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EXISTENCE AND UNIQUENESS THEOREMS FOR
NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

Abstract. The paper is devoted to study the Cauchy-type problem for the nonlinear
differential equation of fractional order o € C, Re(a) > 0,

(Da+y)(z) = f[z,y(x)] (n — 1 <Re(a) < n, n= —[-Re(a))),
(DX *y)(at) = be, b €C (k=1,2,...,n),
containing the Riemann-Liouville fractional derivative Dg, y, on a finite interval [a, b] of
the real axis R = (—oc0, 00) in the space of summable functions L(a,b). The equivalence
of this problem and the nonlinear Volterra integral equation is established. The existence
and uniqueness of the solution y(z) of the above Cauchy-type problem is proved by using

the method of successive approximations. The corresponding assertions for the ordinary
differential equations are presented. Examples are given.

1. Introduction

Our paper is devoted to study the existence and uniqueness of the so-
lution y(z) of the nonlinear differential equation of fractional order a € C,
Re(a) > 0 (C being the set of complex numbers):

1.1)  (Dgy)(e) = flz,y(2)] (n —1 <Re(a) < n, n = —[-Re(a))),

on a finite interval [a,b] of the real axis R = (—00,00), with the initial
conditions

(1.2) (D2 *y)(a+) = b, by € C (k=1,2,...,n = —[-Re(a)]),

in the space L(a,b) of summable functions.
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Here Dg, yis the Riemann-Liouville fractional derivative defined for . € C,
Re(a) > 0, by [45, Section 2.2 and 2.4]

y(t)dt

@ = ot n = [Re(a)] + 1,

(L.3)  (Dgy)(z) = (%)n I( 1

n—a)

0 e B

where I'(n — @) is the Gamma-function and [Re()] is the integral part of
Re(e). The notation (D% *y)(a+) means

(1.4) (De7*y)(at) = (Dar*y)(e) (1<k<n),

lim
r—at
where the limit is taken in almost all points of the right-sided neigbourhood

(a,a+¢€) (e > 0) of a. The condition in (1.2) for k = n is understood in the
sense

(1.5) (Dg"y)(at) = lim, (I35°Y)(z) (e # n); (Dgry)(at) =y(a) (x =n)

where I3, is the Riemann-Liouville fractional integration operator of order
a defined by

1 :S” g(t)dt

(1.6) (I3, 9)(x) = ROMCEDES (o € C, Re(a) > 0).

a

In particular, if @ = n € N = {1,2,...}, (1.1)-(1.2) is reduced to the
usual Cauchy problem for the ordinary differential equation of order n

17 y™(@) = flz,y(@)], ¥ () = by, b €C (k=1,2,...,n),

if we take into account (1.3) with @ = n. Therefore, by analogy, the problem
(1.1)-(1.2) is called Cauchy-type problem [45, Section 42].

The existence and uniqueness of the solution of the problem (1.1)-(1.2)
and some of its modifications were studied by many authors in some, ba-
sically continuous, spaces of functions. However, they have not completed
these investigations. The most of the authors obtained some results not for
the initial value problems, but for the corresponding Volterra integral equa-
tions. Some authors considered only particular cases. Moreover, some of their
results contain mistakes in the proof of the equivalence of Cauchy-type prob-
lems and the Volterra integral equations and in the proof of the uniqueness
theorem.

We study the Cauchy-type problem (1.1)-(1.2) in the space L{a,b) of
summable functions on a finite interval [a, b], and suppose that the relations
(1.1) and (1.2) are satisfied in almost every point z € [a, b] for y(z) € L(a,b).
First we give the conditions for the equivalence of the Cauchy-type prob-
lem (1.1)-(1.2) and the nonlinear Volterra integral equation of the second
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kind

(18)  y@)=Y %

1 § flt,y(t))dt
=1 (a_]+1)

-
I‘aax—t —a’

(x—a)* 7 +

in the sense that if y(z) € L(a,b) satisfies (1.1) and (1.2), then it satis-
fies (1.8), and inverse almost everywhere. Then using method of successive
approximations, we give the conditions for the existence and uniqueness of
a solution y(z) of the Cauchy-type problem (1.1)-(1.2). In particular, we
consider this problem in the case 0 < Re(a) < 1:

(1.9) (Dgw)(2) = fz,y(2)] (0 <Re(a) < 1), (I;7%)(a+) = by, b1 € C,

being arisen in apphcatlons, and the weighted Cauchy-type problem:
(1.10)
(DZ+y) () = flo,y(x)] (0 <Re(a) < 1), lim (z—a)'“y(z)=c, c€ C.

