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MODIFIED H-TRANSFORMS IN £, ,-SPACES

Abstract. The paper is devoted to study the integral transforms

@@= ape[Eiod @Poe = [t s,
0 0

containing the H-function in the kernel, on the space £, (v € (—00,00); 1 £ 7 £ 00) of
Lebesgue measurable functions f on (0, 00) such that

[e <]

dt
S [t F()" - <o for 1 £ r<oo; esssup |z” f{zx)]| < oo for r = oo.
>0
0

We show the boundedness, the representation, the range and the inversion formulas for

the transform.

1. Introduction
The paper deals with the integral transforms

T E (CLi,C!,;)lp7 dt
(1.1) (Hf) (=)= \ Hpo | = T~ (2>0)
(S) POLE] (05, Bi)rel” 7
and
< -t (ai,ai)lp' dt
(1.2) (H?f)(z)= \ Hpg'| = T — (z>0)
R Nt
containing the H-function in the kernel. For integers m,n,p,q (0 £ m < gq,
0 £ n £ p), for complex a;, b; and positive a;, 3; (1 SiSp; 1S5S q)

such a function is defined by
(ai,ai)l,p:I _ 1 S g{m,n[(ai’ai)l,P
(bjy Bidrad  2mi o P9 [(b5, )1,
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where
m (ai;ai)lp
(1.4) H(s)=H ’"[ s
P9 L (b, Bi)1,4

H;'n=1 (b + Bys) [Timy T(1 - ai — ais)

teng1 (@i +0i8) [T] g T(1 ~ b5 = Bys)’

the contour £ is specially chosen in the complex plane C (if an empty
product in (1.4) occurs, then it is taken to be one). The theory of this func-
tion may be found in [3, Section 1.19], [2], [16, Chapter 1], [25, Chapter 2]
and [18, § 8.3].

In the paper we study the transforms (1.1) and (1.2) in the spaces £, ,
of complex-valued Lebesgue measurable functions f on Ry = (0,00) such
that || f||,,r < 0o, where 1 £ r £ o0, ¥ € R = (—~00, 00),

T v Tdt l/r
(15) Ife = (J1es0rg) " asr<)
and
(16) fllee = esssupla? f(&)] (= o).
z€ERL

We obtain the properties of the transforms H?* and H? such as the bound-
edness, the representation and the range and give their inversion formulas.

We note that the boundedness and inversion of the modified H-trans-
form (1.1) were studied by McBride and Spratt [17] in a certain subspace of
£.,r. We also mention that several authors have investigated the mapping
and composition properties for the transforms of the form (1.1) and (1.2), in
which the integration over R, is replaced by the integration over (0,z) and
(z,00), respectively. Such operators with the HJ"9 -function in the kernels
were studied by Kiryakova [14] and by Kalla and Kiryakova [8] (see also
the book by Kiryakova [15]) in the space L,.(R,) (r 2 1), and by Raina
and Saigo [19] and by Saigo, Raina and Kilbas [22] in spaces of tested and
generalized functions by McBride. The latter results were extended by the
authors [10] and [21] to more general transforms with H7.-function as
kernels.

The transforms H! and H? are the modifications of the following inte-
gral transform with the H-function kernel

T (aiaai)lp
1.7 Hf)(z)=\ Hp " |at TLf)dt (2> 0)
o EDE =] [ (bj,ﬂj)l,q] ®

called H-transform. When a; = - = ap = 1 = -+ = B3 = 1, the
function (1.3) turns to be the Meijer G-function [3, Chapter 5.3] and (1.7)
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is reduced to the so-called integral transform with G-function kernel or
G-transform [20]. The classical Laplace and Hankel transforms, the
Riemann-Liouville fractional integrals, the even and odd Hilbert transforms,
the integral transforms involving the Gauss hypergeometric function, etc.
can be reduced to these G-transforms, whose theory and historical notices
can be found in [23, §36, §39]. There are other transforms which cannot
be reduced to G-transforms but can lead into the H-transforms given in
(1.5): the modified Laplace and Hankel transforms [23, §39.2, §36.4], the
Erdélyi-Kober type fractional integration operators (2.15) and (2.16), below,
(23, §18.1], the transforms involving the Gauss hypergeometric function as
kernel [23, §23, §39], the Bessel-type integral transforms [5], and so on.

The integral transform (1.7) was first considered by Fox [4] while in-
vestigating G- and H-functions as symmetrical Fourier kernels. Many au-
thors investigated the properties of the H-transforms in L;(0, 00), L2(0, 00)
and some special function spaces (see a short survey and bibliography in
[11]-[13]). Mapping properties such as the boundedness, the representa-
tion and the range of the H-transform (1.7) were proved independently
by the authors together with Shlapakov in [11]-[13] and with Shlapakov
and Glaeske in [6]—[7] and by Betancor and Jerez Diaz [1]. The invertibility
of (1.7) in £, , was given by the authors together with Shlapakov in [24]. We
note that the investigation of the boundedness, representation and range of
the H-transform (1.7) is based on the technique of Mellin transform devel-
oped by Rooney [20] for the G-transform, while the invertibility of such a
transform is due to the asymptotic behavior of the function H}"."(2) in (1.4)
considered by the authors in [9].

In this paper we apply the results of [11]-[13] and [6]-[7] to investigate
such properties of the H'-and H?2-transforms (1.1) and (1.2). Section 2
contains some auxiliary results, definitions and notations. The boundedness
and the representations for the the modified H-tranforms (1.1) and (1.2)
in the space £, are presented in Section 3. Sections 4 and 5 deal with
the same for the space £, . Section 6 is devoted to the inversion of these
tranforms in £, ;.

2. Preliminaries

In this section we present some auxiliary results, definitions and nota-
tions which will be used later.

