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M O D I F I E D i i - T R A N S F O R M S IN £„ ) P -SPACES 

Abstract . The paper is devoted to study the integral transforms 
oo 

X 
0 0 

containing the if-function in the kernel, on the 
SpclC6 iLfi/̂ r (u € ( -00 ,00 ) ; 1 ^ r ^ 00) of 

Lebesgue measurable functions / on (0, 00) such that 00 

S dt 
\t"f(t)\r — < 00 for 1 ^ r<00; esssup \xvf(x)\ < 00 for r = 00. 

0 t * > 0 

We show the boundedness, the representation, the range and the inversion formulas for 
the transform. 

1. Introduction 
The paper deals with the integral transforms 

(1 .1) ( i / V ) ( z ) = J 
0 

and 
0 0 

(1 .2) ( H 2 f ) ( x ) = 5 

(Oi)Q!i)l,p 
(bj,ßj)l,q 

(a,i,cti) i)P 

{bj,ßj)l,ql 

dt 
f ( t ) j (s>0) 

m - (x > o) 

containing the ii-function in the kernel. For integers m,n,p,q (0 ^ m ^ q, 
0 ^ n ^ p), for complex aj , bj and positive on, (3j (1 ^ i ^ p; 1 ^ j ^ q) 
such a function is defined by 

(1.3) Tjm.n {ai,oti) i , p 

ßj)l,q J 

1 r V ( T _ / * m , n 
_ 2 ™ J ™ 

{ai,Oii) i l P 

.(bj>ßj)l,q 
z s ds, 
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where 

(1.4) = ^ 

n r = i m - + n i u m - * -
UUn+l + <*iS) UUm+l - bj - PjS) ' 

the contour £ is specially chosen in the complex plane C (if an empty-
product in (1.4) occurs, then it is taken to be one). The theory of this func-
tion may be found in [3, Section 1.19], [2], [16, Chapter 1], [25, Chapter 2] 
and [18, § 8.3]. 

In the paper we study the transforms (1.1) and (1.2) in the spaces £„ ) r 

of complex-valued Lebesgue measurable functions / on R+ = (0, oo) such 
that ||/||i,,r < oo, where l ^ r ^ o o , i / £ l = ( — 0 0 , 0 0 ) , 

(i-s) i i / i k r = ^ r / ( i ) r f j < 0 0 ) 

and 

(1.6) l l / l k o o = ess sup ^ " / ( s ) ! (r = 00) . 

We obtain the properties of the transforms Hx and H2 such as the bound-
edness, the representation and the range and give their inversion formulas. 

We note that the boundedness and inversion of the modified i i - t rans-
form (1.1) were studied by McBride and Spratt [17] in a certain subspace of 
£i/,r- We also mention that several authors have investigated the mapping 
and composition properties for the transforms of the form (1.1) and (1.2), in 
which the integration over R_)_ is replaced by the integration over (0, x) and 
(x,oo), respectively. Such operators with the i i ^ ^ - f u n c t i o n in the kernels 
were studied by Kiryakova [14] and by Kalla and Kiryakova [8] (see also 
the book by Kiryakova [15]) in the space Lr{M+) (r ^ 1), and by Raina 
and Saigo [19] and by Saigo, Raina and Kilbas [22] in spaces of tested and 
generalized functions by McBride. The latter results were extended by the 
authors [10] and [21] to more general transforms with i i ^^ - func t ion as 
kernels. 

The transforms H1 and H2 are the modifications of the following inte-
gral transform with the ii-function kernel 

00 

(1.7) (Hf)(x) = J 
0 

called i f - t ransform. When a.\ = ••• = ap = Pi = ••• = f3q = 1, the 
function (1.3) turns to be the Meijer G-function [3, Chapter 5.3] and (1.7) 

(a i ,a i ) i t P 

(bjyPih.Q 

xt 
(aj,Qj) i )P 

(&j> # 7 ) 1 , 9 . 
f ( t ) d t (x > 0 ) 
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is reduced to the so-called integral transform with G-function kernel or 
G-transform [20]. The classical Laplace and Hankel transforms, the 
Riemann-Liouville fractional integrals, the even and odd Hilbert transforms, 
the integral transforms involving the Gauss hypergeometric function, etc. 
can be reduced to these G-transforms, whose theory and historical notices 
can be found in [23, §36, §39]. There are other transforms which cannot 
be reduced to G-transforms but can lead into the i i- transforms given in 
(1.5): the modified Laplace and Hankel transforms [23, §39.2, §36.4], the 
Erdelyi-Kober type fractional integration operators (2.15) and (2.16), below, 
[23, §18.1], the transforms involving the Gauss hypergeometric function as 
kernel [23, §23, §39], the Bessel-type integral transforms [5], and so on. 

The integral transform (1.7) was first considered by Fox [4] while in-
vestigating G- and //-functions as symmetrical Fourier kernels. Many au-
thors investigated the properties of the i i-transforms in Z>i(0, oo), ¿2(0, 00) 
and some special function spaces (see a short survey and bibliography in 
[11]-[13]). Mapping properties such as the boundedness, the representa-
tion and the range of the if- transform (1.7) were proved independently 
by the authors together with Shlapakov in [11]-[13] and with Shlapakov 
and Glaeske in [6]-[7] and by Betancor and Jerez Diaz [1], The invertibility 
of (1.7) in £U i r was given by the authors together with Shlapakov in [24]. We 
note that the investigation of the boundedness, representation and range of 
the if- transform (1.7) is based on the technique of Mellin transform devel-
oped by Rooney [20] for the G-transform, while the invertibility of such a 
transform is due to the asymptotic behavior of the function H™q

n(z) in (1.4) 
considered by the authors in [9]. 

In this paper we apply the results of [11]—[13] and [6]-[7] to investigate 
such properties of the H 1 - a n d ii"2-transforms (1.1) and (1.2). Section 2 
contains some auxiliary results, definitions and notations. The boundedness 
and the representations for the the modified i i - tranforms (1.1) and (1.2) 
in the space £^2 are presented in Section 3. Sections 4 and 5 deal with 
the same for the space £„>r. Section 6 is devoted to the inversion of these 
tranforms in £u > r . 

