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ON MIKUSINSKI TYPE PRODUCTS OF DISTRIBUTIONS

Abstract. The well known result of Jan Mikisifiski on distributional products:
z7l.27! — 7262%(z) = 272, z € R, is generalized here for the distributions ¢ and
6(”_1)(93) for arbitrary natural p. To this aim we follow the method of Mikusinski of em-
ploying a ‘Fourier-product’ formula, which is done in the setting of Colombeau algebra
¥, of tempered generalized functions.

1. Introduction and basic definitions

Due to the large employment of Schwartz distributions in the natural sci-
ences and other mathematical fields, where products of distributions with
coinciding singularities often appear, the problem of multiplication of distri-
butions has been for a long time an object of many research studies. Starting
with the historically first construction of distributional multiplication pro-
posed by Konig [13] and the sequential approach developed by Mikusifiski
and co-authors [2], there have been numerous attempts to define products
for the distributions, or rather to enlarge the range of existing products (see
[15] for a complete review and bibliography).

Several attempts have been also made to include the distributions into
algebras of generalized functions with the differentiation always possible and
subject to the Leibniz rule, or else — into differential algebras. According
to the classical Schwartz counter-examples, however, in associative algebras
of generalized functions, multiplication and differentiation can not simulta-
neously extend the corresponding classical operations unrestrainedly. One
therefore has to reduce the requirements on the multiplication.

Most complete list of such properties so far possesses the associative
differential algebra of generalized functions of J.-F. Colombeau [3]. The dis-
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tributions are C-linearly embedded in that algebra and the multiplication
is compatible with the operations of differentiation and products with C'*°-
differentiable functions. The Colombeau algebra has a notion of ‘association’
that is a faithful generalization of the equality in 2'(R). This is particularly
useful for evaluation of distribution products, as they are embedded in ¥,
in terms of distributions again.

In 1966 Jan Mikusinski published in {14] his popular result

(1) z7l. 27 — 7% (z).6(z) =272, z€ER

Though, the products on the left-hand side here exists, their sum still has
a correct meaning in the distribution space. Another formula of that type
in dimension one—in a nonstandard approach to distribution theory — was
given in [16]:

(2) H.§'(z)+ 6(x).6(z) = &' (x)/2.

H denotes here the Heaviside function, and ‘=’

to an infinitesimal quantity.

Formulas of that type can be found in the mathematical and physical
literature. We proposed such equations to be named ‘products of Mikusinski
type’ in a previous paper, where a generalization of (2) was obtained in
Colombeau algebra (see equation (7) below). In this paper we generalize
the basic Mikisiniski formula (1) for the distributions z=? and 6—1)(z) for
arbitrary p € Nand z € R. We follow the method of Mikusinski on applying a
‘Fourier-product’ formula, which is done in the setting of Colombeau algebra
of tempered generalized functions.

We start by recalling the fundamentals of Colombeau theory, restricting
ourselves to the algebra ¢, of tempered generalized functions on the real line
[4]. It contains the space S’ of tempered distributions on R and is appropriate
for the consideration we envisage in this paper.

stands for the equality up

NOTATION. Let N, Ny stand for the natural numbers, respectively, the non-
negative integers and 6, = {1 for m = n, = 0 otherwise; m,n € No}. If
g € Ny, we put A5 = {p(z) € 2(R) : {gz"p(z)dz = don for each n € Ny,
n < q}. We shall write ¢, = e 1p(e~1z) for p € Ag and € > 0.

DEfFINITION 1.1. Let &[R] be the C-algebra of functions f(p,z) : Ap x
R—C that are infinitely differentiable in respect to x by a fixed ‘parameter’
¢. Let the algebra &y [R] be the subset of &[R] of ‘moderate’ functions
f(p,z) in &[R] such that for each p € Ny there is a ¢ € Ny such that: for
each ¢ € Aq there are ¢ > 0, n > 0 satisfying |0P f(pe, z)| < c(1 + |x|9)e™?
for allz € R and 0 < € < 7. The symbol 7 stands for ‘tempered’. The ideal
A7 [R] of & -[R] is the set of functions f(yp,z) such that for each p € Ny
there is ¢ € N such that: for every r > ¢ and each ¢ € A.(R) there are
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¢ > 0,n > 0 satisfying |0Pf(pe, )| < ¢(1 + |z|")e"™9, for all z € R and
0 < € < n. Then the tempered generalized functions are defined as elements
of the quotient algebra ¥, = & -[R]/ A4[R].