First we note that the modified H-transforms (1.1) and (1.2) are con-
nected with the H-transform (1.7) by the relations

(2.1) (H'f)(z) = (HEf)(z)

and



606 A. A. Kilbas, M. Saigo

(2.2) (H?f)(z) = (RH)(z),
in terms of the elementary operator R defined by
(23) (R = 21(3).

Next we note that, for f € £,, with 1 £ r < 2, the Mellin transform
M f is defined by

(2.4) Mf)(s)= | et f(eT)dr (s=o+it, o,t ER),
and, if f € £,,()£.,,1 and Re(s) = v, (2.4) coincides with the usual Mellin
transform Mf :

(2.5) Mf)(s) = | Fe)e de

0

(see [20]). It can be directly checked that, for “sufficiently good functions” f,
the Mellin transform of (1.7) is given by

(2.6) (MH f)(s) = I, 3" (s)(MF)(1 - s),

where J(*"(s) is defined by (1.4).
Following [11]-[13], [6]-[7] and [24] we use the notation

Re(b;) Re(bm)| .
(2.7) a= m‘”‘[_T"”’_T itm >0,
—00 if m= 0;
(2.8) B = min[l_ie(al)""’l—ie(an)] >0,
: - 1 n
o0 if n=0;
n p m q
(2.9) a*=Zai—— Z ai-’rZﬂj— Z Bj;
i=1 i=n+1 j=1 j=m+1
m p n q
(2.10) A= 8- Y o ay=> - > B
j=1 i=n+1 i=1 j=m+1
q P p q 5,
(2.11) A=3"6;-ay o=][Jor* ]85
Jj=1 =1 i=1 j=1

q P _
(2.12) u=ij—Zai+I%;
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Re(bmy1) — 1 Re(bg) — 1 ] )
ax | —————— 4 1, ., ——— + 1| ifg>m,
(213) ap= [ Bt B, 9
—00 if g=m;
. [Re(an+1) Re(ap) :
ATntl) L 22 %P) £
(2.14) fo = min [ -~ +1,---, o +1f ifp>n,
00 if p=n.

Note that a* = a] + a3 and A = a] — a3.

We denote by £ the exceptional set of the function H defined in (1.4)
which is the set of real numbers v such that o <1 —v < 3 and H(s) has a
zero on the line Re(s) = 1 — v. The symbol [X, Y] represents the collection
of bounded linear operators from a Banach space X into a Banach space Y.
Specially, [X, X] is denoted by [X].

We also need the Erdélyi-Kober type fractional integral operators [23,
§18.1] defined for , n € C (Re(a) > 0) and o > 0 by
| (@ — ) et (t)dt (z > 0),
0

O_m—cr(a+77)
(215) UGsionf)@) = —Fry—

T

the modified Hankel and Laplace transforms [23, §39.2, §36.4] defined, for
real k # 0 and for the Bessel function of first kind J,(z) of order n € C, by

(217)  (Hy,qf)(2)

= T(ﬂﬂt)l/"_m%(lkl(xt)l/")f(t)dt (Re(n) > —1,z > 0),
0

(2.16)  (I%,, f)(z) =

[=e}

(2.18) (Lo f)(z) = S (a:t)_“e‘lk‘(“)l/kf(t)dt (a € C,z > 0),
0

and elementary operators M and W defined for ( € C and 6 > 0 by

(2.19) (Mc f)(z) = 2 f (),

(2.20) wsn@) = 1(3):

The following assertions for the operators R in (2.3) and above M, W
are verified directly (see also [20, Section 2]).

LEMMA 2.1. Let veER and 1 £ r £ oo.
(a) R is an isometric isomorphism of £,, onto £1_,, and

(2.21) RS- = [ fllur-
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(b) M with ¢ € C is an isometric isomorphism of £, onto £,_ge(¢),r
and

(2.22) WM fllo—re(e)r = | Fllvr-
(c) W5 with 6 > 0 is an isomorphism of £, , onto £, , and
(2-23) ||W<5f”V,T = 5”"”fHu,r-

LEMMA 2.2. Let f € £, ,, wherev € R and 1 S r £ 2, and let N be the
Mellin transform (2.4). Then there the following relations are satisfied

(2-24) (MRf)(s) = (M) (1 -s) (Re(s) =1-w);
(2.25) (MM f)(s) = Mf) s+ () (Re(s) = v —Re(());
(2.26) (MWsf)(s) = 67°(Mf)(s)  (Re(s) =v).

3. H'- and H?-transforms in the space £,

In this section we present some properties, including the boundedness
and the representation, of the modified H-transforms (1.1) and (1.2) in the
space £, 2. The first result for the H!-transform is given by the following
statement in which o, 3, a*, A and p are defined in (2.7), (2.8), (2.9), (2.11)
and (2.12), respectively.

THEOREM 3.1. We suppose that (i) o < v < 3 and that either of conditions
(ii) a* > 0 or (iii) a* = 0, Av+Re(u) £ 0 hold. Then we have the following
results:

(a) There is a one-to-one transform H' € [£, 2] so that the relation
(3.1) (LH™ f)(s) = H2" () (M f) (5)

holds for fe £, and Re(s)=v. If a*=0, Av+ Re(u)=0 and 1 — v €&y,
then the transform H' maps £, onto £,5.

(b) If fe L, and g € £1_,2, then the relation of fractional integra-
tion by parts

(3.2) | f@)(H ) (2) dz = | g(=)(H?f)(z) do
0 0
holds, where H? is the modified H -transform (1.2).

(c) Let \€ C,he Ry and f € £,2. If Re(\) > vh— 1, then H' f is
given by
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(33) (H')() = hat~C+0/n L g0
( —A h) (a’l’al),""(apvap) _@
t|(b1,81),- -, (ba Ba)s (=2 — 1,h)] dt  (z>0).