2. Preliminaries 
In this section we present some auxiliary results, definitions and nota-

tions which will be used later. 
First we note that the modified i i-transforms (1.1) and (1.2) are con-

nected with the i f- t ransform (1.7) by the relations 

(2.1) ( H V ) ( s ) = (HRf)(x) 

and 
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(2.2) (H*f)(x) = (RHf)(x), 

in terms of the elementary operator R defined by 

(2.3) W ) M = i / ( i 

Next we note that, for / € £„)7. with 1 ^ r ^ 2, the Mellin transform 
dJlf is defined by 

oo 

(2.4) (Wlf)(s)= J e ( C T + i t ) T/(eT)dr (s = a + it, a, t G R), 
— oo 

and, if / G £ViT f ] and Re(s) = u, (2.4) coincides with the usual Mellin 
transform 9JIf : 

(2.5) (mf)(s) = S fity^dt 

(see [20]). It can be directly checked that, for "sufficiently good functions" /, 
the Mellin transform of (1.7) is given by 

(2.6) WHf)(s) = XZ?(s)(mf)(l - s), 

where is defined by (1.4). 
Following [11]—[13], [6]-[7] and [24] we use the notation 

(2.7) a = } m a x 

-oo 

(2.8) 0 = ' m i n 

oo 

Re(fri) Re(6m) 
01 ''"' 0m 

1 — Re(ai) 1 — Re(a n ) 
Ql Ctr 

if m > 0, 

if m = 0; 

if n > 0, 

if n = 0; 

(2.9) a* = Y , < * i - E «i + E ^ - - E 
¿=1 i=n+1 J = 1 j=m+l 

m p n q 
(2.10) a ; = E & - E a2 = E Q i ~ E 

j=1 i=n+l ¿=1 j=m-fl 

(2.11) z\ = e ^ - E « M « = 
J=1 i=l 1=1 j=1 

(2.12) + 

j=1 ¿=1 
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(2.13) Q0 = 

(2.14) P0 = 

max 

-oo 

mm 

oo 

Re(frm+i) 
Pm+l 

Re(a n + i ) 
otn+1 

+ 1,-
Re(bq) 

+ V 
Re(ap) 

a v 
+ 1 

+ 1 if q > m., 
if q = m; 

if p > n, 
if p = n. 

Note that a* = o j + and A = a{ — 
We denote by £ ^ the exceptional set of the function IK defined in (1.4) 

which is the set of real numbers v such that a < 1 — v < (3 and IK(s) has a 
zero on the line Re(s) = 1 — v. The symbol [X, Y] represents the collection 
of bounded linear operators from a Banach space X into a Banach space Y. 
Specially, [X, X} is denoted by [X]. 

We also need the Erdelyi-Kober type fractional integral operators [23, 
§18.1] defined for a , 77 £ C (Re(a) > 0) and a > 0 by 

nT-<j(a+T]) x 

(2.15) ( / o V , , / ) ( * ) = r ( a ) S - n ^ t ^ - ' f m ( x > o ) , 

<77J 
(2.16) „,„/)(*) = 5 («* - x ' r - w — ^ m d t (x > 0), 

^ ' x 
the modified Hankel and Laplace transforms [23, §39.2, §36.4] defined, for 
real k ^ 0 and for the Bessel function of first kind Jv{z) of order 77 G C, by 

(2.17) ( M m / ) ( x ) 
00 

= J {xt)1'k-V2Jv(\k\(xt)1'k)f(t)dt (Refa) > -l,x > 0), 

(2.18) (L k,alf)(x)=\(xt)-ae |fc|(xt) 1/fc f{t)dt (a € C,x > 0), 

and elementary operators M£ and W& defined for £ e C and S > 0 by 

(2-19) (M(f)(x) = x<f(x), 
(2.20) (W5f)(x) = f ( -x 

The following assertions for the operators R in (2.3) and above M^, W5 
are verified directly (see also [20, Section 2]). 

LEMMA 2.1. Let v e R and 1 ^ r ^ 00. 

(a) R is an isometric isomorphism of onto £ i - „ , r and 
(2.21) l | i i / l | l - , , r = 
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(b) with £ G C is an isometric isomorphism of £,v<r onto r 

and 

(2-22) ||Mc/t_Re(c)iT. 

(c) Wg with 5 > 0 is an isomorphism of onto £„)7. and 

(2-23) \\Wsf\\l/,r = S-/\ 

LEMMA 2.2. Let f G £ „ , r , where u G R and 1 £ r ^ 2, and let Wl be the 
Mellin transform (2.4). Then there the following relations are satisfied 

(2.24) (MRf)(s) = (Mf)(l - s) (Re(s) = 1 - «/); 
(2.25) WMcf)(s) = (imf)(s + C) (Re(s) = * - Re(C)); 
(2.26) WWsf)(s) = 6-s(mf)(s) (Re(s) - i/). 

3. i f 1 - and JFf2-transforms in the space £„,2 
In this section we present some properties, including the boundedness 

and the representation, of the modified if-transforms (1.1) and (1.2) in the 
space £„,2- The first result for the if1-transform is given by the following 
statement in which a, ¡3, a*, A and /I are defined in (2 .7 ) , (2 .8 ) , (2 .9 ) , ( 2 .11 ) 
and (2.12), respectively. 

THEOREM 3.1 . We suppose that (i) a < u < ¡3 and that either of conditions 
(ii) a* > 0 or (iii) a* = 0, Av+Re(/j,) ^ 0 hold. Then we have the following 
results: 

(a) There is a one-to-one transform H1 G [£^,2] so that the relation 

(3.1) (mH1f)(s) = X™'qn(s)(W)(s) 

holds for f G £„,2 and Re(s) = iA If a* = 0, Av + Re(/x) = 0 and I — v 
then the transform H1 maps £„,2 onto £„,2-

(b) If f G £„,2 and g G £1-1/,2, then the relation of fractional integra-
tion by parts 

00 00 

(3.2) J dx = \ g(x)(H2 f)(x) dx 
0 0 

holds, where H2 is the modified H-transform ( 1 .2 ) . 

(c) Let A G C, h G K+ and f G £„,2. If Re(A) >uh-l, then H1 f is 
given by 
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(3.3) (H1 f)(x) = ^ - ( M - D / * " (A+D/* 
ax 

HP+1, 
n+1 

9+1 
(-X,h),(a1,ai),-• • ,(ap,ap) 

(bi,/?!), - - •, ( - A - 1,/ )̂ 
fit) dt (x > 0). 