We present the corresponding assertions for ordinary differential equations
and give some examples in conclusion.

The paper is organized as follows. In Section 2 we give a short survey
of the known results in the theory of fractional differential equations (1.1).
Section 3 contains preliminary results from the theory of absolutely contin-
uous functions and fractional calculus operators in the space L(a, b). Section
4 is devoted to the equivalence of the Cauchy-type problem (1.1)-(1.2) and
the nonlinear integral equation (1.8). Section 5 deals with the existence and
uniqueness of the Cauchy-type problem (1.1)-(1.2), while the problems (1.9)
and (1.10) are studied in Section 6. Examples are presented in Section 7.

2. Some results in the theory of fractional differential equations

Pitcher and Sewell [42] first considered the nonlinear fractional differen-
tial equation (1.1) with 0 < a < 1 provided that f(z,y) is bounded in the
special region G lying in R x R and Lipschitzian with respect to y. They
proved the existence of the continuous solution y(z) for the corresponding
nonlinear integral equation of the form (1.8). But the main result of Pitcher
and Sewell given in [42, Theorem 4.2] for the equation (1.1) is not true be-
cause they have used only the particular case of the composition relation
(3.14) between fractional integral and differential operators I, and Dg,.
However, the paper of Pitcher and Sewell contained the idea of reduction
of the solution of fractional differential equation (1.1) to the solution of
Volterra integral equation (1.8).

Barrett [7] first considered the Cauchy-type problem for the linear dif-
ferential equation

21)  (Dgyy)(e) — My(z) = f(z) (n —1 < Re(a) <, aF#n-1),
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where n is the smallest positive integer such that n > Re(a) > 0, with
the initial conditions (1.2). He reduced this problem to the linear Volterra
integral equation of the form (1.8) and proved [7, Theorem 2.1] that if f(z)
belongs to L(a, b), then such a problem has the unique solution y(z) in some
subspace of L(a,b) given by

(2.2) y(z) = i bkxa_kEa,a_kH Mz —a)*)+
k=1

+ §(x — 1) B, o [Mz — )% F(t)dt.

a

Here E, g(z) is an entire function, called the Mittag-Leffler function, defined
by

(2.3) Eqap(2) = gm]i—k_;—ﬁ—) (e € C, Re(a) > 0; B €C, Re(B) >0),

see the books by Erdelyi, Magnus, Oberhettinger and Tricomi [22, Chapter
18] and Dzhrbashyan [15].

Al-Bassam (3], Leskovskii (34], Arora and Alshamani [6] and El-Sayed
(18] investigated the Cauchy-type problem (1.1)-(1.2). The simplest case of
this problem (1.9) with 0 < a@ < 1 and a = 0 was studied by Al-Abedeen
(1], Al-Abedeen and Arora [2], Tazali [49], Semenchuk [46], Hadid and Al-
shamani [25], Luszczki and Rzepecki [37], El-Sayed [17], Hadid [24], Hadid,
Masaedeh and Momani [26], Hadid, Ta’ani and Momani [27], and systems
of these equations—by Tazali and Karim [50]. But, as was indicated in
Introduction, their investigations were not complete. In particular, in the
space L(a,b) the existence result for the Cauchy-type problem (1.1)-(1.2)
was proved only for the correponding integral equation.

We also mention other results in the theory of fractional differential
equations. For more general, than (1.1), fractional differential equations the
Cauchy type problem with the initial data (1.2) was considered by El-Sayed
[19], and with the initial data

(2.4) y* @) =di, dr e R (k=1,2,...,n)

- by El-Sayed and Ibragim [21], El-Sayed and Gafar [20]. Delbosco and
Rodino [11] investigated the Cauchy-type problem

(2.5) (Dgyy)(z) = fly(z)], y(a) =b (0 <a <1, a>0, bER)
and the weighted Cauchy-type problem
(26) (Dgyy)(2) = f(y(2), lima'*y(z) =b (0 <a<1,a>0, bER)
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Hayek, Trujillo, Rivero, Bonilla and Moreno [28] studied the Cauchy-type
problem

2.7 (D5 ) (=) = fla,y(2)] (2 > 0), y(z0) = yo (€0 >0, yo € R)

and the corresponding vectorial case.