[e o]

S Hm n+1 m
t

If Re()\) < vh — 1, then H' f is givn by

p+1,q+1
0

(34)  (Hf)(@) = ~ha'~O+0/ L g0
(a1, 1), <+, (ap, ap), (=X, k) det (> 0).

Oon+1’n |:.’13
S (—A— 1, h),(bl,ﬂl);""(bq’ﬂq) t

p+1,q+1 t
0

(d) The transform H* is independent on v in the sense that, if v and U
satisfy (i), and (ii) or (iii), and if the transforms H' and H1 are defined in
El,',g and £33, respectively, by (3.1), then Hf = Eif for fe£,2) Lo

(e) If a* >0 orif a* =0, Av+ Re(u) < —1, then for f € £,2, H'f
is given by (1.1).

Proof. Due to the equality R(£L, 2) = £1_,,2 from Lemma 2.1(a), the results
in (a), (d) and (e) follow by virtue of the corresponding statements for the
H-transform (1.7) given in [11, Theorems 3 and 4]. In fact, taking into
account (2.6) and (2.24), we have

(3:5)  (MHf)(s) = (MHRS)(s)
=30 () (MRF)(1 = ) = H " (s)(MMF)(s),

which yields (3.1).

For “sufficiently good” functions f and g, the formula (3.2) is proved
directly. For f € £,5 and g € £;_, 2 it is sufficient to show that the both
sides of (3.2) represent bounded bilinear functionals on £,2 x £1_,2. In
view of (i) and the Schwarz inequality we have

¢
(3:6) | | S@)H 9(@)da| = | | o2 @)z (Hg)(@)]da
0 0

S 1 flv2l H glli-v2 £ Kllflu2llglli-v2,

where K > 0 is a bound for H* € [£;_,2]. Hence, the left-hand side of (3.2)
represents a bounded bilinear functional on £, 2 x £1_, 2, and the same is
for the right-hand side of (3.2), which proves (b).

The formulas (3.3) and (3.4) are proved on the basis of the corresponding
representations for the H-transform (1.7). If f€ £, 2 and Re(A\) > (1—-v)h—1
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then it is known [11, Theorem 3] that
d o0

(37)  (Hf)(@) = ha! O g O | gn e st f(e)dt,
0
where
=\ h), (a1, 1), -+, (ap, ap)
38 Hm,n+1 P :Hm,n+1 [z ( ) ) » ’ Py “Ap )
B8 Hotiann() = Hotioia |2 4, ), by, ), (<X 1,h)

For f € £,, and Re(A\) > vh — 1, in view of Lemma 2.1(a), (3.7) with f
being replaced by Rf, and (2.1) we have

(39) (H'f)(z) = (HRf)(=z)

d 1./1
1-(A+1)/h A+1)/h m,n+1
= hg!~ O/ %z( /Ry Hp+1,q+1[mt];f(z>dt,

0
which yields (3.3) (after the change t by 1/t in the integrand). (3.4) is
proved similarly by using the fact [11, Theorem 3] that, for f € £, and
Re(A) < vh — 1, the following the relation is satisfied

o0

- d m n
(310)  (Hf)(x) = ~ha!~CE/R_gOr/n | HIAI, [at] (2)dt,
0
where
. ~\h)
11 Hm+1,n _ Hm+1,n (alv al)) ) (ap’ ap)’ ( ) ]
(3 ) p+1,q+1(z) Prlatl ‘ (_’\ - 1a h)a (blngl)a Tty (bq>ﬂq)

Thus (c) is established, and the proof of the theorem is completed.
Similar examination yields £, 2-theory of the H2-transform.
THEOREM 3.2. We suppose that (i) @ < 1 — v < (8 and that either of

conditions (ii) a* > 0 or (iii) ¢* = 0, A(1 —v) + Re(u) £ 0 holds. Then
we have the following results:

(a) There is a one-to-one transform H? € [£,2,] so that the relation
(3.12) (MH?f)(s) = H" (1 = s)(Mf)(s)

holds for f € £, and Re(s) = v. If a* =0, A(1 —v) + Re(p) = 0 and
v & Ey¢, then the transform H? maps £,2 onto £, 2.

(b) If fe L,z and g € £1_,2, then the relation of fractional integra-
tion by parts

[e o] (e o]

(3.13) | f(2)(H?g)(2) de = | g(z)(H" f)(z) de

0 0
holds, where H* is the modified H -transform (1.1).
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2(c) Let A€ C,h € Ry and f € £,2. If Re(X) > (1 —v)h — 1, then
H?f is given by

(3.14) (HZ2f)(z) = —ha1)/k d% L~/

( =X h) (al,al)a""(ap’ap)
(blaﬁl) (bq’ﬂQ)’ (")‘ - Lh)

If Re(A\) < (1 —v)h —1, then

} f()dt (z > 0).

T ¢
m,n+1
X S Hp+1,q+1|:
0

(3.15) (HZf)(z) = hm('\+1)/h%w—(/\+l)/h

(al,al)a Tty (ap’ap)’ (—’\7 h)

oO‘H-m+1n [t
S (_’\_ 17h)>(b17ﬁ1)a"'a(bqvﬁq)

p+1,g+1
0

]f(t)dt (z > 0).

(d) H? is independent v in the sense that, if v and U satisfy (i), and
(ii) or (iii), and if the transforms H? and H?2 are defined in L2 and £5 2
respectively by (3.12), then H?f = ﬁf for fe£,2Ls 2.

(e) If a*>0o0rif a* =0, A(1 —v)+ Re(p) < —1, then for f € £,,
the transform H2f is given by (1.2).