If Re(A) < uh — 1, i/ien i i 1 / is givn by 

(3.4) ( i i 1 / ) ^ ) = - h x ' - ^ V ^ x ^ / » 
ax 

m+l,n 
p+1,9+1 

(«•1, ai), • • •, (ap, ap), (—A, h) 
dt (x > 0). 

(d) The transform, H1 is independent on v in the sense that, if v and v 
satisfy (i), and (ii) or (iii), and if the transforms H1 and H1 are defined in 
£„,2 and respectively, by (3.1), then H1 f = i i 1 / for f € Shv,2 f)£>v,2-

(e) If a* > 0 or if a* = 0, Av + Re(/x) < - I , then for f € £„)2, H1 f 
is given by ( 1 . 1 ) . 

P r o o f . Due to the equality R{£,u% 2) = £1-^,2 from Lemma 2.1(a), the results 
in (a), (d) and (e) follow by virtue of the corresponding statements for the 
if-transform (1.7) given in [11, Theorems 3 and 4]. In fact, taking into 
account (2.6) and (2.24), we have 

(3.5) ( 3 7 I H 1 / ) ^ ) = 0 M H R f ) ( s ) 
= H™<qn(s)(TlRf)( 1 -s) = X™>qn(s)(mf)(s), 

which yields (3.1). 
For "sufficiently good" functions / and g, the formula (3.2) is proved 

directly. For / £ £^2 and g £ £i_„,2 it is sufficient to show that the both 
sides of (3.2) represent bounded bilinear functionals on £^2 x £1-1/,2- In 
view of (i) and the Schwarz inequality we have 

(3.6) I \f(x)(H1g)(x)dx = I J [x"-1'2f(x)][x-''+1'2(H1g)(x)]da 

< ^ I I H ^ I U ^ ^ A - l l / H ^ l l ^ l l ! ^ , 

where K > 0 is a bound for H1 € [£1-^2] • Hence, the left-hand side of (3.2) 
represents a bounded bilinear functional on £„ i2 x £1-^2, and the same is 
for the right-hand side of (3.2), which proves (b). 

The formulas (3.3) and (3.4) are proved on the basis of the corresponding 
representations for the ii-transform (1.7). If /€£„,2 and Re(A) > (l—u)h—l 
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then it is known [11, Theorem 3] that 

•A 
dx 

j ° ° 

(3.7) (Hf)(x) = teMA+i)/* * (A+i)/* j H ^ n + i + i [ x t ] f { t ) d t ^ 

where 

(3.8) H ^ + 1 ( z ) = 
(-A, h), (ai, ai) , • • •, (ap, a p ) 

For / 6 £Vi2 and Re(A) > vh — 1, in view of Lemma 2.1(a), (3.7) with / 
being replaced by Rf, and (2.1) we have 

(3.9) (H1f)(x) = (HRf)(x) 

= h x ' - W ^ x W * \ [xt]\f Q)cit, 

which yields (3.3) (after the change t by 1/t in the integrand). (3.4) is 
proved similarly by using the fact [11, Theorem 3] that, for / € £„,2 and 
Re(A) < uh — 1, the following the relation is satisfied 

j °° 
(3.10) (Hf)(x) = - h x i - W ^ x W " J H^+1[xt]f{t)dt, 

o 
where 

i-m+l,n / \ Tjm+l,n (3.11) H ^ n + l ( z ) = H ^ q n + 1 
(ai, ai) , • • •, (ap , ap), (-A, h) 

(-A-1,/ i ) , (6 1 , /3 1) , - -- , (6 ? , /3 < 3)J 
Thus (c) is established, and the proof of the theorem is completed. 

Similar examination yields ¿^-theory of the i f 2-transform. 

THEOREM 3.2. We suppose that (i) a < L — v < f3 and that either of 
conditions (ii) a* > 0 or (iii) a* — 0, A( 1 — u) + Re(/i) ^ 0 holds. Then 
we have the following results: 

(a) There is a one-to-one transform H2 £ [£i/,2,] so that the relation 

(3.12) (9JIH2f)(s) = 1 - s)(Tlf)(s) 

holds for f € £^,2 and Re(s) = v. If a* = 0, A( 1 — v) + Re(^) = 0 and 
v 0 Sj{, then the transform H2 maps £„,2 onto £„,2-

(b) If f G £„,2 and g € £i-i/,2; then the relation of fractional integra-
tion by parts 

oo oo 
(3.13) S f(x)(H2g)(x) dx = J 5 ( a ; ) ( f i 1 / ) ^ ) dx 

0 0 
holds, where H1 is the modified H-transform (1.1). 
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(c) Let A G C,h G M+ and f G £„,2- // Re(A) > (1 - v)h - I, then 
H2f is given by 

(3.14) (H2 f)(x) = 
ax 

HP+1, 9 + 1 

( - A , h), ( a i , a i ) , • • •, (ap, ap) f(t)dt (x > 0). 

If Re(A) < (1 - v)h - I, then 

d 
(3.15) ( H 2 f)(x) = hxWh-^x~WH 

dx 

x f rrm+l,n 
J ) P+l.9+1 

(ai,ai), • • •, (ap,ap), (-A,h) 
(-\-l,h),(b1,(31),---,{bq,(3g)\ 

f(t)dt (x>0). 

(d) H2 is independent v in the sense that, if v and u satisfy (i), and 
(ii) or (iii), and if the transforms H2 and H2 are defined in £^2 and 
respectively by (3.12), then H2f = H*f for f 6 £„)2 f l ^ . a -

(e) If a* > 0 or if a* = 0, A( 1 - v) + Re(/z) < - 1 , then for f G £„ i 2 , 
the transform H2f is given by (1.2). 

P r o o f . Statements (a), (b), (d) and (e) are proved similarly to the cor-
responding ones in Theorem 3.1 on the basis of (2.2) and by applying the 
results in [11, Theorems 3 and 4] for the if-transform. In particular (3.12) 
is proved similarly to (3.5) by using (2.24) and (2.6), while (3.13) by similar 
arguments to (3.6). 

