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ON MIKUSINSKI T Y P E P R O D U C T S OF DISTRIBUTIONS 

Abstract . The well known result of Jan Mikisiriski on distributional products: 
,x~l — 7r2 52(X) = x~2, x € M, is generalized here for the distributions x~p and 

(x) for arbitrary natural p. To this aim we follow the method of Mikusiriski of em-
ploying a 'Fourier-product' formula, which is done in the setting of Colombeau algebra 

of tempered generalized functions. 

1. Introduction and basic definitions 
Due to the large employment of Schwartz distributions in the natural sci-

ences and other mathematical fields, where products of distributions with 
coinciding singularities often appear, the problem of multiplication of distri-
butions has been for a long time an object of many research studies. Starting 
with the historically first construction of distributional multiplication pro-
posed by Konig [13] and the sequential approach developed by Mikusiriski 
and co-authors [2], there have been numerous attempts to define products 
for the distributions, or rather to enlarge the range of existing products (see 
[15] for a complete review and bibliography). 

Several attempts have been also made to include the distributions into 
algebras of generalized functions with the differentiation always possible and 
subject to the Leibniz rule, or else — into differential algebras. According 
to the classical Schwartz counter-examples, however, in associative algebras 
of generalized functions, multiplication and differentiation can not simulta-
neously extend the corresponding classical operations unrestrainedly. One 
therefore has to reduce the requirements on the multiplication. 

Most complete list of such properties so far possesses the associative 
differential algebra of generalized functions of J.-F. Colombeau [3]. The dis-
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tributions are C-linearly embedded in that algebra and the multiplication 
is compatible with the operations of differentiation and products with C°°-
differentiable functions. The Colombeau algebra has a notion of 'association' 
that is a faithful generalization of the equality in i^'(R). This is particularly 
useful for evaluation of distribution products, as they are embedded in if, 
in terms of distributions again. 

In 1966 Jan Mikusinski published in [14] his popular result 
(1) x~l .x'1 - -K26(X).6(X) = x~2, i S l . 

Though, the products on the left-hand side here exists, their sum still has 
a correct meaning in the distribution space. Another formula of that type 
in dimension one—in a nonstandard approach to distribution theory — was 
given in [16]: 
(2) H.S'(x) + 6(x).S(x) = S'{x)/2. 

H denotes here the Heaviside function, and '= ' stands for the equality up 
to an infinitesimal quantity. 

Formulas of that type can be found in the mathematical and physical 
literature. We proposed such equations to be named 'products of Mikusinski 
type' in a previous paper, where a generalization of (2) was obtained in 
Colombeau algebra (see equation (7) below). In this paper we generalize 
the basic Mikisiriski formula (1) for the distributions x ~P and ¿(P"1^®) for 
arbitrary p G N and x G R. We follow the method of Mikusinski on applying a 
'Fourier-product' formula, which is done in the setting of Colombeau algebra 
of tempered generalized functions. 

We start by recalling the fundamentals of Colombeau theory, restricting 
ourselves to the algebra SfT of tempered generalized functions on the real line 
[4]. It contains the space S' of tempered distributions on R and is appropriate 
for the consideration we envisage in this paper. 
NOTATION. Let N, No stand for the natural numbers, respectively, the non-
negative integers and Smn = {1 for m = n, = 0 otherwise; m,n G No}. If 
q G No, we put AQ = {<£>(:r) G ^(R) : JR xnip(x) dx = Son for each n G No, 
n < q}. We shall write ips = s~1(p(e~1x) for (p G AQ and E > 0. 
DEFINITION 1 . 1 . Let <?[R] be the C-algebra of functions f(ip,x) : AQ X 
R—>C that are infinitely differentiate in respect to x by a fixed 'parameter' 
(p. Let the algebra ¿M,T[®] be the subset of <?[R] of 'moderate' functions 
f{<p,x) in <f[R] such that for each p G No there is a q G No such that: for 
each <p G AQ there are c > 0, rj > 0 satisfying \dpf((p£,x)\ < c(l + \x\q)e~q 

for all x G R and 0 < e < rj. The symbol T stands for 'tempered'. The ideal 
^•[R] of <?M,T[R] is the set of functions /(</?, x) such that for each p G No 
there is q G N such that: for every r > q and each ip G A-(K) there are 
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c > 0, 7? > 0 satisfying \dpf(ipe,x)\ < c(l + \x\r)£r~i, for all x G R and 
0 < e < r). Then the tempered generalized functions are defined as elements 
of the quotient algebra SfT = <£M,T[K]/ ^ [ R ] . 