Dzhrbashyan and Nersasyan [16] established the existence and unique-
ness theorem of the Cauchy-type problem in the space of continuous func-
tions for the linear fractional diferential equation of the form (2.1)-(1.2), in
which the fractional derivative D§, is replaced by the composition of sev-
eral Riemann-Liouville derivatives, see [45, Section 42.2] in this connection.
Podlubny [43, Section 3.1] considered such a problem by using Laplace trans-
form. He have also studied the nonlinear Cauchy-type problem (1.1)-(1.2)
with such fractional sequential derivative in the space of continuous func-
tions, but his proof of the uniqueness result in {43, Theorem 3.4] contains
mistake.

Several approaches were developed to obtain explicit solutions of some
fractional differential equations. For linear diferential equations of fractional
order with constant coeficients the Laplace transform method was discussed
by many authors, see [23], [38], [39] and [43], while the operational method—
by Luchko and Srivastava [36], Luchko and Gorenflo [35]. Connections of
the solutions of the corresponding homogeneous equations with the roots
of their characteristic quasipolynomials were discussed by Campos [9] and
Miller and Ross [39]. The exact solution of a certain nonlinear fractional dif-
ferential equation via solution of some transcendental equation was given by
Kilbas and Saigo {30]. Formal power series solutions of some linear fractional
differential equations were obtained by Al-Bassam [4], [5] and by Miller and
Ross [39, Section IV.3]|. The methods based on compositions of fractional
differentiation operators with special functions were developed by Kilbas
and Saigo [31]-[32], Saigo and Kilbas [44] and Kilbas, Bonilla, Rodriguez,
Trujillo and Rivero [29], and were applied to obtain solutions of certain lin-
ear fractional differential equations with nonconstant coefficients. We also
indicate that Srivastava, Owa and Nishimoto [48] and Campos [9] gave so-
lutions of some fractional differential equations with fractional derivatives
in the complex plane, see [45, Sections 22 and 43] in this connection.

We also mention that Dzherbashyan [14] and Nakhushev [40] studied
some boundary value problems for a Sturm-Liouville fractional differential
operators, Delbosco [10]—the existence of solution of Dirichlet type prob-
lem for a particular linear fractional differential equation, and numerical
treatment of solutions of fractional differential equations began to develop
recently by Shkhanukov [47], Blank [8], Diethelm [12], Diethelm and Walz
[13] and Podlubny [43].
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3. Absolutely continuous functions and fractional integro-differ-
entiation of summable functions

Let [a,b] (—o0 < a < b < o) be a finite interval of the real axis R,
let AC[a,b] be the space of functions absolutely continuous on [a, b] and let
L(a, b) be space of Lebesgue measurable (real or complex valued) functions

p(z):

b
3.1) L(a,b) = {¢: llel = {lo(t)ldt < oo}.

It is known (for example, see [33, p. 338]) that AC[a,b] coincides with the
space of primitives of Lebesgue summable functions:

(3.2) 9(z) € AC[a,b] & g(z) = c+ [ @(t)dt, ¢(z) € L(a,b),
and therefore absolutely continuous function g(z) have a summable deriva-
tive ¢'(z) = ¢(z) almost everywhere on [a, b].

For n € N = {1,2,...} we denote by AC"[a,b] the space of functions
g(z) which have continuous derivatives up to order n — 1 on [a,b] with
g (z) € AC]a,b]. It is clear that AC'[a,b] = AC|a, b]. Similarly to (3.2)
the following property holds [45, Lemma 2.4]:

PROPERTY 1. The space AC™(a,b] consists of those and only those functions
g(z), which are represented in the form

(33) 9@) = —— [z - " p(O)dt + 3 e - ), p(a) € La,b),
(n 1).a =

where ¢y, are arbitrary constants. It follow from (3.3) that

(k)(a)
(3.4) p(2) = g (@), ex = L= (k=0,1,...,n - 1).

Let o € C (Re(a) > 0), let D, be the Riemann-Liouville fractional
diferentiation operators defined by (1.3). If 0 < Re(a) < 1, then

1 d? (t)dt
@9 P~ T o R ) o o

and when o > 0,

[o)+1 z
69 O:0-(%)  Fry) e @ 0

in particular for 0 < a < 1:

(3.7) (D%,1)(z) = =—

'l-a)

d { y(t)d
d—Sy 0<a<1).
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Now we present some properties of the fractional calculus operators Dg,
and IZ, defined by (1.3) and (1.6). Properties 2-4 and 6-7 are given in [45,
Section 2], while Property 5 follows from Properties 3 and 4.