The algebra ¥, contains the tempered distributions [4], canonically em-
bedded by the map i : $'—¥4, : u — {U(p,z) = (u* @¢)(z)}, where
&(z) = p(—z), and ¢ is running the set Ag. Basic examples are the em-

—

beddings %, 2P, and §®)(z) of the distributions 2§ = {zP for z > 0,
=0 for z < 0}, z7P = (=1)P"1/(p — 1)!8P(In |z|), and 6®)(z), p € N. We
note that similar, but different schemes of ‘new generalized functions’ were
introduced by Antonevich and Radyno [1] and by Egorov [7].

We recall some properties of the parameter functions ¢ € Ay, that will
be in use later. From the equation for their Fourier transform

Pe(z) = [ e ™pe(y) dy = é ™o (g) dy = [ e7*%p(t) dt = P(ex)

R R R
and the definition of A, it follows that, for any ¢ € N and ¢ € 4,,
(3) P0)=1, V0)=0 forall jeN, j<gq.

Then, from the Taylor Expansion formula up to order g+ 1, we easily obtain
the estimation

cp)ett!

m, foreachr €N, z € R.
T

(4) |p(ez) —1] <

2. Association and results on distribution products in ¥,
The equality in Colombeau algebra is very strict, so the next weaker
concepts for ‘association’ are introduced.

DEFINITION 2.1. Two generalized functions f, g of ¢, are said to be strongly
associated, written as f 2 g, if for any ¢ € S, denoting
dy(we) = {[f (e, @) — g(pe, 2)]9(2)P(e) da,
R

there exists N € Ny, such that for any ¢ > N, ¢ € A, there exist ¢,n > 0
such that |dy(¢e)| < ce? N for all € € (0, 7).

DEFINITION 2.2. Two generalized functions f,g € ¢, are said to be associ-
ated (in weak sense), denoted as f = g, if for some representatives of theirs
(e, ), g(pe, z) and for each test function ¥(z) € S there is ¢ € Ny such
that, for all p(z) € A,,

lim [ [£(pe,2) - 9(pe, 2)b(e)P(ew)dz = 0.

e—04 R
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DEFINITION 2.3. A generalized function f € ¥; is said to admit some u € S’
as an ‘associated distribution’, denoted by f = u, if for some representative
f(pe, ) € En,+[R] of the function f and for each test function 1 (z) € S there
is a ¢ € Np such that, for all o(z) € Ay, lim. o, §g f(pe, z)(z)P(ex)dr =
(u, ¥).

REMARK. These definitions are independent of the representative chosen.
The distribution associated by Definition 2.3, if it exists, is unique. The
embedding of every distribution in Colombeau algebra is associated with
the latter [3], the association thus being a generalization of the equality of
distributions in classical distribution theory. This fact also implies that two
definitions are equivalent on the embedding of distributions:

(5) fru<= f~u foranyfe¥%, ues.

Now, by a distribution product in Colombeau algebra, sometimes called
‘Colombeau product’, is meant the product of some distributions as they are
embedded in Colombeau algebra, whenever the result admits an associated
distribution (see [11] for comparison with other distribution products, and
[5] for particular results).

The following result on products of distributions of several variables
in Colombeau algebra proved in [6] will be needed in the sequel. For any
multiindex p € N9, it is

e S (=1)P(p 1! (25—
(6) z P51 (z) ~ ma(% U(z), zeR.
Note that equation (6) was derived in the one-dimensional case by Fisher [8]
and Itano [10] as a regularized model product (in the termonology proposed
by Kaminski {12]), but only under (different) additional requirements on the
regularizing §-nets.

Passing further to Mikusinski type distribution products, we recall the
results of this type in Colombeau algebra, given by this.

THEOREM 2.1 ([6]). For arbitrary p € Ny, the embeddings in ¥, of the dis-
tributions z%., 2P and §®+1)(z) satisfy:

™ ELZ (@) +50) So) ~ E o),
®) (@) = 5(2).5(0) » = 6.

REMARK. Clearly, the particular case p = 0 of (7) gives equation (2) ob-
tained in Colombeau algebra. Note also that (7) and (8) are easily shown
to be consistent with following known equation in the distribution space:
2P§Pt)(z) = (~1)P(p + 1)8'(z), p € No.
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Consider next the ‘even’ and ‘odd’ sums of the distributions mﬂ, 2 zeR
and p € Ny, as defined in [9]: |z|P = 2f +4”, |z|Psgnz = 28 —2” . Combining
now equations (7) and (8), we obtain the following.