The algebra contains the tempered distributions [4], canonically em-
bedded by the map i : S'—>Sfr : u H-> {u{<p,:r) = (u * <p)(x)}, where 
<p(x) = <p(—x), and (p is running the set Aq. Basic examples are the em-
beddings P, and 6(P)(X) of the distributions xp+ = {xp for x > 0, 
= 0 for x < 0}, x~P = (—l)p _ 1/(p - l)!5P(ln|s|), and ¿ ^ ( x ) , p £ l We 

note that similar, but different schemes of 'new generalized functions' were 
introduced by Antonevich and Radyno [1] and by Egorov [7]. 

We recall some properties of the parameter functions tp G Aq, that will 
be in use later. From the equation for their Fourier transform 

fax) = ^ e~~ixyip£(y) dy = - J dy = \ e'ixsi<p(t) dt = <p(ex) 

R £ R ^ £ ' R 
and the definition of Aq, it follows that, for any q € N and ip G Ag, 

(3) £(0) = 1, £ ( j ) (0) = 0 for all j G N0, j < q. 

Then, from the Taylor Expansion formula up to order q+1 , we easily obtain 
the estimation 

c(lfi)£q+1 

(4) W{ex) - 1 | < Y^q—p", for each r G N, x G K. 

2. Association and results on distribution products in SiT 

The equality in Colombeau algebra is very strict, so the next weaker 
concepts for 'association' are introduced. 

D E F I N I T I O N 2 . 1 . Two generalized functions / , g of (ST are said to be strongly 
associated, written as / m g, if for any ip G S, denoting 

dj>(<Pe) = \ [}{ipe,x) - g(ipe,x)]ip{x)ip(Ex)dx, 

R 
there exists N G No, such that for any q> N, (p G Aq there exist c,rj > 0 
such that \d^{(pe)\ < ceq~N for all e G (0,77). 

D E F I N I T I O N 2 . 2 . Two generalized functions / , g G Sir are said to be associ-
ated (in weak sense), denoted as / « g, if for some representatives of theirs 
/(<^£,x), g((pe,x) and for each test function ifi(x) G S there is q G No such 
that, for all <p(x) G Aq, 

\ [ f i f e , x) - g(tpe, x)]ip(x)ip(ex)dx = 0 . e—»0+ i. + R 
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DEFINITION 2.3. A generalized function f is said to admit some u G S' 
as an 'associated distribution', denoted by / ~ it, if for some representative 
F(<pe, X) € £M,T M of the function / and for each test function ip(x) G S there 
is a q G No such that, for all ip(x) G Aq, lime_>o+ Sk /(Ve> x)ip(x)<p(ex)dx = 
(u,if>). 

REMARK. These definitions are independent of the representative chosen. 
The distribution associated by Definition 2.3, if it exists, is unique. The 
embedding of every distribution in Colombeau algebra is associated with 
the latter [3], the association thus being a generalization of the equality of 
distributions in classical distribution theory. This fact also implies that two 
definitions are equivalent on the embedding of distributions: 

(5) / « u / « u for any / G <ST, u G S'. 

Now, by a distribution product in Colombeau algebra, sometimes called 
'Colombeau product', is meant the product of some distributions as they are 
embedded in Colombeau algebra, whenever the result admits an associated 
distribution (see [11] for comparison with other distribution products, and 
(5) for particular results). 