The representations (3.14) and (3.15) are deduced from the correspond-
ing ones for the if-transform [11, Theorem 3], where the operator relation 

(3.16) 

is invoked for the elementary operators (2.3), (2.19) and the differentiation 
operator D = d/dx. In fact, for / G £^2 and Re(A) > (1 — v)h — 1, the 
relations (2.2), (3.7), (3.16) and (2.3) imply that 

(.H2f)(x) = (RHf)(x) = RM (\+i)/hDM(x+i)/h \ H^+i^mdt 

= - M{x+i)/hDM1_^x+i)/h \ ™ 
0 

71+1 
9 + 1 '<4 

This gives (3.14) in accordance with (3.8) and (2.19), and (3.15) may be 
proved similarly. Thus the theorem is established. 
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4. Boundedness , representat ion and range of i f ^ t r a n s f o r m in £„ )r 

It is known ([12]—[13], [6]-[7]) that from the existence of the i f - t ransform 
(1.7) on the space £^2 the transform can be extended to £U t r for 1 < r < 00 
such that H G [£i/,r, £1-1/,s] for a certain range of the value 5. Moreover, 
the range of H on £„ ) r is characterized in terms of the Erdelyi-Kober type 
fractional integral operators ô+;<t,?7 (2-15) and in (2.16) and the 
modified Hankel transform Hjt^ in (2.17) and Laplace transform in 
(2.18). The results are different in eight cases: (1) a* = A = Re(/x) = 0; 
(2) a* = A = 0, Re(/x) < 0; (3) a* = 0, A ± 0; (4) a j > 0,a*2 > 0; (5) 
a{ > 0,a£ = 0; (6) o j = 0 > 0; (7) a* > 0 , a j > 0,a£ < 0 and (8) 
a* > 0 , a j < 0,02 > 0. Here the constants a*, a*, A and ^ are defined 
in (2.9) to (2.12). 

Such results can also be proved for the H1- and i i 2 - t ransforms on the 
basis of their existence on the space £„,2 guaranteed in Theorems 3.1 and 3.2. 
We shall obtain these results in view of the relations (2.1), (2.2) and corre-
sponding results for the i f - t ransform (1.7). In this section we exhibit the 
statements for the transform H1. 

In the case a* = 0 we present the following three theorems. 

THEOREM 4.1. Let a* = A = 0, Re(/i) = 0, a < v < /3 and let 1 < r < 00. 

(a) The transform H1 defined on £^2 can be extended to £„)7. as an 
element of [£„,7-]. 

(b) If 1 < r ^ 2, the transform H1 is one-to-one on £„)r and there 
holds the equality (3.1) for f G £VtT and Re(s) = v. 

(c) If f G £„, r and g G £1 -„,r ' with r' = r/(r — 1), then the relation 
(3.2) holds. 

(d) If 1 — v ^ then the transform H1 is one-to-one on £,u<r and 

(4.1) J*"1 (£„,.) = £„,r-
(e) If f G G C and h > 0, then H1f is given by (3.3) for 

Re(A) >uh- I, while by (3.4) for Re(A) <uh-l. 

THEOREM 4.2. Let a* = A = 0, Re(/x) < 0, a < v < [3, and let either m > 0 
or n > 0. Let 1 < r < 00. 

' (a) The transform H1 defined on £„,2 can be extended to £Uir as an 
element of [£t,j7., £„iS] for all s ^ r such that 1/s > 1 / r + Re(/x). 

(b) If 1 < r ^ 2, then the transform H1 is one-to-one on 2,UtT and the 
equality (3.1) holds for f G £„ i r and Re(s) = v. 

(c) If f G £„, r and g G £i_„ , s with 1 < s < 00 and 1 5= 1 / r + 1/s < 
1 — Re(fi), then the relation (3.2) holds. 
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(d) I f l — v^L then the transform H1 is one-to-one on £J,)T. and 

(4-2) H l ( Z » , r ) = I I ? k , - a / k & » , r ) 

for k^L 1 and m > 0, and 

(4-3) H\Z1/,r) = I-£kf}/k_1(Zl/,r) 

for 0 < k 1 and n > 0 . If 1 — v G £<x, then i f 1 ^ , , ^ ) is a subset of right 
hand sides of (4.2) and (4.3) in respective cases. 

( e ) If f G £ i / , r , A G C and h > 0, then i f 1 / is given by (3 .3) for 
Re(A) > vh—1, while by (3.4) for Re(A) < uh— 1. If furthemoreRe(fj.) < — 1, 
then Hxf is given by (1 .1) . 

THEOREM 4.3 . Let a* = 0 , A ± 0 , a < v < fi, 1 < r < oo and Av + 
Re(^) ^ 1/2 — 7(r), where 

(4.4) 7 ( r ) = m a x i . i - i r r 

Assume that m > 0 if A > 0 and n > 0 if A < 0. 

(a) The transform H1 defined on £„,2 can be extended to £u>r as an 
element of [£„,r> £i/,s] for all s with r ^ s < oo such that s' ^ [1/2 — Av — 
Re(fi)}-1 with s' = 's/(s - 1). 

(b) If 1 < r ^ 2, then the transform H1 is one-to-one on £„)r and the 
equality (3.1) holds for f G £Vi1. and Re(s) = v. 

( c ) If f G £„ i 7 . and g G £1-,/ ,« with 1 < s < 00, 1/r + 1/s ^ 1 and 
Av + Re(fi) ^ 1 / 2 — m a x [ 7 ( r ) , 7 ( s ) ] , then the relation (3 .2) holds. 

(d) If 1 — v £ then the transform H1 is one-to-one on £„)r. If we 
set 7] = — Aa — /x — 1 for A > 0 and 77 = — A/3 — /z — 1 for A < 0, then 
Re(7j) > — 1 and 

(4.5) i i 1 ( £ I / i T . ) = ( M M / z i + i / 2 E I / \ ^ ) ( £ 1 / 2 _ ^ _ R e ( i / ) / a , r ) -

WTien 1 — 1/ G i i 1 ( £ l / ) r ) i s a subset of the right hand side of (4 .5) . 

( e ) If f G £ „ , r , A e C , / i > 0 a n d z i f + Re(/x) ^ 1 / 2 - 7(7-), i / i en i f 1 / 

¿s given by (3 .3) / o r R e ( A ) > 1//1 — 1, w/it le by (3 .4) for R e ( A ) < uh - 1. // 
furthemore Av + Re(fi) < — 1, then H1 f is given by (1 .1) . 