PROPERTY 2. The fractional integration operator IZ, is bounded in L(a,b)

— g)Re(a
B8 el < o

PROPERTY 3. The fractional integration IZ', has the semigroup property
(3.9) (I2,1549)(x) = (131%9)(z) (@ € C, Re(a) > 0; f € C, Re(B) > 0),
which is satisfied in almost every point z € [a,b] for g(z) € L(a,b).
PROPERTY 4. If o € C (Re(a) > 0) and g(z) € L(a,b), then the equality
(3.10) (Dg+ 154 9)(=) = 9(z)

holds almost everywhere (a.e.) on [a,b].

PROPERTY 5. If @ € C and B € C be such that Re(a) > Re(8) > 0, then
for g(z) € L(a,b) the relation

lglls (a € C, Re(a) > 0).

(311) (DE4+134.9)(z) = I g (a)
holds a.e. on [a,b].
PROPERTY 6. Let a € C (Re(a) > 0), n = —[—Re(a)] and (I7{%g)(x) be

the fractional integral (1.6) of order n—o. If g(z) € L(a,b) and (I7%g)(z) €
AC"[a,b], then the equality

(3.12)

n =i,
(I8, D2, 9)(@) = g(z) — 3 FQ_L

a7+ 9" gral@) = (%9)(),
j=1

holds a.e. on [a,b].
In particular, ifa =n € N

n—1 (k) a
(3.13) (12, D2 0)(@) = 9(2) — 3 LDz — ),
far k!
and if 0 < Re(a) < 1
gl—cx(a)

(3.14) (I3+Dgy9)(z) = g(z) — o (= a)*7", gi-a(2) = (I57%9)(2).
PROPERTY 7. If a € C (Re(a) > 0) and 8 € C (Re(B) > 0), then

15 (1m0 @ =

(z - a)ﬂ+a—1
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and
(3.16) (Df:_,_(t - a)ﬂ_l) (z) = F—(ﬂ)——(z —a)fo L,
In particular,

(3.17) (Dt - 07 (2) =0 (j=1,2,...,[Re()] + 1).

4. Equivalence of the Cauchy-type problem and the Volterra non-
linear integral equation

In this section we prove that the Cauchy-type problem (1.1)-(1.2) and
the nonlinear Volterra integral equation (1.8) are equivalent in the sense
that if y(z) € L(a, b) satisfies one of these relations that it satisfies another
one also. We prove such a result under the following assumption:

(4.1) flz,y(z)] € L(a,d), ||flz, y(2)lllhh = M < oo.

Below and later we shall understand all relations almost everywhere
(a.e.) on [a,b.

THEOREM 1. Let o € C, Re(a) > 0, and let y(z) and fz,y(z)] be Lebesgue
measurable functions on [a,b] such that the condition in (4.1) holds.

If y(z) € L(a,b), then y(z) satisfies a.e. the relations (1.1) and (1.2) if
and only if y(z) satisfies a.e. the equation (1.8).

Proof. Firts we prove the necessity. Let y(z) € L(a,b) satisfies a.e. the
relations (1.1) and (1.2). Then (1.1) means that there exists a.e. on [a, b] the
fractional derivative

(4.2) (Dg1y)(x) € Li[a,b].
According to (1.3)

43 D) = (5) W6 5= Re@)]+1,

and hence by Property 1 (I7;%y)(z) € AC™[a,b]. By (4.1) we can apply
Property 6 (with g(z) being replaced by y(z)) and in accordance with (3.12)
we have

(4.4)

n (n—7)
(I§'+Da+y ( )

yna

Tla—j+1) (= )", Yn-a(2) = (1379 ().

By (1.3) and (4.4)

49 W= (x) 0GICPE - 0.



Ezistence and unigqueness theorems 591

Using (4.5) and (1.2) we rewrite (4.4) in the form

a na = ylz) — ¢ (Dc?—:jy)(a) T—a a—j
40 (D5 =vle) - 3 (e -
- bj e

By (4.1) and Property 2 the integral (Ig, f[t,y(t)])(z) € L(a,b) exists a.e.
on [a,b] and there holds the estimate

(b _ a)Re(a)

Re(a)|T(e)|

Applying the operator Ig, to the both sides of (1.1) and using (4.6), we
obtain the equation (1.8), and hence necessity is proved.

Now we prove the sufficiency. Let y(z) € L(a, b) satisfies a.e. the equation
(1.8). Applying the operator D, to the both sides of (1.8), we have

n b]

(Dgyy)(z) = ng Ta=;+1) (Dg+(t - a)a_j> (z)+ (D5 I3, ft, y(t)]) (z).

(4.7) 1124 flz, y(@)][ < M

From here in accordance with the formula (3.17) and Property 4 (with g(z)
being replaced by f[z,y(z)]) we came to the equation (1.1).