The following result on products of distributions of several variables 
in Colombeau algebra proved in [6] will be needed in the sequel. For any 
multiindex p G Nd, it is 

(6) P'p.S^fx) « ( = P ^ < * - i > ( * ) , x€Rd. 
v ; K ' 2d(2p — 1)! v h 

Note that equation (6) was derived in the one-dimensional case by Fisher [8] 
and Itano [10] as a regularized model product (in the termonology proposed 
by Kaminski [12]), but only under (different) additional requirements on the 
regularizing ¿-nets. 

Passing further to Mikusinski type distribution products, we recall the 
results of this type in Colombeau algebra, given by this. 

THEOREM 2.1 ([6]) . For arbitrary p G No, the embeddings in of the dis-
tributions and ¿(p+1)(x) satisfy: 

(7) .5(P+V{x) + 5(x) .6(x) « 
p. 2 

(8) . SiP+^ix) - 6(x). S(x) « s'(x). 
pi 2 

REMARK. Clearly, the particular case p = 0 of (7) gives equation (2) ob-
tained in Colombeau algebra. Note also that (7) and (8) are easily shown 
to be consistent with following known equation in the distribution space: 
XPJ(P+ i)(x) = ( - l ) P ( p + l)<5'(x), p G N0. 
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Consider next the 'even' and 'odd' sums of the distributions X _j_ ̂  £C ̂  X IK 
andp £ No, as defined in [9]: \x\p = xp++xp_, |x|psgna; = x^.— xp_. Combining 
now equations (7) and (8), we obtain the following. 

COROLLARY 2.1. Let for arbitrary p € N, \x\p and |x|psgnx be the embed-
dings in SfT of the distributions \x\p, |x|psgna;. Then it holds: 

|z|2P~sgnx.<^)(x) « -(2p)\6'{x)-

|i|2p . i(2p+i)(s) ss (2p + l )W'(s); 

I x F - 1 • ^ ( x ) - 2(2p - l ) ! i (® ) . 6(x) « 0; 

|x|2Psgnx . 8<5p+1){x) + 2(2p)\6(x). S(x) « 0. 

Observe that the first two equations here are "ordinary" products of dis-
tributions in Colombeau algebra, while the other two represent Mikusinski 
type products. 

3. Fourier transform and Fourier-product formula in 
In compliance with the general definition of integral in SfT, the Fourier 

transform J*"/ = /, the inverse Fourier transform f = /, and the con-
volution of /, g € SiT are introduced by the following equations for the 
representatives: 

(9) f(<Pe,x) = \e-i*yf(<pe,y)ip(ey)dy, 
R 

- 1 r 
/(Ve, x) = -— elxyf((ps, y)(p{ey) dy, 

2 ? r i 
(10) ( f * g ) ( t p e , x ) = \f(ipe,x-y)g(ipe,y)ip{ey)dy. 

E 

Note that these equations make sense since (p E S, and according to (3) and 
(4), the factor (p(ex) can be omitted whenever f(ipe,x) is supported in a 
compact subset of K. It can be shown [17] that these definitions preserve both 
the representative classes of generalized functions in &\ and the association 
relations. Moreover, the following basic properties were demonstrated by 
Colombeau [4] for any function / € $fT: 

(11) (a) f - ^ f « « f (b) f*6 ~ f. 

Note that the corresponding strict equalities are not valid in the algebra SiT. 
We shall need an 'exchange formula' between the operations of multi-

plication and convolution, via the Fourier transform. Such a formula was 
proved by Colombeau in [4] in a strong-association sense whenever one of 
the multipliers is decreasing fast at infinity. Again, it is not valid as a strict 
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equality in We will prove an exchange formula in weak-association sense, 
enlarging its validity for arbitrary generalized functions in % . We formulate 
it for the inverse Fourier transform in order to get later a 'Fourier-product' 
equation appropriate for our purposes. 

T H E O R E M 3 . 1 . For each two generalized functions f\i2 G i?r, it holds 

(12) /1./2« 2^/I*/2 . 