COROLLARY 2.1. Let for arbitrary p € N, m;’ and ]zlp’;g’nm be the embed-
dings in ¢, of the distributions |z|P, |z|Psgnz. Then it holds:

——

|z|2P~Tsgnz . 62P) (z) ~ —(2p)!8' (2);

|z . 5@+ (z) & (2p + 1)1 (z);

|21 . 59) () — 2(2p — 1)13(x) . 5(z) =~ 0;
|22 sgn z . 6P+ (z) + 2(2p)15(z) . 5(z) ~ 0.

Observe that the first two equations here are “ordinary” products of dis-
tributions in Colombeau algebra, while the other two represent Mikusinski
type products.

3. Fourier transform and Fourier-product formula in ¥,

In compliance with the general definition of integral in &, the Fourier
transform Z f = f , the inverse Fourier transform .#~!f = f, and the con-
volution of f,g € 4, are introduced by the following equations for the
representatives:

(9) Floe,z) = | €7 f (e, y)B(ey) dy,
R
1
flpe,z) = 7 S ™ f (e, y)@(ey) dy,

(10) (f *9)(pe, T S flpe,z — y)g(pe, y)@(ey) dy.

Note that these equations make sense since @ € S, and according to (3) and
(4), the factor @(ez) can be omitted whenever f(pe,z) is supported in a
compact subset of R. It can be shown [17] that these definitions preserve both
the representative classes of generalized functions in ¢, and the association
relations. Moreover, the following basic properties were demonstrated by
Colombeau [4] for any function f € ¥;:

(11) (a) F\FF 2 FFF R F (b)) f*6 & [

Note that the corresponding strict equalities are not valid in the algebra %;.
We shall need an ’exchange formula’ between the operations of multi-

plication and convolution, via the Fourier transform. Such a formula was

proved by Colombeau in [4] in a strong-association sense whenever one of

the multipliers is decreasing fast at infinity. Again, it is not valid as a strict
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equality in ¢,. We will prove an exchange formula in weak-association sense,
enlarging its validity for arbitrary generalized functions in ¥4,. We formulate
it for the inverse Fourier transform in order to get later a ‘Fourier-product’
equation appropriate for our purposes.

THEOREM 3.1. For each two generalized functions f12 € ¥:, it holds

(12) fifor —fl fix fo

Proof. Taking into account Definition 2.3 and equations (9), (10), we have
to evaluate the difference between wo sides of (12) for some representatives
of fi,2 and an arbitrary ¢ € S:

(13)  Aulee) = | |5 T e ) = Filpes 0)Ta(0e,0)| (o) plea)do

R

_ _4;25[ [ €9 f1(0ery — 2) fa(0e, 2)B(e2)B(ey)dzdy
R RxR
S eix(yl+y2)f1(305,yl)f2(<,05,y2) O(ey1)p (€y2)dy1dy2]
RxR

x Y(z)p(ex)dz

1

= 23 | hlpey - 2)falee, 2)(e2)[Bley - e2)
(R)3

— @ley) ¥ (2)@(ex)dzdydz,

where the change y1 + y2 =y, y2 = z is made.
Evaluate first the integral in z. Suppose that, in accordance with Defi-
nition 1, we have the estimate for the representatives

(14) [fi(ee, 2)l S €T (14120, Ifa(pe, 2) S €™ (1 4+ [2]™),

for some {,m € Ny and all z € R. Supposing further that ¢ € Ag, we fix
some p € N, p < ¢. Replace then @(ey — £z) with its Taylor expansion,
first around the point £y and then — around 0, up to order p. Taking into
account equation (3), we get

z: p—j (p)(eOJy)

(15)  Pley —e2) - ”Z

Here each of the parameters 6; (j = 1,...,p) is a fixed number in the interval
(0,1). Further, the next estimate of any ¢ € Ay easily follows from (4):

1) |p(ex) < 2o

|_1+|| forallTr €N, z€eR, and ¢—0;.