T h e r e s u l t s i n T h e o r e m s 4 . 1 - 4 . 3 f o l l o w f r o m (2.1) a n d t h e c o r r e s p o n d i n g 

a s se r t i on s f o r t h e i T - t r a n s f o r m [7, T h e o r e m s 4.1, 4.2, 5.1 a n d 5.2], i f w e t a k e 

i n t o a c c o u n t t h e i s o m e t r i c p r o p e r t y 

(4.6) i ? ( £ „ , P ) = £ i - v , r 

g i v e n i n L e m m a 2 .1 (a ) . 
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Prom (2.1), Lemma 2.1(a) and [7, Theorem 6.1] we obtain the extension 
of the if1-transform from £^2 to (u € R, 1 ^ r ^ 00) in the case 
a* > 0. 

THEOREM 4.4. Let a* > 0, a < v < P and 1 £ r ^ s ^ 00. 

(a) The transform H1 defined on £„;2 can be extended to £„iT. as an 
element of [ £ „ , , - , I f 1 = ^ = 2, then the transform H1 is one-to-one 
from £j/,r onto £„iS. 

(b) If f £ £„,r and g € £1 _„)S' with s' — s/(s — 1), then the relation 
(3.2) holds. 

Similarly, by virtue of (2.1), (4.6) and the results for the ii-trans-
form (1.7), we obtain the one-to-one property and the range for the H1-
transform (1.1) in the space £VtT when a* > 0. 

THEOREM 4 .5 . Let a j > 0 , > 0, m > 0, n > 0 , a < v < /3 and 
ui = fi + a ja — a^fl + 1 and let 1 < r < 00. 

(a) If 1 — v £ £<x, or if 1 < r ^ 2, then the transform H1 is one-to-one 
on £„j7-. 

(b) If Re(a>) ^ 0 and 1 — u £ then 

( 4 . 7 ) i f 1 ( £ „ , r ) = (La- i QLa . ,l-/3-0)/a;)(-Cf,r)-

W7ien 1 — 1/ e ¿ ^ if1(£1 / ) i . ) is a subset of the right hand side of (4.7). 
(c) If Re(w) < 0 and 1 — u $ £<x, then 

(4.8) H\Zu,r) = ( 7 - - / a . _ a . a L a I , Q L a . , ! _ , , ) ( £ , , r ) . 

When 1 - v e i f 1 (£„,,.) zs a subset of the right hand side of (4.8). 

THEOREM 4 . 6 . Le i a^ > 0 , a*2 — 0, m > 0, a < v < f3, u — fi + a{a + 1 / 2 
and let 1 < r < 00. 

(a) If 1 — u ^ or if 1 < r ^ 2, i/ien i/ie transform H1 is one-to-one 
on £„)r. 

(b) 7/ Re(w) ^ 0 and 1 — v £ £<x, then 

(4.9) H 1 ( £ I / , r ) = L a i , a _ w / a i (£ !_ , , r ) . 

WTien 1 — 1/ G fjc, i f 1 (£„,,-) is a subset of the right hand side of (4.9). 
(c) If Re(u;) < 0 and 1 — v # £j{, then 

( 4 . 1 0 ) = ( l : ? 1 / a ^ a . i a L a h a ) ( Z l - » , r ) . 

When I — 1 / 6 £<x, i i 1 ( £ v , r ) is a subset of the right hand side of ( 4 . 1 0 ) . 

THEOREM 4 .7 . Let A* = 0, > 0, n > 0 , a < v < (3, u = n - al(3 + 1 / 2 
and let 1 < r < 00. 
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(a) If 1 — v $ £ o r if 1 < r ^ 2, then the transform H1 is one-to-one 
on 2>UtT. 

(b) If Re(w) ^ 0 and 1 - v g then 

(4-11) i f 1 (£„, , . ) = L _ q j i / 3 + a , / a . ( £ i _ „ , r ) . 

When 1 — v G H1(Sll/>r) is a subset of the right hand side of ( 4 . 1 1 ) . 

( c ) If Re(a>) < 0 and 1 — u ^ £<x, then 

( 4 . 1 2 ) H H & U . R ) = 

When 1 — u G £<x, H1(2,„!r) is a subset of the right hand side of ( 4 . 1 2 ) . 

T H E O R E M 4 . 8 . Let a* > 0 , > 0 , < 0 , a < v < ¡3 and let 1 < r < oo . 

(a) If l — i/ 0 or if 1 < r ^ 2, then the transform H1 is one-to-one 
on £Vir. 

( b ) Let 

( 4 . 1 3 ) u = a* 

and let rj and £ be chosen as 

(4.14) a*Re( r? ) ^ 7 ( r ) - 2a*2v + Re(fi), Re(r?) > -u, 

( 4 . 1 5 ) R e ( 0 < v. 

If 1 — v ^ then 

(4 .16) 

When 1 — v G £jt> H1(£,Utr) is a subset of the right hand side of ( 4 . 1 6 ) . 

T H E O R E M 4 . 9 . Let a* > 0 , a^ < 0 , at, > 0 , a < 1/ < (3 and let 1 < r < 0 0 . 

(a) If l — or if 1 < r ^ 2, then the transform H1 is one-to-one 
on £t/tr. 

( b ) Let 

(4.17) w = a * r j - A - f j i - ^ , 

and let ri and £ be chosen as 

(4 .18) a*Re{r])^^(r) + 2al(u-l) + A + Re(fi), Re(r]) > v - 1, 

(4 .19) R e ( 0 < l - i / . 

If 1 — v £ £<x, then 
( 4 . 2 0 ) H 1 ^ ) 

= ( M _ 1 / 2 _ U , / ( 2 A I ) ] H L 2 a i l 2a I i+a ; - L L a . i i / 2 -^+a; / (2a I ) ) (^+ l /2+Re ( A ) ) / ( 2a I ) , R - ) -

When 1 — v G £<yt, H1{£ll/^r) is a subset of the right hand side of ( 4 . 2 0 ) . 
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The results in Theorems 4.5-4.9 follow from the relation (2.1) and the 
corresponding assertions for the if-transform [7, Theorems 4.1, 4.2, 5.1 
and 5.2] by taking into account the isometric property (4.6). 