Proof . Taking into account Definition 2.3 and equations (9), (10), we have 
to evaluate the difference between wo sides of (12) for some representatives 
of /i,2 and an arbitrary ip E S: 

1 
(13) := J 2 /l * f2(Ve,x) ~ Mfe,x)f2(<fe,x) 1p(x)<fi(£x)dx 

R RxR 

- S eix(yi+y2)f1(cpE,yi)f2{<ps,y2)(p(£yi)v(Ey2)dyidy2\ 
RxR 

x tp{x)(p{ex)dx 
1 

= T~2 J etXyh(Ve,y-z)f2(Ve,z)(p{ez)[(p{£y-Ez) 
(R)3 

— tp(£y)]ip(x)ip(£x)dzdydx, 

where the change yi + y2 = y, y2 = z is made. 
Evaluate first the integral in z. Suppose that, in accordance with Defi-

nition 1, we have the estimate for the representatives 

(14) \fl(<pe,z)\ < £- '(1 + \z\l), \f2(<Pe,z)\ < £~m(l + \z\m), 

for some l,m G No and all 2 G M. Supposing further that <p G Aq, we fix 
some p G N, p < q. Replace then (J5(ey — ez) with its Taylor expansion, 
first around the point £y and then — around 0, up to order p. Taking into 
account equation (3), we get 

(15) (p{£y - ez) - <p(ey) = ( - e ) ' £ 

Here each of the parameters 0j (j = 1 , . . . , p) is a fixed number in the interval 
(0,1). Further, the next estimate of any ip G Ao easily follows from (4): 

(16) \<p(ez)\ < 1 + for all r G N, z G R, and£->0+. 
1 z\r 
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Now, in view of (14) and (16), we obtain the following estimate, for any 

(17) \ij(y)\ ••= h(Ve,y - z)h{<Pe,z)(p(£z)z:i dz 

< E -l—m 5(1 + \y - z\l)(l + \z\m)\z\p(l + |z\T)~ldz 

< c.e -l—m—n [1 + o( l ) ] ( l + |y|n), for some c G R+ and n G N. 

Then, taking into account equations (15) and (17), we evaluate further 

( 1 8 ) 4tt2 \T((ps)\ := | J eixyM<p£,y-z)f2(<pe,z)ip(ez) 
RxM 

x [{p(ey - ez) - <p(ey)] dz dy 

( s y 

(19) < c.eP-l-m-n[l + o(l)} \(l + \y\n)\Mey)\dv> 

yp-jjp(p)(sejy) 

for some n G No- Here we have put 
p 

Spiey) := max 
m y> ¿ i 0 ^ 1 J}-(P-JY-

Now we can choose the paremeter q G N to be such that q—l—m—n =: t > 0. 
Then, (pp{ey) is a function in S such that (pp\ 0) = 0, for k = 0 , . . . ,q—p — l, 

and therefore \(pp{ey)\ < c(cpe). eq~p(l + |y|s)_1, for any s G N. Taking then 
into account this latter estimate and equation (19), we obtain 

4TT2|T(^)| < C.E ' f l + O(L)] 5(1 + |Y|n)(l + \y\')~ldy 
R 

(20) < C l . ^ [ 1 + 0(1)]. 

Applying successively equations (13), (18), (20), and (16), we finally get the 
estimate 

< c\. el J \tp(x).(l + |a;|r)_1| [1 + o(l)}dx < c2 . e*[l + o(l)]. 
R 

Now, since t > 0, we have that lime_>o+ A^,((/)£) = 0. This completes the 
proof of the theorem. 

Clearly the above proof remains valid for the Fourier transform as well. 
Now, if we set fi = gi,i = 1,2, equations (11(a)) and (12) imply the Fourier-
product formula given by this. 
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C o r o l l a r y 3.1. For each two generalized functions 51,52 £ the follow-
ing holds 

(21) 51-52 « • ^91*92-

4. Preliminary results on Fourier transform in CST 

We proceed further to particular tempered distributions embedded in 
Colombeau algebra Before this, we will prove a basic property of their 
elements. It is known that the inverse Fourier transform of a distribution 
with support in R4. can be obtained as a weak limit of its (one-sided) Laplace 
transform, as the imaginary part of the variable tends to 0. The same holds 
for the elements of £fr with support in R+. 