Mikusiriski type products 633

Now, in view of (14) and (16), we obtain the following estimate, for any
3=1...,p

(17) L) = |§ filee, y = 2) falpe, 2)P(e2)2’ dz
R
e+ ly — 2 (1 ™) 2P (1 + [2]7) Tz
R

<c.e™ 1 4+ 0(1)](14 |y|"), forsome c€Ry and n €N

Then, taking into account equations (15) and (17), we evaluate further

(18)  4n® [T(e) =] | €™filpe,y - 2)falpe, 2)Ple2)
RxR

x [P(ey — ez) — P(ey)] dz dy[

iow o (=1 P 5P) (e
— ‘ e)pxe yz ) y p SOJ)( Jy)IJ(y)dy‘
R

c.eP~imm" "[1+0 (W] §(1+ |91™)|@p(ey)| dy,
R

(19)

IN

for some n € Ny. Here we have put
P

Ppley) =) max
j=1050<

Now we can choose the paremeter ¢ € N to be such that g—l—-m—n =:¢ > 0.

Then, @p(ey) is a function in S such that A(k)(()) =0,fork=0,...,q—p—-1,
and therefore |Pp(cy)| < c(e) €7 P(1+|y|®)!, for any s € N. Taking then
into account this latter estimate and equation (19), we obtain

4n°|T(pe)| < c.€'[1 +o(1)] §(1+ [y") (1 + lyl*) dy
R

(20) < cp. €14 0(1)].

Applying successively equations (13), (18), (20), and (16), we finally get the
estimate :

Do)l < e1 e § (@).(1+ [o) | [+ o(L)]de < ez e[l 4 o(1)).
R

yP=I5(P) (e,y) .
o —j)!

Now, since t > 0, we have that lim. .o, Ay(pe) = 0. This completes the
proof of the theorem.

Clearly the above proof remains valid for the Fourier transform as well.
Now, if we set f; = g;,1 = 1,2, equations (11(a)) and (12) imply the Fourier-
product formula given by this.
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COROLLARY 3.1. For each two generalized functions g1, g2 € %, the follow-
ing holds

(21) 9192 ® o g1 % ga-

4. Preliminary results on Fourier transform in ¥,

We proceed further to particular tempered distributions embedded in
Colombeau algebra ¥,. Before this, we will prove a basic property of their
elements. It is known that the inverse Fourier transform of a distribution
with support in R} can be obtained as a weak limit of its (one-sided) Laplace

transform, as the imaginary part of the variable tends to 0. The same holds
for the elements of ¢, with support in R.

PROPOSITION 4.1. For each generalized function f € ¥, supported in Ry, is

(22) lim | e*'f(t)dt=2nf(z), where z=z+ix€C.
x—0+ Ry

Proof. According to definition (9), we have to evaluate the difference be-
tween two sides of (22) for some representative f(y.,t) of f:

Alpe) = lim | e (e, )p(et) de = | € f(pe, )P (et) dt
TRy Ry
= lim | [e7™* — 1]e" (e, t)P(et)dt.
x—0+ R,

Observe that e ™Xt*—1, as x—0,, uniformly regarding z. Since |e~**—1| <0
on the half-line, the last integral above is uniformly convergent at infinity,
and we can therefore pass to the limit as y—0, under the integral sign. This
gives A(pe) = 0, and the proof is complete.

Recall next the definition of the distribution

(23) (¢ £30) 19— lim ((zxix)",9), peN,
x—0+
for an arbitrary ¢ € S(R). Then we prove the following:
THEOREM 4.1. For each p € N, the embeddings in 4 of the distributions
zﬁ__l and (z +10)"P satisfy:
-1 —1 4 M.
(24) F T )~ o (w T0) .

Proof. One can easily check that

(25) Oy (pe,x) = pa¥ (pe,x), PEN;  BpH(pe,w) = 8(pe, ).
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Applying Proposition 4.1 and defining equation (9), we get that for each
peEN

— ~

- - : 1 i(z+1
HeE e m) = lim oo § N o, y)p(ey) dy
R

i ; o ~
= lim —(x +ix)™" [S eV TXY Y 1(906, Y)ed' (ey) dy
x—04 27 R

+ § = 90v8, (227 (e, y)] Blew) dy
R
= Jim {Ip-1(pe, 2 +ix) + Jp-1 (e, 2 + X))

Integrating by parts, we have used here that [¢|"%(¢)—0 as [t|—oo for all
n € N and ¢t € R, the integrated term thus being 0. For any ¢ € S(R) and
f € ¢4, with a representative f(y¢,z) denote by