Now we show that the relations in (1.2) are also hold. If 1 <k <n —1,
then in accordance with (3.16)-(3.17) and Property 5 (with g(z) being re-
placed by f[z,y(z)]) we have

(DEpy) @)=Y = (DSFH(t - )7 (0)+ (DETAI2, St y(O)]) (=)

= e o + B voD@)

and hence

48) (D9l = 3 gpge-al ey oy @0 el

If £ = n, then in accordance with (1.5) and (3.15) similarly to (4.8) we
obtain

a—n _ = b; n—j 1 T n—
(4.9) (Dgi"y)(=) —jzz:l (n_]j)!(m—a) ’+m§($—t) Lt y(t))de.

Taking in (4.8) and (4.9) a limit as z — a+ a.e., we obtain the relations in
(1.2). Thus sufficiency is proved which completes the proof of theorem.
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COROLLARY 1. Let @« € C, 0 < Re(a) < 1, and let y(z) and flz,y(z)]
be Lebesgue measurable functions on [a,b] such that the condition in (4.1)
holds.

If y(z) € L(a,b), then y(x) satisfies a.e. the relations in (1.9) tf and only
if y(z) satisfies a.e. the equation

by 1, 1 TS y@)at

4.10 = ——(z—a)” .
( ) y(x) F(a) (27 G,) + F(a) S ((L"—t)l_a

When a = n € N, the problem (1.1)-(1.2) is equivalent to the problem
(1.7), while the integral equation (1.8)—to the equation
(411) yo) =Y —2 (o — )" + —— (2 — )" flt, y(D)}at.

o (n—j) (n=1)!,

Therefore from Theorem 1 we obtain the corresponding statement for the
Cauchy problem (1.7).

THEOREM 2. Let n € N and let y(z) and f[z,y(z)] be Lebesgue measurable
functions on [a,b] such that the condition in (4.1) holds.

Ify(z) € L(a,b), then y(x) satisfies a.e. the relations in (1.7) if and only
if y(z) satisfies a.e. the equation (4.11).

a

COROLLARY 2. Let y(z) and f[z,y(z)] be Lebesgue measurable functions on
[a,b] such that the condition in (4.1) holds.
If y(z) € L(a,b), then y(z) satisfies a.e. the relations

(4.12) V' (z) = flz,y(z)], y(a)=b1 € C
if and only if y(x) satisfies a.e. the equation

e

(4.13) y(z) = by + | fIt,y(t)]dt.

a

5. Existence and uniqueness of the solution of the Cauchy-type
problem

In this section we establish the existence and uniqueness of the solution
of the Cauchy-type problem (1.1)-(1.2) in L(a,b) under the conditions of
Theorem 4.1 and two additional conditions, namely Lipschitzian of f[z,y(z)]
with respect to y:

(5.1) [1f[z,y(z)] = flz, Y (z)]ll < Ally(z) - Y(2)[l (4 >0),
and

(b _ a)Re(a)
(5.2) _Re(a)|F(a)| < 1.

We denote by G,, (n € N) the folowing set of the points (z,y) € R?:
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(5.3) Gn=
{(m,y)GRZ; a<z<b |y(z Jz;l ]+1) _a)a—j“lﬁd},
M(b — a)Rel®)
(54) 2 Re@ @I’

where the constant b; (j = 1,...,n) and M are given in (1.2) and (4.1),
respectively.

THEOREM 3. Let o € C, Re(a) > 0, and let y(z) and f[z,y(x)] be Lebesgue
measurable functions on [a,b] such that the conditions in (4.1), (5.1) and
(5.2) hold.

Then there exists a unique solution y(z) € L(a,b) of the Cauchy-type
problem (1.1)-(1.2) in the region G, defined by (5.3), (5.4).

Proof. According to Theorem 1 it is sufficient to prove the existence of an
unique solution y(z) € L(a,b) of the nonlinear Volterra integral equation
(1.8) in G,. First we use the method of successive approximation to prove
the existence of the solution y(z) € L(a, b) of the equation (1.8) in Gp. Let

n
b; :
(5.5) (@) = ) stz —a)*7,
a MNa—j+1)

1 :SE f[t’yn—l(t)]dt
Lla), (z—t)i-=
First of all we show that the points (z,yn(z)) to be lie in G,. Using (5.5),
the condition (4.1) and Property 2, we have

wnte) = (o)l = gy | L

(n=1,2,...).