Proposi t ion 4.1. For each generalized function f supported in R+, is 

(22) lim \ eiztf(t) dt = 2irJ(x), where z = x + ix e C. 

P r o o f . According to definition (9), we have to evaluate the difference be-
tween two sides of (22) for some representative f((pe,t) of / : 

A(<^):= lim J e ^ + ^ f i ^ t M e ^ d t - \ eixt f(^,t)(p(st) dt 
X_> + R+ K+ 

= lim \[e~xt-l ]e?xtf(<pe,t)<p(et)dt. 
x ^ 0 + R+ 

Observe that e~xt—>l, as >0+, uniformly regarding x. Since \e~xt —1| < 0 
on the half-line, the last integral above is uniformly convergent at infinity, 
and we can therefore pass to the limit as >0+ under the integral sign. This 
gives A(ipe) = 0, and the proof is complete. 

Recall next the definition of the distribution 

(23) (x ± i0)~p : ip lim ((x ± ix)~p, i/>), P G N, 

for an arbitrary ip G 5(R). Then we prove the following: 

Theorem 4.1. For each p £ N, the embeddings in of the distributions 
x^T1 and (x + z0)_p satisfy: 

(24) (x + T0)~P. 

P r o o f . One can easily check that 

(25) dxa?+(cpe,x) = px^&cx), pe N; dxH{(fe, x) = 6(<pe, x). 
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Applying Proposition 4.1 and defining equation (9), we get that for each 
pe N: 

r 1 ^ 1 ) ^ , ^ lim 2tt £ 

= lim ^ ( x + i x T 1 \ \ e i x y - ™ ^ 1 ( i p e , y W ( e y ) d y x->0+ 2tt LJ 

+ j e ^ + ^ t x f V , dy] 
R 

= : l i m [Ip-i(ip£,x + ix) + Jp-i(<fie,x + i x ) ] • 

Integrating by parts, we have used here that \t\n(p{t)—>0 as |i|—>oo for all 
n G N and i £ I , the integrated term thus being 0. For any i/> G 5(E) and 
/ € SfT with a representative f(tpe,x) denote by 

Lrp(f) := lim ( I™ /(y>e, s + ix), if>)-

Then we have 

M V i ) = T"(® + iO)-1( lim J l . e ^ - 1 ^ , ^ ' ^ ) ^ , </>(x)). 
£—' + R 

We have passed to the limit as x ~ u n d e r the integral sign on the same 
argument as in the proof of Proposition 4.1. Now, it can be checked that 

(as required by Definition 1.1) the following estimate holds: y)\ < 
c. e~p(l + \y\p). Choosing some q G N, q > p, we have for any <p € Aq, by the 
Taylor theorem and (3): e(ff{ey) = Vj)(0) + £q(p(q]{e0y) = 

Eq(p(q} (eQy), where 0 € (0,1). Denote further (pq(y) := supeeH+ q){e9y), 
which is well defined since (p £ 5(R). Due to the estimate 

Is?" 1 ' „+ l(<Pe,y)eqiftq)(eOy)i < \xp+-l(<p£,y)sqipq(y)\ 

< + |i/|p) . C l ( l + Ij/D"1 

for some c € R+ and all n € N, y 6 K, and by the theorem for dominated 
convergence, we can pass to the limit as e—>0+ under the integral sign. Since 
for any p G N we can choose q > p, then 

(26) Z^(J p - i ) 

= ^ - ( x + iO)-1/ lim \ eixyxp-1(<p£,y)eqip(q\edy)dy,^(x)) = 0. 
2tr ' 

Consider next the term Jv~\ above, by p — 1. Taking into account relation 
(5), equations (25), and the fact that 8(<pe,y) is supported in a compact 
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subset of R, we get 