Proof. Statements (a), (b), (d) and (e) are proved similarly to the cor-
responding ones in Theorem 3.1 on the basis of (2.2) and by applying the
results in [11, Theorems 3 and 4] for the H-transform. In particular (3.12)
is proved similarly to (3.5) by using (2.24) and (2.6), while (3.13) by similar
arguments to (3.6).

The representations (3.14) and (3.15) are deduced from the correspond-
ing ones for the H-transform [11, Theorem 3|, where the operator relation

(3.16) RM_.DM¢4y = ~M;1DM_(R

is invoked for the elementary operators (2.3), (2.19) and the differentiation
operator D = d/dz. In fact, for f € £, and Re(A) > (1 — v)h — 1, the
relations (2.2), (3.7), (3.16) and (2.3) imply that

o0

(H?f)(z) = (RHf)(z) = RMy_(x+1),8DMini1y/m S p+’711211 xt) f(t)dt

T dt
= — Mugy/nDMi_(aq1)/n S Hp+’1J§i1[ }f( )— o

This gives (3.14) in accordance with (3.8) and (2.19), and (3.15) may be
proved similarly. Thus the theorem is established.
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4. Boundedness, representation and range of H'-transform in £, ,

It is known ([12]-[13], [6]-[7]) that from the existence of the H-transform
(1.7) on the space £, 2 the transform can be extended to £, , for 1 < r < co
such that H € [£, ,,£1_, ] for a certain range of the value s. Moreover,
the range of H on £, , is characterized in terms of the Erdélyi-Kober type
fractional integral operators Ig ., . in (2.15) and I2,,  in (2.16) and the
modified Hankel transform H, in (2.17) and Laplace transform Lj o in
(2.18). The results are different in eight cases: (1) a* = A = Re(u) = 0;
(2) a* = A = 0,Re(p) < 0; (3) a* = 0,4 # 0; (4) af > 0,a5; > 0; (5)
ai > 0,a5 = 0; (6) af = 0,a3 > 0; (7) a* > 0,a] > 0,a5 < 0 and (8)
a* > 0,a] < 0,a3 > 0. Here the constants a*, a}, a3, A and p are defined
in (2.9) to (2.12).

Such results can also be proved for the H!- and H2-transforms on the
basis of their existence on the space £, » guaranteed in Theorems 3.1 and 3.2.
We shall obtain these results in view of the relations (2.1), (2.2) and corre-
sponding results for the H-transform (1.7). In this section we exhibit the
statements for the transform H?.

In the case a* = 0 we present the following three theorems.

THEOREM 4.1. Let a* = A=0,Re(p) =0, a<v < B and let 1 <r < co.

(a) The transform H' defined on £,2 can be extended to £, , as an
element of [£,,].

(b) If 1 < r £ 2, the transform H?' is one-to-one on £,, and there
holds the equality (3.1) for f € £, and Re(s) = v.

(¢) If fely, and g € £1_, withr' =71/(r — 1), then the relation
(3.2) holds.

(d) If 1 —v & Ey, then the transform H?' is one-to-one on £, , and

(4.1) HYL,,)=L0r

() If f € £ur,A € C and h > 0, then Hf is given by (3.3) for
Re(A) > vh — 1, while by (3.4) for Re(A) < vh — 1.

THEOREM 4.2. Let a* = A =0, Re(u) < 0, a < v < S, and let eitherm > 0
orn>0. Let 1l <r < 0.

(a) The transform H?' defined on £,2 can be extended to £, as an
element of [£y,r, Lu,s) for all s 2 r such that 1/s > 1/r + Re(u).

(b) If 1 <r £ 2, then the transform H? is one-to-one on £, . and the
equality (3.1) holds for f € £, and Re(s) = v.

(¢) Iffelyrandge &y, withl <s<ooandl S1/r+1/s<
1 — Re(u), then the relation (3.2) holds.
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(d) If1—v ¢ &y, then the transform H?' is one-to-one on £, , and

(42) Hl(’gu,r) = I:;I']lcy_a/k(’gl’yr)
fork 21 and m >0, and
(43) H1 (fw,r) = Io_ﬁk,ﬁ/k_l(f‘l’,"‘)

for0<k<1landn>0.If 1—v ¢ &y, then HY(L, ) is a subset of right
hand sides of (4.2) and (4.3) in respective cases.

() If f € £.,,) € C and h > 0, then H'f is given by (3.3) for
Re()\) > vh—1, while by (3.4) for Re(\) < vh—1. If furthemore Re(p) < —1,
then H1f is given by (1.1).

THEOREM 4.3. Let a* = 0, A # 0, a <v < 3,1 <7 < 00 and Av +
Re(p) £ 1/2 — ~(r), where

(4.4) +(r) = max [% 1- %]

Assume that m >0 4if A>0andn>0if A<O.

(a) The transform H' defined on £,2 can be extended to £, as an
element of [£,,r,L0,s] for all s with r £ s < oo such that 8" 2 [1/2 - Av —
Re(p)] ™! with s’ = s/(s —1).

(b) If 1 <r £ 2, then the transform H?! is one-to-one on £, , and the
equality (3.1) holds for f € £, and Re(s) =v.

(c) If feL,randge £y, withl1 <s<oo,1l/r+1/s21 and
Av + Re(u) £ 1/2 — max[y(r),v(s)|, then the relation (3.2) holds.

(d) If 1 —v ¢ &y, then the transform H?! is one-to-one on £, ,.. If we
setn=—-Aa—p—1for A>0and n=-AF—pu—1 for A <O, then
Re(n) > -1 and

(45) Hl('gll,'r‘) = (Mu/A—}-l/ZHA,n)(EI/Z—V—Re(u)/A,r)'

When 1 —v € Ey¢, HY(£,,) is a subset of the right hand side of (4.5).