5. Boundedness, representation and range of i f 2-transform in 
Similarly to the previous section the boundedness, the representation 

and the range of the //2-transform (1.2) can be established by virtue of 
the relation (2.2), Lemma 2.1(a) and the corresponding results for the H-
transform (1.7) given in [12]—[13] and [6]-[7]. 

Let first state the results in the case a* = 0. 

T H E O R E M 5.1. Let a* = A = 0, Re(/x) = 0, a < I - v < ¡3 and let 
1 < r < oo. 

(a) The transform H2 defined on £„,2 can be extended to £„)T- as an 
element of [£i/,r]-

(b) If 1 < r Sj 2, the transform H2 is one-to-one on £„,,. and the 
equality (3.12) holds for f G £u,r and Re(s) = v. 

(c) If f G £„j7. and g G £i-u,r' with r' = r/(r — 1); then the relation 
(3.13) holds. 

(d) If v & S-x, then the transform H2 is one-to-one on and 

( 5 . 1 ) H 2 ( £ „ , r ) = £ „ , r . 

(e) If f G fij/.rjA G C and h > 0, then H2f is given by (3.14) for 
Re(A) > (1 - v)h - 1, while by (3.15) for Re(A) <{l-v)h-\. 

T H E O R E M 5.2. Let a* = A = 0, Re(/x) < 0 , a < l — v < f3, and let either 
m > 0 or n > 0. Let 1 < r < oo. 

(a) The transform H2 defined on £„,2 can be extended to £„jr as an 
element of for all s ^ r such that 1 /s > 1/r + Re(^x). 

(b) If 1 < r ^ 2, then the transform H2 is one-to-one on £^r and the 
equality (3.12) holds for f G £„,,. and Re(s) = v. 

(c) If f G £„>r and g G £i-i/)S with 1 < s < oo and 1 ^ 1/r + 1/s < 
1 — Re(/x), then the relation (3.13) holds. 

(d) If v then the transform H2 is one-to-one on £„>r and 

for k ^ 1 and m > 0, and 

( 5 . 3 ) i f 2 ( £ l / i r ) = / _ ; f c ( / 3 _ 1 y A . ( £ i / , r ) 
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for 0 < k ^ 1 and n > 0. When u G H2(2,Utr) is a subset of the right 
hand side of (5.2) and (5.3) in respective cases. 

(e) If f G A G C and h > 0, then H2 f is given by (3.14) for 
Re(A) > (l-u)h-i, while by (3.15) for Re(A) < (l-u)h-l. If furthermore 
Re(^z) < —1, then H2f is given by (1.2). 

T h e o r e m 5 .3 . Let a* = 0 ; A ^ 0 , a < 1 - v < (3, 1 < r < oo and 
A(1 — v) + Re(/i) ^ 1/2 —7(r), where-y(r) is defined by (4.4). Assume that 
m > 0 if A > 0 and n > 0 if A < 0. 

(a) The transform H2 defined on £^2 can be extended to £„)r as an 
element of for all s with r ^ s < 00 such that s' ^ [1/2—A(l—u) 
- Re(n)}-1 with s' = s/{s - 1). 

(b) If 1 < r ^ 2, the transform H2 is one-to-one on and the 
equality (3.12) holds for f G £„)T. and Re(s) = 1 — v. 

(c) If f G £i,,r and g G £ i - „ , s with 1 < s < 00, 1/r + l / s ^ 1 and 
A( 1 — v) + Re(/x) ^ 1/2 — max[7(r), 7(s)], then the relation (3.13) holds. 

(d) If v then the transform H2 is one-to-one on £„ir. If we set 
77 = -Aa-jLi — 1 if A> 0 and 77 = -Aj3~n~ 1 Z\ < 0, i/ien Re(^) > - 1 
and 

(5.4) H 2 (£ l / > r ) = (M_ii/^_1/2IHI_/li7?)(£3/2_i,+Re(ix)/4,r)-

WTien G i f 2 ( £ „ > r ) is o subset of the right hand side of (5.4). 
(e) If f G £„,r> A G C, h > 0 and A( 1 - 1/) + Re(/x) ^ 1/2 - 7(7-), 

then H2 f is given by (3.14) /or Re(A) > (1 - u)h - 1, while by (3.15) for 
Re(A) < (1 - v)h - 1. If furthemore A( 1 - z/) + Re(/z) < - 1 , i/ien H2f is 
given by ( 1 . 2 ) . 

The results in Theorems 5.1-5.3 follow from (2.2), Lemma 2.1(a) and the 
corresponding assertions for the if-transform (1.7) [7, Theorems 4.1, 4.2, 
5.1 and 5.2]. The relation (5.1) is derived by using the isometric property 
(4.6). The relations (5.2) and (5.3) follow by employing the directly verified 
formulas 

(5.5) Rlo+'^n = ^-;cr,77 ~ ^O+io-.TJ-I+I/ 

The relation (5.4) is obtained by the relation [7, Theorems 7 and 8] 

H{£ Utr) = (Mfl/A+1/2WAtV)(£u_1/2-Re{ii)/A,r) 

for the W-transform (1.7) and by using the relations (2.2), (4.6) and the 
easily verified formulas 

(5.6) RM( = M^R, RUk,r, = H_fci77ii. 
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In fact, 

= -RH(£„,r) = (RM^/A+1/2^A,r1)(S'u-l/2-Re(tj.)/A,r) 

~ (M-fj./A-l/2^-A,r1R)(^w-l/2-Re(iJ,)/A,r) 

= (M-fi/A-l/2^-A,ri)(£3/2-vJrRe(fj,)/A,r) 

The extension of the ii2-transform (1.2) from £^2 to £„j7. for the case 
a* > 0 follows from (2.2), Lemma 2.1(a) and [7, Theorem 6.1]. 

T H E O R E M 5 . 4 . Let a*>0,a<l-v<f3 and 1 ^ r ^ s ^ 0 0 . 

(a) The transform H2 defined on £^2 can be extended to as an 
element of [£„iT., £„)S], If 1 ^ r ^ 2, then the transform H2 is one-to-one 
from onto £„,«. 

(b) If f G £„,r and g G £i_„ )S ' with s' = s/(s — 1), then the relation 
( 3 . 1 3 ) holds. 

When a* > 0 by various combinations of signs of al, , the one-to-one 
property and the range for the /¿^-transform (1.2) in the space are 
obtained on the basis of (2.2) and Lemma 2.1(a) in view of the corresponding 
results for the ii-transform (1.7). 