Yn () = yo(z) +

(5.6)

1
M(b _ a)Re(a)
Re(a)|T(a)|
Since the condition (5.4) holds, (z,y,(z)) € Gp.

Now we estimate ||yn(z) — yn—1(z)||1 for n € N. For n = 1 in accordance
with (5.6) the estimate
(b _ a)Re(a)

(5.7) ly1(2) — yo(2)|h < Re(@)|T(@)]

holds. Using (5.5), (3.8) and apply the Lipschitzian condition (5.1) and (5.7),
for n = 2 we have
_ 1 T p () — £t yo()])dt
loa(e) (@)l = |7 | LT

a

1
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)Re( (b — a)Re(@)
T IIlf[t »y1(8) = flE ()]l < AWIIM

< g’(‘— (&) - 5ol
y (b _ a)Re(a) <A (b (_ ?)Re(a) ) '

a
INC)
<
Re(a)|T'(a)] a)|T(e)l
Repeating such an estimate n times we arrive at the inequality
(b _ a)Re(a) (A (b _ a)Re(a) )n—l
Re(a)|T(a)| (@)[T(a)]
By (5.2), it follows from here that the sequence y,(z) tends to a certain

limit funtion y(z) in L{a,b):
(5.9) Hm [lyn(z) — y(z)|lL = 0.

n—oo

(5-8) [yn(2) — yn-1(z)|h < M

Using (3.8) and the Lipschitzian condition (5.1), we have

| Ll 1 it
N(a) ) (z- t)l-  T(a) 2 (x— t)l-a
(b a)Re(a

Re(a)|T{a)]

1

_ g)Rel@)
(b~a) 15160n(6) = e u(Olls < 4 lvn(2) = 9(@) 1,

= Re(@)|T(@)

and hence

(5.10) lim ||

1 if[t,yn(t)]dt_ 1 §f[t,y(t)]dt” _0
Je—oa " T(a))@-—ot=""

It follows from (5.9) and (5.10) that y(x) is the solution of the equation
(1.8) in the space L(a,b).

Now we show that this solution y(z) is an unique. We suppose that there
exist two solutions y(z) and Y (z) of the equation (1.8). Substituting them
into (1.8) and subtracting one from the other we have

Iv(e) = ¥ (@)l = lgey LMy,
Applying (3.8) and (5.1), we obtain the estimate
— o \Re(@)
Iv(z) - ¥ (@)l < Aps @) - Y@,
and hence ( )R @
b — a)Rele
L AT @I

which contradicts with the assumption (5.2). Thus there exist a one solution
y(z) € L(a,b) of the equations (1.8), and hence the Cauchy-type problem
(1.1)-(1.2). This completes the proof of theorem.
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COROLLARY 3. Let a > 0 and let y(z) and f[z,y(x)] be Lebesgue measurable
functions on [a,b] such that the conditions in (4.1), (5.1) hold and

(b—a)*
Ta+1)

Then there exists a unique solution y(z) € L(a,b) of the Cauchy-type
problem (1.1)-(1.2) in the region G, defined by (5.3) and

(5.11) A <1.

M(b - a)®
12 _
(512) ~ Da+1)
When o = n € N, the condition (5.11) takes the form
b __ n
(5.13) 4l ,a) <1,
n!
and the set G, in (5.3), (5.12) is given by
(5.14)
Gn={(en) e R a<a b Ju@) -3 e —ayt| <dl,
j=1 (n - J)' 1
M - n
(5.15) i> MO ' Q"
n!
where the constants b; (j = 1,...,n) are given in (1.7). Then from Corollary

3 we obtain the corresponding statement for the Cauchy problem (1.7).

THEOREM 4. Let n € N and let y(z) and f[z,y(z)] be Lebesque measurable
functions on [a,b] such that the conditions in (4.1), (5.1) and (5.13) hold.

Then there ezists a unique solution y(z) € L(a,b) of the Cauchy problem
(1.7) in the region G, defined by (5.14), (5.15).

COROLLARY 4. Let y(z) and f[z,y(z)] be Lebesgue measurable functions on
[a,b] such that the conditions in (4.1), (5.1) hold and A(b~—a) < 1.

Then there ezists a unique solution y(z) € L(a,b) of the Cauchy problem
(4.12) in the region Gy defined by

(5.16) Gi={(z,y) €eR*: a<z<b, |ly(z) —bi]1 <d}, d2> M(b-a).

6. Existence and uniqueness of the solution of the Cauchy-type
problems in the case 0 < Re(a) <1
When 0 < Re(a) < 1, the set Gy takes the form

61 Gi={= R a<o<b o) - msle -0 h <
M- a)Re("‘)

o 2 Re(@T(@)]
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From Theorem 3 we obtain the existence and uniquenes result for the
Cauchy-type problem (1.9).

