.

THEOREM 4.3 (characterization via the Bargmann transform). A function
@ € SMp) (resp. o € SIMp}) if and only if for every (resp. some) A > 0
there ezists C such that

(Ap)(Q)) < Cexp (GI0 = M(NCD), ¢ €C.

Proof. The assertion follows from Parts 2 and 4 of Theorem 3.2, properties
of the function M and Theorem 4.1.

As usual, we define the Fourier transform of f € §™* by

(Ffoo)=(f,Fo), @es&

(see [25]).

Assume that (M.1), (M.2) and (M.3) are satisfied.

Denote by S% the subspace of 8" consisting of elements supported by
[0,00). Let g € S¥. For fixed y > 0 we define gexp(—y-) as an element of
S’* by

(gexp(—y-), ¥) = (g, eexp(—y-)p), ¢ € ST,

where p is an element of £* such that g(z) =1, if z € (—¢, 00) and o(z) = 0,
if z € (—o00, —2¢), for some £ > 0.

An example of a function satisfying the above conditions is p = f * w,
where w is a function with the properties: w € D*, fw = 1, supp w C
[—€/2,€/2] (for the existence of such a function see [23], Theorem 4.2). The
function g defined above belongs to £*(see [23], Theorem 6.10) and, more-
over, f(z) =1 for £ > —3¢/2 and f(z) = 0 for z < —3¢/2. It is easy to see
that the definition does not depend on the choice of p.

As in the case of &) (see e.g. [32]) we define the Laplace transform of
ge S by

(Lg)(¢) = F(gexp(-y)Nz), (==z+iye Cy.
Clearly, if y > 0 is fixed, the right hand side is an element of S™.
Let
(4) G(¢) = (gwexp(i()), (=z+iyeCy,
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where w is as above. The function G is holomorphic on C; and does not
depend on w.

The next two theorems, that we give here for the sake of completness,
were proved in [29] in the one-dimensional case for the spaces of Beurling-
Gevrey tempered ultradistributions ., = SP°®) with a > 1 /2, supported
by [0, 00). The proofs in the general case are analogous.

THEOREM 4.4. Let g € S;EM“) (resp. g € 8'"™M?}) and let G be defined by
(4). Then

1. for every € > 0 there are a k > 0 and a C > 0 (resp. for everye > 0
and every k > 0 there exists a C > 0) such that

G(Q)] < Cexp [ey+ (M(Klal) + M (Klyl))|, ¢ =z+iyeCy;

2. for every fized y > 0, we have (Lg)(- + iy) = G(- + 1y);
3. there exists a tempered ultradistribution h =: G(- 4+10) € S"Mz) (resp.
h €S"Me}y such that
G(-+1iy) > h=G(-+1i0) asy— 0T
in the sense of convergence in S"M») (resp. in S{Mr}) and
h = G(- +i0) = Fg;

4. if G(C) = (Lgr)(C) for ¢ € C4, k=1,2 and G1(- +10) = Ga(- +10),
then g1 = g2.

Applying the above theorem one can represent tempered ultradistribu-
tions, similarly as it was done in [29] in a particular case (i.e. for elements
of S'Mp)with the sequence (M,) given by M, = p® for p € N) as boundary
values of appropriate harmonic functions in the upper half-plane, expanded
into series of Hermite functions of the second type.

Let b > 0 (resp. (by) € R) be given and let P, (resp. F3,)) be an entire
function such that, for some constants I > 0 and C, we have

(5) IR0 < Cexp M(LIC) (vesp. [Py)(€)] < Cexp Ny, (ZIC))
for all ¢ € C, and

(6)  exp M) < P(C) (resp. exp N, (ICh) < Po,())

for all ( = z + iy € C such that |z| > |y|. In case that conditions (M.1),
(M.2) and (M.3) are satisfied, an example of such an entire function is

oo 2 00 C2

PO =10+ py) (resp Pey(€) = [10

a=1 a=1

), ¢ eC.
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From [23, p. 91], it follows that, in the Roumieu case, the entire function
P, satisfies (5). Moreover, we have

[a+

a=1

2

= exp[2N(,) (I<])]

2
BEN ;=1 bama

for { = z 4 ty € C such that |z| > |y|. This means that also (6) is fulfilled
by the function P(,). A similar reasoning can be made in the Beurling case
for the function F,.

THEOREM 4.5 (characterization via the Laplace transform). Let G be a
holomorphic function on Cy. Then G is the Laplace transform of some

g€ SQEM“) (resp. 8™) if and only if for every € > 0 there are a k > 0, an
ultradifferential operator P, and a constant C > 0 (resp. for every e > 0
there ezist an ultradifferential operator Py, that for every k > 0 there is a
constant C > 0) such that

’ G(- +iy)
By(- +iy)ll,
( resp.

‘ G(- +1y)
Moreover, (Fg) = limy_,o+ G(- + iy) in SﬁM"‘) (resp. in 8™).

< Cexpley + M(kly|™)), y>0

, < Cexp(ey + M(Kk|y|™h)), y>0).
Py (19 |, ( (klyl™"))

REMARK 4.1. The proofs of the theorems of this section also hold in the
d-dimensional case. Moreover, they can be written down in the same way if
we use the conventions mentioned at the end of the previous section.
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