(e) Iffe Ly, €Ch >0 and Av+ Re(u) £ 1/2 — y(r), then H' f
is given by (3.3) for Re(\) > vh — 1, while by (3.4) for Re(A) < vh — 1. If
furthemore Av + Re(u) < —1, then H' f is given by (1.1).

The results in Theorems 4.1-4.3 follow from (2.1) and the corresponding
assertions for the H-transform [7, Theorems 4.1, 4.2, 5.1 and 5.2}, if we take
into account the isometric property

(4.6) R(Su,r) = Sl—u,r

given in Lemma 2.1(a).
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From (2.1), Lemma 2.1(a) and (7, Theorem 6.1} we obtain the extension
of the H-transform from £,2 to £, (v € R;1 £ 7 £ 00) in the case
a* > 0.

THEOREM 4.4. Let a* >0, a<v<fBand 1 £r < s < oo,

(a) The transform H 1 defined on Lu,2 can be extended to £, , as an
element of [Ly.r,Lus]- If 1 £ v £ 2, then the transform H' is one-to-one
from £, , onto £, 5.

( (b) If fe Ly, and g € £1_,,s with s’ = s/(s — 1), then the relation
3.2) holds.

Similarly, by virtue of (2.1), (4.6) and the results for the H-trans-
form (1.7), we obtain the one-to-one property and the range for the H?!-
transform (1.1) in the space £, . when a* > 0.

THEOREM 4.5. Let af > 0, a3 >0, m >0, n >0, a < v < f and
w=p+aja—a3f+1andlet 1 <r < oo.

() If 1—v & Eg¢, orif 1 <r £ 2, then the transform H?! is one-to-one
on £, r.
(b) If Re(w) 2 0 and 1 — v ¢ Eq¢, then
(4'7) Hl(sv,r) = (]Laf,aLa;,1—ﬂ—w/a;)(£t/,r)-
When 1 —v € E4¢, HY(L, ) is a subset of the right hand side of (4.7).
(c) If Re(w) <0 and 1 —v ¢ Eg¢, then
(4.8) Hl(gu,r) = (I:;“{/a;,-a;aﬂ"a; )a]La;,]__ﬁ)(Ey,r).

When 1 —v € Eg, HY(L, ) is a subset of the right hand side of (4.8).

THEOREM 4.6. Let a} >0, a5 =0, m>0,a<v<fB,w=p+aja+1/2
and let 1 < r < oo.

(a) If 1—v & Ey¢, orif 1 <7 £ 2, then the transform H? is one-to-one
on £, r.
(b) If Re(w) 2 0 and 1 —v & Ey¢, then

(4.9) Hl('gu,r) = La; ,a—w/a}l (‘gl—vff‘)'

When 1 —v € Ey¢, HY(£,,) is a subset of the right hand side of (4.9).
(c) If Re(w) <0 and 1 — v & &y, then

(4.10) HY(g,,) = (1211 /et —azolat.a) (£1-ur).
When 1 —v € Eg¢, HY(L,,,) is a subset of the right hand side of (4.10).

THEOREM 4.7. Let a} =0, a3 >0, n >0, a<v<B,w=p—a3f+1/2
and let 1 <r < 0.
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(@) If 1~v & &y, orif 1 <r £ 2, then the transform H? is one-to-one
on £, ..
(b) If Re(w) 2 0 and 1 — v & &y, then
(4.11) H? (S,,,T) = ]L_a; Btw/a} (Sl—y,r).
When 1 —v € Eg¢, HY(L, ) is a subset of the right hand side of (4.11).
(c) If Re(w) <0 and 1 —v ¢ &y, then

(4.12) HY(£4,r) = (Ig%1 /a3 a38-11-03.8)(£1-0,r)-

When 1 — v € Ey¢, HY(L,,,) is a subset of the right hand side of (4.12).
THEOREM 4.8. Let a* > 0,a] >0,a3 <0, a<v<fandlet 1 <7 < o0.

(@) If 1—v & Ex, orif 1 < r £ 2, then the transform H? is one-to-one
on £,

(b) Let
(4.13) w=a'n-—-pu-— %
and let n and & be chosen as
(4.14) a"Re(n) 2 7(r) - 2a3v + Re(y), Re(n) > —v,
(4.15) Re(¢) < v.

If 1—v ¢ &y, then
(4.16) H(L,,)
= (M1/2+w/(2a3)H-203 2036 +w—-1La~ 1/247-w/(2a3) (Lv-1/2-Re(w) /(243),7)-
When 1 —v € Ey¢, HY(L,,,) is a subset of the right hand side of (4.16).
THEOREM 4.9. Let a* > 0,a] <0,a; >0, a<v < B andlet 1 <7 < oo.
(a) If 1—v & Ey¢, orif 1 <r £ 2, then the transform H? is one-to-one

on £, r.

(b) Let
(4.17) wza*n—A—u—%,
and let n and & be chosen as
(4.18) a*Re(n) 2 v(r) + 2a}(v — 1) + A+ Re(u), Re(n) >v -1,
(4.19) Re(¢) < 1-—v.
If 1 —v ¢ &y, then
(420) H'(L,.)

= (M_1/2-w/(2a1)Haa; 2076 +w-1la" 1/2-n+w/(2a1) ) (Lut1/24Re(w) /(207),7)-
When 1 ~v € €5, HY(L,,) is a subset of the right hand side of (4.20).
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The results in Theorems 4.5-4.9 follow from the relation (2.1) and the
corresponding assertions for the H-transform [7, Theorems 4.1, 4.2, 5.1
and 5.2] by taking into account the isometric property (4.6).

5. Boundedness, representation and range of H2-transform in £, ..

Similarly to the previous section the boundedness, the representation
and the range of the H2-transform (1.2) can be established by virtue of
the relation (2.2), Lemma 2.1(a) and the corresponding results for the H-
transform (1.7) given in [12]-[13] and [6]-[7].