THEOREM 5. Let a € C, 0 < Re(a) < 1, and let y(z) and flz,y(z)] b
Lebesgue measurable functions on [a,b] such that the conditions in (4.1),
(5.1) and (5.2) hold.

Then there erists a unique solution y(z) € L(a,b) of the Cauchy-type
problem (1.9) in the region Gy defined by (6.1), (6.2).

COROLLARY 5. Let 0 < o < 1 and let y(z) and f[z,y(z)] be Lebesgue

measurable functions on [a,b] such that the conditions in (4.1), (5.1) and
(5.11) hold.

Then there exists a unique solution y(z) € L(a,b) of the Cauchy-type
problem _
(6.3) (D w)(@) = flz,y(2)] (0 <@ < 1), (I3°y)(a+) =b1, by €C,

in the region G defined by (6.1), (5.12).
When 0 < Re(a) < 1, the result of Theorem 5 stays true for the weighted
Cauchy-type problem (1.10). Its proof is based on two preliminary assertions.

LEMMA 1. Let o € C, 0 < Re(a) < 1, and let y(z) be Lebesque measurable
functions on [a,b]. If there exists a.e. a limit

: _ - —
(6.4) m£r£+(x a) %ylz)=¢, ceC,
then also there exists a.e. a limit
©5) (Ih*)(ah) = Jim, (T1%9)(a) = ().
Proof. Choose arbitrary € > 0. By (6.4) there exists § = d(e) > 0 such that
(1 -
(66) (= @) =oy(t) — el < g U1~ )

I'[Re(a)|T'[1 — Re(a)]
for a <t < a+ 4. According to (3.15),

(6.7) D(a) = (I7%(t —a)* (@) (0 <a<1).
Using (6.7) and (1.6), we have
|(Ia7°9)(2) = eD()] = (L7 °9) () — e(La3%(t = a)* ) ()]
1 0 z — —Re(a) — ot —a)* !
< ey V@ Do) - - @t

1
—1 { —hela e(a)— —o
= |P(1-a)|§(“"t) R (¢ — a)R@ (¢ — a)' Oy () — cldt.
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If we choose a < z < a+ 6, then a < t <z < a + § and we can apply the
estimate (6.6) and the relation (3.15) to obtain

(I29)(@) = D)) < o (ax ™t = @F ) (2) =

which proves (6.5).

LEMMA 2. Let a € C, 0 < Re(a) < 1, and let y(z) be Lebesgue measurable
functions on [a,b] such that there exists a.e. a limit

(6.8) (L3%)(e+) = lim (I;3%)(z) =b, be C.
If there exist a.e. a limit limy_ .1 (z — a)' ~%y(z), then
b
: _ l—-a .
(6.9) Jim (- 0)'"*y(e) = s

Proof. Suppose that the limit in (6.9) is equal to c:
lim+(a: —a)l"%y(z) =c.

Then by Lemma 1
(La3%y)(a+) = (L7°y)(@) = cl(a),

and hence, in accordance with (6.8), ¢ = b/T'(«), which proves (6.9).
From Theorem 5 and Lemmas 1 and 2 we obtain the existence and
uniquenes result for the weightd Cauchy-type problem (1.10).

THEOREM 6. Let @ € C, 0 < Re(a) < 1, and let y(z) and flz,y(z)] be
Lebesgue measurable functions on [a,b] such that the conditions in (4.1),
(5.1) and (5.2) hold.

Then there ezists a unique solution y(z) € L(a, b) of the weighted Cauchy-
type problem (1.10) in the region G; defined by (6.1), (6.2).

Proof. If y(z) satisfies the conditions (1.10), then by Lemma 1 y(z) also
satisfies the conditions (1.9) with b = c['(«):

(6.10) (Dgy)(@) = flo,y()], (La5%y)(a+) = cl(a).

According to Theorem 5, there exists an unique solution y(z) € L(a,b) of
this problem. By Lemma 2 y(z) is also the solution of the weighted Cauchy-
type problem (1.10). This y(z) will be unique solution of (1.10). Indeed, if
we suppose that the weighted problem (1.10) has two different solutions in
L(a,b), then by Lemma 1 they will be also two different solutions of the
Cauchy-type problem (6.10) in L(a, b), which contradicts its uniqueness.

lim
T—a+

COROLLARY 6. Let 0 < o < 1 and let y(z) and flz,y(z)] be Lebesgue

measurable functions on [a,b] such that the conditions in (4.1), (5.1) and
(5.11) hold.
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Then there ezists a unique solution y(z) € L(a,b) of the weighted Cauchy-
type problem

(6.11) (D, y)(z) = flz,y(x)] (0 < a < 1), zl_i)r(rll+(x—a)1'ay(x) =¢ c€eC,
in the region G defined by (6.1), (5.12).