Ly(f) = lim { lim f(pe,z +1iX), ).
e—04 x—04
Then we have

Ly(Ip1) = 5=(z +0) ™ lim | 18 (0o, )e (ev) dy, 9(2)).
R

e—04

We have passed to the limit as x—04 under the integral sign on the same
argument as in the proof of Proposition 4.1. Now, it can be checked that

(as required by Definition 1.1) the following estimate holds: ]x Ye,y)| <
c.€7P(1+|y|P). Choosing some g € N q > p, we have for any ¢ € Ay, by the
Taylor theorem and (3): £@'(ey) = 2921 (5) "Ll 130 (0) + €95 (e6y) =
€939 (efy), where 0 € (0,1). Denote further y(y) = supeer, 719 (eby),
which is well defined since @ € S(R). Due to the estimate

|22 (pe, )73 (e6y)] < 127 (e, )£ (y)]
<c.e?P(L+[yf). (1 +fyl™) 7
for some ¢ € Ry and all n € N, y € R, and by the theorem for dominated

convergence, we can pass to the limit as e—04 under the integral sign. Since
for any p € N we can choose q > p, then

(26) L¢ (Ip—.l)

1 Ly — . izy D] ~
= 5-(@ +i0) 7 ( lim {2t (pe,9)e 8 (By)dy, ¥(x)) = 0.
R

Consider next the term J,_1 above, by p = 1. Taking into account relation
(5), equations (25), and the fact that §(ye,y) is supported in a compact
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subset of R, we get
. . ( S I
27)  Ly(Jo) = lim <Xlgg+ o= (@+x) 7" [ e e (e, y) dy, ¢(m)>
R
i

= .(:c+i0)_1,1,b(x) .
<27r >

Employing further equation (25) and integrating by parts (the integrated
part being again 0) we obtain

)
-1 — - .
S (@) (272 (e, y)Pley)d [0 ]
2r R
=i(z 4 ix) (Ip—2 + Jp—2].

By (26), which holds for each p € N, we get: Ly (Jp-1) = Ly (i(z+ix) "  Jp—2)-

Iterating the above manipulation (p — 2) times and taking into account
(27), we obtain

Jpo1 =

lim { F (@2 (e, 2), ) = lim (lim P Lp — 1)z + ix) P 1o, )

e—04 e—04 x—04
P(p—1)!
- <ﬂ2ﬂ—)(x +0)7,4(2) ).
This, in view of (5), proves the relation (24) for each p € N. The proof of
the theorem is complete.
Combining now equations (11a) and (24), we get the following

COROLLARY 4.1. For each p € N, it holds
(28) F(z +10)~P ~ 2mi™P gL,

We need also the following result.

THEOREM 4.2. For each p € N, the embedding in 4, of the distribution z7 |

satisfies:

—

-1 o1 2p—1
(29) Bt x B  ma

Proof. Applying equation (10), we obtain for each p € N:

—— —

(30) Cpr(z) 1= (2% L %28 ) (9erz) = | 2% (per )ty (per o —1)P(ey) dy

R
= | 2% (pe, 2~ )25 (e, y)e@ (ey) dy
R
p—-1l.5% 2 “
+ | 28 (e, 2—y)ah (e, ) Pey) dy

R
=:Ip+ Jpp-2.
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Integrating by parts, we have again used that |¢|*@(t)—0 as |t|—oo for all
n € N and t € R, the integrated term being 0. For an arbitrary ¢ € S(R),
we can write

lim (L, ) = { lim {2%(¢e, 2 — )% ' (¢e,9)e@ (ey) dy, $(2)).
e—04 e—04 R
The following estimate holds:

[ (92, = )27 (e, w)] < e P+ oy (1+ P )
Choosing some ¢ € N, ¢ > 2p — 1, we have for any ¢ € Ay, by the Tay-
lor theorem and (3): e@'(ey) = 5q<p(q)(e¢9y) 6 € (0,1). Denote @4(y) =
SUPccR, #9 (eBy). Now, on the same argument as in the proof of (24), we
get the estimate:

10 (e, 7 — 9)ah (e, )7 (8y)|
< e gL+ fe—yP) (1 + [y (A + [y
for some ¢ € Ry and all n € N, z,y € R. Since ¥(z) € S, by the theorem

for dominated convergence, we can pass to the limit as e—04 under the
integral. For we can choose ¢ > 2p — 1, it therefore holds for each p € N:

(31) Lm ( I,,) = 0.
E—>O+

Employing further relation(25) and integrating by parts — the integrated
part being again 0 — we obtain:

Jpp-2=— S 33?;2(906, y)@(ey)d[iﬂ(%,m -y) = Ipt1 + Jpt1p-3-
R

Thus, by (31), we get lime_o, (Jpp—2,%) = limeo, (Jp+1,p-3,%). Iterat-
ing the above manipulation (p — 2) times, taking into account successively
equations (30), (31), (25), and (11b), we eventually get

i (Cp1(+), ()
= s1_i)1(1)1+(sz_1,—1,1&(“’))

2, e -
= lim %(émi” (e, 3= 9)3(0e, v)Pley) dy, $(z) )
= lim [(p— 1)']2« EI;:l
Ty (2po 1)l

_e-11? 55
This proves relation (29), for arbitrary p € N.

€

*8) (e, 2), ¥(x))
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5. Generalization of the basic Mikusinski equation

We are now ready for the final step towards the extension of the basic
Mikusinski equation.
THEOREM 5.1. For arbitrary p € N, the embedding in 4. of the distributions
z7P and 6@~V (z) satisfy:

2 — —
—_— T
(32) TP .2 P — ——— (P (). 62D (z) = 2.
[(p— 1)}

Proof. (i) Applying consecutively the Fourier-product formula (21) and the
results given by relations (28), (29), (24), we have, for arbitrary p € N:

(33) (z+140)P.(z +i0)P = %f‘l[@(z +10)7P) * (Z(z + 10)~7)]

1 472
T 2ni?(p—1)(p—1)!
N 27
T 22 (2p — 1)
(ii) Next we prove the following formula that translates exactly from
distribution theory [9] into Colombeau algebra:

—~1yp-1 —
((pl_)l)!é(l’—l)(a:), z €R

By definition, 7P = (—1)?~1/(p — 1)!d?/dzP(Inz), p € N. Thus, for z € R,
we have the representation

F NP x P

—

F YY) = (z +40)~2P.

(34) (z+40)P =z P—in

-p = — Y l p B .
(35) z (()057 I) (p _ 1)!€p+1 _6§+z n Iyl‘p € dy

Here, it is taken into account that, if supp ¢(z) C [—1,l] for some | € R,
then supp p((y — z)/¢e) C [—el + z,el + z]. Also,
(36) 60D (e, ) = (171677 (8,, 0V ((y - @)/e)
= ()Pl PP (=g /c).
Now, replacing (y — z)/e = v, and taking into account (35) and (36), we
have:
(2 +i0)P(pe, 2)

N G Sl & @ (Y=F
= lim ————— In(y + ix)p'¥’ | =—— |dy
x—04+ (p — 1)lept! —elS+:c ( ) >

= lim ~——— {(1 P (v)d
x—0+ (p — 1)leP _Sl( 1 |v+ez+ix| +iarg(vtez+ix))e' (v)dv
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_1\2p-1 !

= Z(Z;%)!«Ep —Sl (ln lv+ez|+in[l — H(v + sm)])(p(z’)(v)dv
(-1)%-1 . ) o ,

= e (|l el —in | i)

= a’::;’(tp z) — iwﬂ:l(ﬂ’?:l)(go z)
€y (p _ 1)' € .
This proves equality (34) for a fixed parameter function ¢. When ¢ is run-
ning the set Ag, we get the representative class of the embeddings in ¥, of
the distributions on the left-hand side, respectively, right-hand side of (34).
This establishes a one-to-one correspondence between these classes, which
amounts to an equality in %, of the corresponding generalized functions.
(iii) Consider for any p € N, the difference of the two sides of (33), taking
into account (5):

(z + 10)~P . (z +10)P — (z + 10)~2° = 0.

Applying equality (34) and taking into account (6) (by d = 1), we have for
the latter equation

P . P m S Y 1Y) S o s L §(=1)
T FP.T p— p—l) — r—rrt——x—
-1 (p—1)!
— _1)\2p-1 P 2 — —_— —
—$_2p+i7f-i2—pjl):—1)—'5(2p“1) =x7P. .’E_p—[(pf—l)l]z'(s(p-l) .(5(1’_1)—:0_21’ =~ 0.

This gives equation (32) for arbitrary p € N, and the theorem is proved.

REMARK. As is specific for the Mikusifiski type products, the individual
summands in (32) do not admit associated distribution, but their sum con-
sidered as a single entity is associated with the distribution z~27.
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