Let first state the results in the case a* = 0.

THEOREM 5.1. Let a* = A = 0, Re(p) = 0, @ < 1 —v < (B and let
1<r<oo.

(a) The transform H? defined on £,2 can be extended to £, , as an
element of [£,.,].

(b) If 1 < r £2, the transform H? is one-to-one on £, . and the
equality (3.12) holds for f € £, , and Re(s) = v.

(c) If feLyrand g€ £1_, withr' =71/(r — 1), then the relation
(3.13) holds.

(d) If v & Eqq, then the transform H? is one-to-one on £, , and

(5.1) H2(S,,) = L.

() If fe £, e C and h > 0, then H2f is given by (3.14) for
Re(A) > (1 — v)h — 1, while by (3.15) for Re(A\) < (1 —v)h — 1.

THEOREM 5.2. Let a* = A =0, Re(p) <0, a < 1—v < f, and let either
m>0o0rn>0. Letl<r <oo.

(a) The transform H? defined on £, can be extended to £, as an
element of [£,r, L, 5] for all s 2 1 such that 1/s > 1/r + Re(p).

(b) If 1 <r <2, then the transform H? is one-to-one on £, , and the
equality (3.12) holds for f € £, and Re(s) = v.

(c) If felurandge L1 swithl<s<ooand 1 S1/r+1/s<
1 — Re(u), then the relation (3.13) holds.

(d) If v & Ey, then the transform H? is one-to-one on £, , and
(5.2) H*(L0) = Io ik (1—ay i1 (Lor)

for k21 and m >0, and

(5.3) H*(Ly,) = I} 51y ()
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for 0<k <1 and n>0. When v € €4, H*(L, ) is a subset of the right
hand side of (5.2) and (5.3) in respective cases.

() If fe Lur,A€C and h >0, then H?f is given by (3.14) for
Re(A) > (1—v)h—1, while by (3.15) for Re(X) < (1—v)h—1. If furthemore
Re(u) < —1, then H2f is given by (1.2).

THEOREM 5.3. Let a* = 0, A #0, a < 1—-v < (3,1 <r < oo and
A(l1-v)+Re(p) £ 1/2—~(r), where y(r) is defined by (4.4). Assume that
m>04i A>0andn>0if A<O.

(a) The transform H? defined on £, can be extended to £, , as an
element of [£,.r, Ly,s] for all s with r < s < 0o such that s’ 2 [1/2—A(1-v)
— Re(p)]™! with s’ = s/(s - 1).

(b) If 1 < r £2, the transform H? is one-to-one on £,, and the
equality (3.12) holds for f € £, , and Re(s) =1—v.

(c) If felorand g€ &4, withl < s < o0, 1/r+1/s21 and
A(1 —v) + Re(p) £ 1/2 — max[y(r),v(s)], then the relation (3.13) holds.

(d) If v & &y, then the transform H? is one-to-one on £, . If we set
n=-Aa—-pu—-1if A>0andn=—-Af—u—11i A <O, then Re(n) > —1
and

(54) Hz(su,r) = (M—/,L/A—I/ZH—A,W)(£3/2—V+Re(p,)/A,r)'

When v € Eg¢c, H?(L,,r) is a subset of the right hand side of (5.4).

(e) If feLur, N€C, h >0 and A(1 —v) + Re(p) = 1/2 — (1),
then H2f is given by (3.14) for Re(\) > (1 — v)h — 1, while by (3.15) for
Re(A) < (1 — v)h — 1. If furthemore A(1 —v) + Re(p) < —1, then H2f is
given by (1.2).

The results in Theorems 5.1-5.3 follow from (2.2), Lemma 2.1(a) and the
corresponding assertions for the H-transform (1.7) [7, Theorems 4.1, 4.2,
5.1 and 5.2]. The relation (5.1) is derived by using the isometric property
(4.6). The relations (5.2) and (5.3) follow by employing the directly verified
formulas

(55)  RIGi,n=1I%g,11-10R RI

—30,N -

a
IO+;0',7]—1+1/0'R'

The relation (5.4) is obtained by the relation [7, Theorems 7 and 8]
H(L, ;)= (My/at1/2Ha0)(Lo—1/2-Re(n)/a,r)

for the H-transform (1.7) and by using the relations (2.2), (4.6) and the
easily verified formulas

(5.6) RM; = M_(R, RH,=H_j,R.
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In fact,

Hl(ﬂu,r) = RH(,Q,,,T) = (RM/.L/A+1/2]HIA,77)(SU—1/2—Re(p)/A,'r)
= (M_p/a-1/2RHA ) (Lo-1/2-Re(u)/A,r)
=(M_pja-1/2H_4,7R){(£y_1/2-Re(u)/A,r)
= (M_pja-1/2H_47)(£3/2-v4Re(u)/A,r)

The extension of the H?2-transform (1.2) from £,2 to £,, for the case
a* > 0 follows from (2.2), Lemma 2.1(a) and (7, Theorem 6.1].

THEOREM 5.4. Let a* >0, a<1—-v<fBand 1 Sr < s < .

(a) The transform H? defined on £,,2 can be extended to £, . as an
element of [y, L0 s]- If 1 £ 7 £ 2, then the transform H? is one-to-one
Jrom £, onto £, ;.

(b) If fe Ly, and g € £1_, s with s’ = s/(s — 1), then the relation
(3.13) holds.

When a* > 0 by various combinations of signs of a, a3, the one-to-one
property and the range for the H?2-transform (1.2) in the space £, are
obtained on the basis of (2.2) and Lemma 2.1(a) in view of the corresponding
results for the H-transform (1.7).