REMARK 1. The results in Sections 4-5 and 6 can be extended to systems
of Cauchy-type problems (1.1)-(1.2), (1.9) and (1.10).

7. Examples

In this section we give the examples of solution y(z) € L(a,b) of the
Cauchy-type problem (1.1)-(1.2). All relations below are understood almost
everywhere on a finite interval [a,b]. We note that the uniqueness of the
solutions y(z) € L(a,b) of the Cauchy-type problems for linear differential
equations of fractional order in Examples 1-4 follows from the uniqueness
of the solutions y(z) € L(a,b) of the corresponding linear Volterra integral
equations of the form (1.8).

ExXAMPLE 1. The Cauchy-type problem for the homogeneous linear differ-
ential equation

(7.1) (Dgyy)(z) = My(z) (a <z <b; a€C, Re(a) >0); AeC),
with the initial conditions (1.2) has the unique solution y(z) € L(a, b):

(12) Y(&) = 3 0kl = D Farion (Ma — %),
k=1

where the Mittag-LefHler functions Fq o41-£(2) (kK = 1,...,n) are given by
(2.3).

ExAMPLE 2. The Cauchy-type problem for the inhomogeneous linear differ-
ential equation

(7.3) (Dgyy)(x) = My(z)+ f(x) (a<z<b, a€C, Re(a) >0); e C),

with f(z) € L(a,b) and the initial conditions (1.2) has the unique solution
y(z) € L(a,b):

(7.4)  y(z) =

> b(z - a)**Eq ar1-k Mz — a)®) + S(a: — ) Eqq [Ma — t)?] f(t)dt.
k=1 a

REMARK 2. The uniqueness of the solutions (7.4) of the Cauchy-type prob-
lem (7.3), (1.2) in some subspace of L(a,b) was proved by Barrett [7, The-
orem 2.1].
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ExAMPLE 3. The Cauchy-type problem for the equation in the theory of
voltammetry at expanding electrodes {41, p. 159]

(7.5)  VA(Dyly)(z) +2¥y(z) =1 (0 < = < b), (Dgl’y)(0+) = b
with 0 < w < 1/2 has the unique solution y(z) € L(a, b):

(7.6) y(z)= bW_l/2$_1/2E1/2,2w,2w—2 (=2%) + V7 E1 2 20,201 (—2") .

Here E4 /2 9u,20-2(2) is the so-called Mittag-Leffler type function defined
for & > 0, m > 0 and ! € R by [31]
(7.7)
AL Dla(im + 1) + 1]

Eomi(z) = chkz,co—l ck—l—{)r[ Tm+ 1+ )+ 1] (k=1,2,...).
0 i=

For m = 1, this entire funtion coincides with the Mittag-Lefller function
(2.4) with the exactness to the multiplier I'(al 4 1):

(7'8) Ea,l,l(z) = F(al + I)Ea,al-i—l(z)'
ExXAMPLE 4. The Cauchy-type problem for the equation of the polarography
theory [51]

(7.9)  (Deiy)(z) = azy(z) + a7 /2 (0 < = < b), (Dglly)(0+) =b

with @ € R and —1/2 < # < 0 has the unique solution y{z) € L(a, b):
(7.10)
y(z) = bw_1/2m_1/2E1/2,2B+1,2B—1 (amﬁﬂ/z) + ﬁE1/2,2ﬂ+1,2ﬂ (ax,@+1/2) .

EXAMPLE 5. We denote by B(a,b) C L{a, b) the space of Lebesgue measur-
able functions on [a, b] bounded almost everywhere on [a, b]:

(7.11) K = |ly(z)lloo < 0.
If f(z) € L(a,b),n € R (n# 1), B € R and X € C, then the Cauchy-type
problem for the nolinear fractional differential equation

(7.12) (D2.y)(z) = Mz—a)Py™(z)+f(z) (a <z < b; a € C, Re(a) > 0),
has the unique solution y(z) € B(a,b) in the region G, defined by (5.3),
(5.4) with M = |A\|K™(b — )+ + || f||1 provided that
Kn—l(b _ a)Re(a)+[3

<1
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