T H E O R E M 5 . 5 . Let a j > 0 , a^ > 0 , m > 0 , n > 0 , a < 1 - u < (3, 
u = /i + a j a — a^P + 1 and let 1 < r < 0 0 . 

(a) If v $ £<x, or if 1 < r ^ 2, then the transform, H2 is one-to-one 
on £„ir. 

(b) If Re(w) ^ 0 and v $ then 

(5.7) H2 (£„,r) = (L-al.l-aL-oj^+^/oJ )(£(/, r)-

WTien i/ G i f 2 ( £ „ ) r ) is a subset of the right hand side of (5.7). 
(c) 7/ Re(a>) < 0 and u £ then 

(5.8) i f 2 ( £ ^ r ) - (/¿^1/a. ( 1_Q , ) a ._1L_a ; ) i_QL_a j ) /3)(£y ! r) . 

When v G £H2(£VtT) is a subset of the right hand side of (5.8). 

THEOREM 5.6. Let > 0, Â  = 0, M > 0, a < 1-v < ¡3, u = ¡j, + a\a-\-1/2 
and let 1 < r < 0 0 . 

(a) If v $ or if 1 < r ^ 2, then the transform H2 is one-to-one 
on £„,,.. 

(b) If Re(w) ^ 0 and u £ £<x, then 

(5-9) if2(£ l / > r) = L_ a j ) 1 _ a + u ; / a j (£ i_ i y i r ) . 

When v G £<x, J i 2(£ 1 / ) r) is a subset of the right hand side of (5.9). 
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(c) If Re(w) < 0 and v g £<x, then 

(5.10) H2(£„,r) = (Io+.1/altil_a)al_1^-al,l-a)(Sil-u,r)-

When v € £<x> H2(£v,r) is a subset of the right hand side of (5.10). 

T h e o r e m 5.7. Let a j = 0 , > 0, n > 0, a < 1 - v < ¡3, u = n - a^fi + 1 / 2 

and let 1 < r < oo. 

( a ) If v £ Sjf, or if 1 < r 5i 2, then the transform H2 is one-to-one 
on £„)r. 

( b ) If Re(w) ^ 0 and v £ £then 

(5-11) H2(£,Wir) = L a j i l _ / 3 _ a ; / a . ( £ l-v>r)-

When u G £j{, H2 is a subset of the right hand side of ( 5 . 1 1 ) . 
( c ) If Re(a>) < 0 and u 0 £ t h e n 

( 5 . 1 2 ) H 2 { Z u , r ) = ( / ~ ' i / a 3 > o 3 ( / 3 _ i ) L o 3 > l - / j ) ( £ l - ^ r ) -

When v G H2(£„!r) is a subset of the right hand side of ( 5 . 1 2 ) . 

T h e o r e m 5 . 8 . Let a* > 0 , a j > 0, < 0, a < l - v < f3 and let 1 < r < o o . 

( a ) If v £ £<x, or if 1 < r ^ 2, then the transform H2 is one-to-one 
on 

( b ) Let UJ be given by (4 . 13) and r) be chosen as 

(5 .13) a*Re{r]) ^ 7 ( r ) - 2 o 5 ( l - i/) + R e ( / i ) , R e ( r ] ) > v - l , 

and let £ be chosen as in (4.19). If v 0 then 

(5 .14) i i 2 ( i V ) 

When v G £j{, H2(2,„ir) is a subset of the right hand side of ( 5 . 1 4 ) . 

T h e o r e m 5 . 9 . Let a* > 0 , a j < 0 , a^ > 0, a < l - v < (3 and let 1 < r < o o . 

( a ) If v £ £j{, or if 1 < r ^ 2, then the transform H2 is one-to-one 
on 

( b ) Let u be given by (4 . 17) and 77 be chosen as 

( 5 . 1 5 ) a*Re(77) i> 7 ( r ) - 2a\u + A + Re(/i), Re(rj) > -v, 

and let £ be chosen as in ( 4 . 1 5 ) . If v $ £<x, then 

(5 . 16) H2(Zu<r) 

= (M 1 / 2 + w / ( 2a ; )H_2a I , 2a ; e+w- l L -< i * , l / 2+ r ? - a ) / ( 2a I ) ) ( £ i /+ l / 2+Re (w) / ( 2a I ) , r ) . 

When v G £<x, H2{£v,r) is a subset of the right hand side of ( 5 . 1 6 ) . 
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The results in Theorems 5.4-5.9 are obtained from the relation (2.2) and 
the corresponding assertions for the ii-transform [7, Theorems 4.1, 4.2, 5.1 
and 5.2]. Especially, the relations in (5.7)—(5.12), (5.14) and (5.16) follow 
from directly varified formulas 

(5.17) RLkta = L-k,i-aR, WsLk,a = SLk>aW1/s, 

the relations in (5.5), (5.6) and the isometric property (4.6). In these rela-
tions, if S or its power appears as a multiplier, it can be canceled, since such 
a range does not depend on a constant multiplier. 

We note that in the above arguments we have found the ranges by the 
aid of mapping properties of the operators R, M^ and Ws, of the Erdelyi-
Kober operators and of modified Hankel and Laplace transforms in r (see 
Lemma 2.1 and [20, Theorem 5.1]). 

6. Inversion of the transforms H 1 and H 2 in £„ ,. 
In Sections 4 and 5 we have used the relations (2.1) and (2.2) to obtain 

the boundednes, the representations and the ranges on the space £U t r for 
the modified ff-transforms (1.1) and (1.2) due to the corresponding results 
for the ii-transform (1.7). Here we also apply (2.1) and (2.2) again to give 
the inversion formulas for the transforms H 1 and H 2 in £„>r by using the 
already known inversion relations for the ii-transform (1.7). 