THEOREM 5.5. Let a] > 0, a3 >0, m >0, n >0, a < 1-v < g,
w=p+aja—a3f+1andlet 1l <r <oo.

(a) If v & Ex, orif 1 < r <2, then the transform H? is one-to-one
on £, ..

(b) If Re(w) 2 0 and v & &y, then
(57) Hz(su,r) = (]L—a;,l—a]L—a,; ,,B+w/a§)(£u,r)-
When v € Eg¢, H?(L,,) is a subset of the right hand side of (5.7).

(c) If Re(w) <0 and v & Ey¢, then

(5.8) H? (Lvr) = (I()_-}‘-‘jl/af,(l—a)a;—ll—a; 1-aliaz,8)(Lur).

When v € Eg¢, H2(L, ) is a subset of the right hand side of (5.8).

THEOREM 5.6. Let a} > 0,a5=0,m>0,a<1-v< B, w=p+aja+1/2
and let 1 <r < 0.

(@) If v € Eg¢, orif 1 < r < 2, then the transform H? is one-to-one
on £, .
(b) If Re(w) 2 0 and v & &y, then

(5'9) H2(£l/,’f‘) = L—a;11_a+w/a; (El—l’,T)'
When v € Ey¢, H?(£, ) is a subset of the right hand side of (5.9).
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(c¢) If Re(w) <0 and v & Ey¢, then
(5.10) Hz(,ﬁl,’,.) = (I()_ﬁl/a{,(l—a)a;——lﬂ‘_a;»l_a)(’gl_"v")‘
When v € Eq¢, H2(L, ) is a subset of the right hand side of (5.10).

THEOREM 5.7. Let a; =0,a5>0,n>0,a<1l-v<B,w=p—a3f+1/2
and let 1 <1 < 00,

(@) If v € Ey, orif 1 <r <2, then the transform H? is one-to-one
on £,r.
(b) If Re(w) 2 0 and v & &y, then

(511) Hz(’gu,'r) = ]La;,l—ﬂ—UJ/G.; (‘81"”7"‘)'
When v € Eg¢c, H?(£, ;) is a subset of the right hand side of (5.11).
(c) If Re(w) <0 and v & Ey¢, then
(5.12) Hz(gu,r) = (I:;u{/a;,aa(ﬂ—l)l[‘ai,l—ﬁ)(‘gl—u,r)-
When v € Eg¢, H?(L, ) is a subset of the right hand side of (5.12).
THEOREM 5.8. Let a* > 0,a] > 0,05 <0, a<1-v<fandletl <r < oco.

(a) If v € Ey, orif 1 <r £ 2, then the transform H?Z is one-to-one
on £, .
(b) Let w be given by (4.13) and n be chosen as

(5.13) a*Re(n) 2 v(r) — 2a3(1 — v) + Re(n), Re(n) >v -1,
and let £ be chosen as in (4.19). If v & Eq¢, then
(5.14) H?*(2,,)

= (M_1/2-0/2a3)H2a3 2036 +w—11la~ 1/2-ntw/(2a3)) (Ev—1/2—Re(w)/(2a3),r)-
When v € £y, H?(£,) is a subset of the right hand side of (5.14).
THEOREM 5.9. Let a* > 0,a] < 0,a3 > 0,a<1l-v < fandletl <r < oo.

(a) If v € Ex, orif 1 < r < 2, then the transform H? is one-to-one
on £, ..
(b) Let w be given by (4.17) and n be chosen as

(5.15) a*Re(n) 2 v(r) — 2ajv + A+ Re(p), Re(n) > —v,
and let € be chosen as in (4.15). If v & Eq¢, then
(5.16) H(S,,)
= (M1/2+w/(2a)H-2a1 2a3¢+w-1L_a ,1/24n-w/(2a1) ) (Lo+1/24+Re(w) /(2a1),7)-
When v € E3¢, H%(L,,+) is a subset of the right hand side of (5.16).
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The results in Theorems 5.4-5.9 are obtained from the relation (2.2) and
the corresponding assertions for the H-transform [7, Theorems 4.1, 4.2, 5.1
and 5.2]. Especially, the relations in (5.7)-(5.12), (5.14) and (5.16) follow
from directly varified formulas

(5.17) Rlgo =L_g1-aR, Wslia =0LlioWiys,

the relations in (5.5), (5.6) and the isometric property (4.6). In these rela-
tions, if & or its power appears as a multiplier, it can be canceled, since such
a range does not depend on a constant multiplier.

We note that in the above arguments we have found the ranges by the
aid of mapping properties of the operators R, M, and Wj, of the Erdélyi-
Kober operators and of modified Hankel and Laplace transforms in £, , (see
Lemma 2.1 and [20, Theorem 5.1]).

6. Inversion of the transforms H! and H? in Lor

In Sections 4 and 5 we have used the relations (2.1) and (2.2) to obtain
the boundednes, the representations and the ranges on the space £, for
the modified H-transforms (1.1) and (1.2) due to the corresponding results
for the H-transform (1.7). Here we also apply (2.1) and (2.2) again to give
the inversion formulas for the transforms H! and H? in £, , by using the
already known inversion relations for the H-transform (1.7).