(27) L^(Jq) = lim ( lim ¿-(x + ix)'1 \ e ^ e ^ d ^ y) dy,i>(x) 
£-0+ \ x-»o+ 27r 4 

¿ ( x + iO) " 1 , ^®) 

Employing further equation (25) and integrating by parts (the integrated 
part being again 0) we obtain 

-i2 — 
Jp-1 = (x + ix)~2 \xp+2((Pe,yW{ey)d 27r 

\ - i 

&i(x+x)y 

= i(x + ix) [Ip-2 + Jp-2]-

By (26), which holds for eachp G N, we get: L^(JP-1) = L^{i{x+%x)~l Jp-2) • 
Iterating the above manipulation (p — 2) times and taking into account 

(27), we obtain 

lim ( = lim ( lim ^ { p - l)\{x + iX)~p+lM) £->0+ ^ e—»0+ X->0+ 
>jP(n — IV 

This, in view of (5), proves the relation (24) for each p G N. The proof of 
the theorem is complete. 

Combining now equations (11a) and (24), we get the following 

COROLLARY 4.1. For each p G N, it holds 

(28) &{x -HO)~P « 2m~p 

We need also the following result. 

THEOREM 4.2. For eachp G N, the embedding in of the distribution x7^1 

satisfies: 

(29) x f 1 * x f 1 « x f 1 1 . 

Proof . Applying equation (10), we obtain for each p G N: 

(30) Cp-i(x) : = (x^T1 *x^T1)(v?£,x) = \ x ^ - 1 ^ , y ) x ^ T 1 ( ^ e , x-y)${ey) dy 
R 

= \ xp
+(fe,x-y)x^rl(ip£,y)£ip'(ey) dy 

P - 1 [ J r . 2 
P 

Ip Jp,p—2 

t- \x+{Ve,x-y)x+ 2(<pe,y)<p{ey)dy 
P i 
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Integrating by parts, we have again used that \t\nip(t)—>0 as |i|—>00 for all 
n G N and i £ R, the integrated term being 0. For an arbitrary ip G S(R), 
we can write 

lim (Ip,ip) = ( lim \xp+(ipe,x-y)x^T1(ipe,y)£ip'(£y)dy, ip(x)). 

The following estimate holds: 

\?+{<pe,x- y)^\ve,y)\ < c . e - 2 p + 1 ( l + \x-y\p){l + |y\p-1). 

Choosing some q G N, q > 2p — 1, we have for any ip G Aq, by the Tay-
lor theorem and (3): e(p'{ey) = eq(p^{eey), 9 G (0,1). Denote (pq(y) := 
sup£GR+ (p^q\e9y). Now, on the same argument as in the proof of (24), we 
get the estimate: 

- y)xp+'1(ifi£iy)eqip{q)(eey)\ 
< c.sq-2p+1( 1 + \x-y\p)(l + Ii/|p_1)(l + |y|n)~\ 

for some c G R+ and all n G N, x,y G R. Since tp(x) G S, by the theorem 
for dominated convergence, we can pass to the limit as e—>0+ under the 
integral. For we can choose q > 2p — 1, it therefore holds for each p G N: 

(31) lim (Ip,tl>) = 0. 
e—»0+ 

Employing further relation(25) and integrating by parts — the integrated 
part being again 0 — we obtain: 

Jp,P-2 = - \ a%~2(<pe,v)<p(ey)d$~1(<pe, X - y)} = IP+1 + J P + i , P - 3 -
R 

Thus, by (31), we get lime_>0+(Jp,p-2,V') = lime_>o+(Jp+i,p-3,i/')- Iterat-
ing the above manipulation (p — 2) times, taking into account successively 
equations (30), (31), (25), and (116), we eventually get 

lim (Cp-i(x),ip(x)) 
e—•U+ 

= lim ( J 2 p - i ,_ i ,^(x)> 

= ¿ m - 1 ) ! ( ^ x'+~1(lPe,x-y)6{(pe,y)<p(ey) dy,ip{x)) 

= A i ( ( 2 p ~ - 1 ! ) ! ( ( ^ 1 * 

This proves relation (29), for arbitrary p G N. 
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5. Generalization of the basic Mikusinski equation 
We are now ready for the final step towards the extension of the basic 

Mikusinski equation. 