It is known [24] that, if a* = 0 under some additional conditions, the 
inversion of the ii-transform in £„iT.-space in the respective form (3.7) or 
(3.10) can be found. Namely 

(6.1) / ( * ) 
J oo 

= hx1-(x+1Vh-gx(x+1Vh \ Hy££-?+1[xt]{Hf)(t)dt (x > 0 ) 

0 

for Re(A) < vh — 1, where 

(6-2) 
( -A,h), (1 - a,i - ai,ai)n+itP, (1 - a, - a ^ a j ) i , n 

( 1 - bj - Pj,Pj)m+ii9, ( 1 - bj - (3j,0j)i,m, ( - A - l,h) J ' 

and 

(6.3) f(x) 
1 oo 

= 5 Hqp-^lf-n[xt}(Hf)(t)dt (x > 0 ) 

for Re(A) > vh — 1, where 

Tjq—m,p—n+l 
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(6.4) 

(1 - a» - ai,ati)n+itP, (1 - a { - ai,ai)1>n, ( - A , h ) 
( - A - 1, h), (1 - bj - 0j,0j)m+l,q, (1 - bj - ¡3j,Pj)l,r 

Tjq — m+l,p—n 
~ 11 p+1,9+1 

First we deduce the inversion relations for the transform H1. Prom (2.1) 
we have 

(6.5) H g — H1 f , g = Rf e ZX-V,T. 

Therefore if a* = 0, from (6.1), (6.3) and (6.5) we come to the inversion 
formula for g — Rf in the form 

( 6 . 6 ) (Rf)(x) 

= hxi-(A+i)/» ^ (A+i)/h J Hl^-^ixt^H1 f){t)dt (x > 0) 

or 

( 6 . 7 ) (Rf)(x) 

d = _kxi-(x+i)/h^x{\+i)/h J Hq-™+l'rnM(Hxf){t)dt (x > 0 ) , 

o 

If we notice that the inverse operator of R coincides with itself: 

(6.8) R-1 = R 

and the relation (3.16), the inversion formulas for the transform H1 can be 
represented in terms of (6.2) and (6.4) in the form: 

(6.9) /(*) 

~ n X ) n p+1,9+1 dx 

or 

(6.10) f(x) 

- h - r ( + [ rrq-m+l,p-n 
~ dx J np+l,q+l 

( i f \ f ) ( i ) - (x > 0 ) 
X 

( H V ) ( i ) f ( * > o ) . 

Now let us find the inversion relations for the second modified if-trans-
form (1.2). Since from the isometric property (4.6) and (6.8) the relation 
(2.2) is equivalent to 

(6.11) H f = RH2f 

for / € £i,tr, then, if a* = 0, (6.1) and (6.3) imply the inversion relations 
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(6 .12) f(x) 
j 00 

= J Hl-™*-?+1[xi\{RH2f)(t)dt (x > 0) 
dx 0 

or 

(6.13) / ( x ) 
1 00 

j Hq-+l+lf-n[xt}{RH2f)(t)dt (x > 0), 
dx 0 

and thus 

(6.14) f(x) 
j 

~ n X A * J ^ p + l . q + l dx 0 
or 

(6.15) f{x) 
A 00 

~ nX ) np+l,q+1 dx 0 

( J i 2 / ) ( * ) f ( x > 0 ) 

i H * f ) i t ( * > 0 ) . 

The conditions for the validity of these formulas depend on the inver-
sion formulas (6.1) and (6.2) for the //-transform (1.7) given in [24]. These 
conditions are different in the cases when a* = 0, and A = 0 or A ^ 0. 

According to (6.5) and (4.6), we can use the results in [24, Theorems 3.1, 
3.2, 4.1 and 4.2] with v being replaced by 1 — v for the transform H1. 

THEOREM 6 .1 . Let a* = 0, a < v < (3 and a0 < 1 - v < (30 and let A G C , 
h> 0 . 

(a) If Av + Re(/i) = 0 and f G £¡,,2, then the inversion formula (6.9) 
holds for Re(A) > (1 - v)h - 1 and (6.10) for Re(A) < (1 - v)h - 1. 

(b) If A — Re(/x) = 0 and f G (1 < r < 00), then the inver-
sion formula (6.9) holds for Re(A) > (1 — v)h — 1 and (6.10) for Re(A) < 
{l-v)h-l. 

THEOREM 6 .2. Let a* = 0, 1 < r < 00 and Av + Re(/x) ^ 1 / 2 - 7(7-), and 
let A G C, h > 0. 

(a) If A > 0, m > 0, a < v < ¡3, a0 < 1 - v < min[/30, {Re(^ + 
l/2)/zA} + 1] and if f G £„, r , then the inversion formulas (6.9) and (6.10) 
hold for Re(A) > (1 — v)h — 1 and Re(A) < (1 — v)h — 1, respectively. 

(b) If A < 0, n > 0, a < v < ¡3, max[a0, {Re(/x + 1 / 2 ) / A ) + 1] < 
1 — v < (3q and if f G then the inversion formulas (6.9) and (6.10) 
hold for Re(A) > (1 — u)h — 1 and Re(A) < (1 — v)h — 1, respectively. 
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By virtue of (6.11) and (4.6) the results in [24, Theorems 3.1, 3.2, 4.1 
and 4.2] can be applied, similarly to the above, to obtain the statements 
giving conditions for the validity of the inversion formulas (6.14) and (6.15) 
for the transform i f 2 . 

THEOREM 6.3. Let a* = 0,a<l-u</3 and Q0 < u < f30 and let A € C, 
h> 0. 

(a) If A( 1 — u) + Re(/x) = 0 and f € £„,2, then the inversion formula 

(6.14) holds for Re(A) > uh - 1 and (6.15) for Re(A) <uh-l. 

(b ) If A — Re(/i) = 0 and f 6 2,u>r (1 < r < 00), then the inversion 

formula (6.14) holds for Re(A) > uh — 1 and (6.15) for Re(A) < uh — 1. 

THEOREM 6.4. Let a* = 0, 1 < r < 00 and A( 1 - u) + Re(/x) ^ 1/2 - j(r) 

and let A € C, h > 0. 

(a) If A > 0, m > 0, a < 1 - u < ¡3, a0 < v < min[/30, {Re(n + 
l/2)/Z\} + l] and if f € £„,r, then the inversion formulas (6.14) and (6.15) 
hold for Re(A) > uh — 1 and Re(A) < vh — l, respectively. 

(b) If A < 0, n > 0, a < 1 - v < /3, max[a0, {Re(^ + 1/2)/A] + 1] < 
v < 0o and if f G £t>,t> then the inversion formulas (6.14) and (6.15) hold 
for Re(A) > uh — 1 and Re(A) < uh — 1, respectively. 
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