It is known [24] that, if a* = 0 under some additional conditions, the
inversion of the H-transform in £, ,-space in the respective form (3.7) or
(3.10) can be found. Namely

(6.1)  f(=)

_ d T rra—mp—n
= ha! O‘“”"@m()‘“)/h | HS TP et (HS)(t)dt (2> 0)
0

for Re(A\) < vh — 1, where

(62) BT

— ga-mp-ntl [z (=Ah), (1 —a; — o, @i)nt1,p (1 — @5 — @iy i) 1,0 ]
pHLatl (1 =b; = B, Bi)m+1,9: (1 —bj = B85, Bi)r,m, (A= LA) |’
and
(6.3) f(=)
_ d T ra—malp—
= —ha! (’\“)/hd—x-m(’\“)/h S Hi+1,;1_’1” "[zt)(Hf)(t)dt (z > 0)
0

for Re(\) > vh — 1, where



Modified H-transforms 621

(64) HI T "]

_ ga-m+lp-n [zI (1—a; — i, &i)nt1,p (1 — i — @i, 05)1,n, (—A, ) .
phatl (=A = 1,h), (1 = b5 = Bj, Bi)m+1,e, (1 = bj = B, Bi)1,m

First we deduce the inversion relations for the transform H?'. From (2.1)
we have

(65) Hg = Hlfa g= Rf € Sl—u,r-

Therefore if a* = 0, from (6.1), (6.3) and (6.5) we come to the inversion
formula for ¢ = Rf in the form

(6.6) (Rf)(=)

—_ d —-m,p—n
= ha! <*+1>/h25x<*+1)/h | B TP et (H f)(Hdt (x> 0)
’ 0

or
(6.7)  (Rf)(=z)

- d T —m —-n
= —hz! <*+1)/h35x<*+1>/h | BT et (H f)()dt (x> 0),
0

If we notice that the inverse operator R™! of R coincides with itself:
(6.8) R'=R

and the relation (3.16), the inversion formulas for the transform H?! can be
represented in terms of (6.2) and (6.4) in the form:

(6.9) f(z)
— _hx(A+1)/hiw1—(A+1)/h OSOHq—mvP—”“ t (Hlf)(t)éf (x> 0)
dz ; p+1,q+1 T T
or
(6.10)  f(=z)
= han Lo | g [t (@ (o5 o)
dz : p+l,q+1 x z ’

Now let us find the inversion relations for the second modified H-trans-
form (1.2). Since from the isometric property (4.6) and (6.8) the relation
(2.2) is equivalent to

(6.11) Hf = RH?*f
for f € £,r, then, if a* =0, (6.1) and (6.3) imply the inversion relations
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(6.12)  f(z)
= hz1—<*+1>/h%x<*+1)/hTHg,;’;jg’;ln“[xt](Rm Ht)dt (x> 0)
or °
(6.13)  f(x)
= —hml_(’\"‘l)/hd—i-:c(’\ﬂ)/h OSO H%:lrf:i’lp—"[zt](RHzf)(t)dt (z >0),
and thus 0
(6.14) f(z)
_ hml—(x+1)/h%x(x+1)/hEH‘;,;’{‘,;;’;I”“ [%] (Hzf)(t)—a—ltE (z >0)
or
(6.15)  f(z)
= -hat-venn oo | g 20 ® @0,
0

The conditions for the validity of these formulas depend on the inver-
sion formulas (6.1) and (6.2) for the H-transform (1.7) given in [24]. These
conditions are different in the cases when a* = 0, and A =0 or A # 0.

According to (6.5) and (4.6), we can use the results in [24, Theorems 3.1,
3.2, 4.1 and 4.2] with v being replaced by 1 — v for the transform H?.

THEOREM 6.1. Let a* =0, a<v <[ and ag <1 —-v < [ and let A € C,
h > 0.

(a) If Av+Re(u) =0 and f € £, 2, then the inversion formula (6.9)
holds for Re(A) > (1 —v)h — 1 and (6.10) for Re(\) < (1 —v)h — 1.

(b) If A=Re(p) =0and f € £,r (1 <7 < 0), then the inver-
sion formula (6.9) holds for Re(A) > (1 —v)h — 1 and (6.10) for Re(\) <
(1-v)h-1.

THEOREM 6.2. Let a* =0, 1 <7 < 00 and Av + Re(pu) £ 1/2 —«(r), and
let A€ C, h>0.

@y If A>0,m>0,a<v<f o <1-v < minf,{Re(p +
1/2)/A} + 1] and if f € £, ,, then the inversion formulas (6.9) and (6.10)
hold for Re(A) > (1 —v)h — 1 and Re(A) < (1 — v)h — 1, respectively.

() If A<0,n>0,a<v < g max(ag, {Re(pp +1/2)/A} +1] <
1—-v < B and if f € L,,, then the inversion formulas (6.9) and (6.10)
hold for Re(A) > (1 — v)h — 1 and Re(A) < (1 — v)h — 1, respectively.
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By virtue of (6.11) and (4.6) the results in {24, Theorems 3.1, 3.2, 4.1
and 4.2] can be applied, similarly to the above, to obtain the statements
giving conditions for the validity of the inversion formulas (6.14) and (6.15)
for the transform H?2.

THEOREM 6.3. Let a* =0, a<1—-v < 8 and ag <v < By and let A € C,
h > 0.

(d) If A(1-v)+Re(p) =0 and f € £, 2, then the inversion formula
(6.14) holds for Re(A) > vh — 1 and (6.15) for Re(A) < vh — 1.

(b) If A=Re(u) =0and f € £,, (1 <r < 00), then the inversion
formula (6.14) holds for Re(\) > vh — 1 and (6.15) for Re(\) < vh — 1.

THEOREM 6.4. Let a* =0, 1 <r < 00 and A(1 —v)+ Re(p) £ 1/2 —~(r)
andlet A€ C, h > 0.

() If A>0,m>0, a<1l-v<p, a < v < min[f, {Re(p +
1/2)/A}+1] and if f € £, ,, then the inversion formulas (6.14) and (6.15)
hold for Re(A) > vh — 1 and Re(\) < vh — 1, respectively.

(b) If A<0,n>0, a<1-v< g, max[ag, {Re(n + 1/2)/A} + 1] <
v < fo and if f € £,r, then the inversion formulas (6.14) and (6.15) hold
for Re(A) > vh — 1 and Re(\) < vh — 1, respectively.
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