Theorem 5.1. For arbitrary p £ N, the embedding in <Sr of the distributions 

x~p and 5^p~l\x) satisfy: 

(32) x-p . x-P - — - ¿ ( p - i ) ( x ) . ¿(2-1) ( x ) « x~2 p . 
L (p- i ) r 

P r o o f , (i) Applying consecutively the Fourier-product formula (21) and the 
results given by relations (28), (29), (24), we have, for arbitrary p 6 N: 

(33) (x -HO)~p . (x +7o)"P « — -HÔ) - f ) * (&(x -HO)"?) ] 

2 

2tt 
1 4tr2 

2rc i2p(p — l)!(p — 1)!^ 
1 (xp 1 * 1 ) 

1 - - >-)• 

2tr 
^(x^"1) « {x + iQ)~2p. 

i2P(2p — 1)!" 

(ii) Next we prove the following formula that translates exactly from 
distribution theory [9] into Colombeau algebra: 

— i - l i p _ 1 — 
(34) (x-HO)-p = x-p -in-.—-¿(P"1)(a;), i g l . 

( p - 1)! 

By definition, x~p = ( - 1 )p _ 1/(P - l)\dp/dxp(\a.x), p € N. Thus, for i £ l , 
we have the representation 

(35) p-pfa, x) = ¿Zlly ~pl+l T \y\<p(p) ( l 7 £ ) dy-

Here, it is taken into account that, if supp <p{x) Ç [—Z,1] for some l E M, 
then suppy>((y — x)/e) Ç [—el + x,el + x\. Also, 

(36) Sfc){<peix) = ( - 1 y-'e-'iSy^Hiy - x)/e)) 

= ( - 1 ) p - l £- p i p ( p - l \-x/e ) . 

Now, replacing (y — x)/e = v, and taking into account (35) and (36), we 
have: 

(x + iO)-P(tp£>x) 

( — 1 )2p-l 1 

= lim j —-— i (In\v+ex+ix\ + i a,rg(v+ex+ix))^p\v)dv 
{p - l)!ep 
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( _ l ) 2 p - l I 
j \ i In + ex\ + î7t[1 — H(v + ex)])ip(p\v)dv 

= p ( j In |t; + ex\^p\v)dv - Z7r j <p(p\v)dv) 
^ ' —l —x/e 

f - l ) p _ 1 

= X~P{<pe, x) - ¿7TV ¿ ( P - ^ ^ . a ) . 

This proves equality (34) for a fixed parameter function ip. When <p is run-
ning the set Ag, we get the representative class of the embeddings in SfT of 
the distributions on the left-hand side, respectively, right-hand side of (34). 
This establishes a one-to-one correspondence between these classes, which 
amounts to an equality in $T of the corresponding generalized functions. 

(iii) Consider for any p G N, the difference of the two sides of (33), taking 
into account (5): 

(x + iO)~P . (x + iO)~P - ( x + iO)~2P « 0 . 

Applying equality (34) and taking into account (6) (by d — 1), we have for 
the latter equation 

Pp.PP- ^ . „ J H ) . i H - . ¿ ( P r i ) 
[ ( p - l ) ! ] 2 (p — 1)! 

= P P . ^ P - j ^ — ^ S ^ 1 ) . S b ^ V - p t P w 0. 
( 2 p - l ) ! [(P - 1)!] 

This gives equation (32) for arbitrary p € N, and the theorem is proved. 

R E M A R K . AS is specific for the Mikusinski type products, the individual 
summands in (32) do not admit associated distribution, but their sum con-
sidered as a single entity is associated with the distribution x~2p. 
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