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E X I S T E N C E AND UNIQUENESS THEOREMS F O R 
NONLINEAR FRACTIONAL D I F F E R E N T I A L EQUATIONS 

Abstract . The paper is devoted to study the Cauchy-type problem for the nonlinear 
differential equation of fractional order a 6 C, Re(a) > 0, 

(D°+y)(x) = f[x,y(x)] (n - 1 < Re(a) < n, n = - [ - R e ( a ) ] ) , 

(.D«-ky)(a+) = bk! bk e C (k = 1,2,..., n), 

containing the Riemann-Liouville fractional derivative D"+y, on a finite interval [a, 6] of 
the real axis R = (—oo, oo) in the space of summable functions L(a, b). The equivalence 
of this problem and the nonlinear Volterra integral equation is established. The existence 
and uniqueness of the solution y(x) of the above Cauchy-type problem is proved by using 
the method of successive approximations. The corresponding assertions for the ordinary 
differential equations are presented. Examples are given. 

1. Introduction 
Our paper is devoted to study the existence and uniqueness of the so-

lution y(x) of the nonlinear differential equation of fractional order a € C, 
Re(a) > 0 (C being the set of complex numbers): 

(1.1) (DZ+y)(x) = f[x,y(x)] (n - 1 < Re(a) < n, n = - [ -Re(a) ] ) , 

on a finite interval [a, b] of the real axis R = (—00,00), with the initial 
conditions 

(1.2) (D2;ky)(a+) = bk, bk € C (k = 1 ,2 , . . . ,n = ~[-Re(a)]) , 

in the space L(a, b) of summable functions. 
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Here D " + y is the Riemann-Liouville fractional derivative defined for a £ C, 
Re(a) > 0, by [45, Section 2.2 and 2.4] 

(1-3) n = [Re(o;}] + 1, 

where P(n — a) is the Gamma-function and [Re(a)] is the integral part of 
Re(a). The notation ( D ^ k y ) ( a + ) means 

(1.4) (D^ky)(a+) = l i m ( D ^ k y ) ( x ) (1 < k < n), 
x—>a+ 

where the limit is taken in almost all points of the right-sided neigbourhood 
(a, a + e) (e > 0) of a. The condition in (1.2) for k = n is understood in the 
sense 

(1.5) (Dt+ny)(a+) = Jim+(I2+ay)(x) (a # n); (D°a+y)(a+) = y(a) (a = n) 

where is the Riemann-Liouville fractional integration operator of order 
a defined by 

(1.6) ( I« + g) {x) = (« e C' Re(«) > 

In particular, if a = n £ N = { 1 , 2 , . . . } , (1.1)-(1.2) is reduced to the 
usual Cauchy problem for the ordinary differential equation of order n 

(1.7) y^(x) = f[x,y(x)], y^n~k\a) = bk, bk G C (k = 1, 2 , . . . , n), 

if we take into account (1.3) with a = n. Therefore, by analogy, the problem 
(1.1)-(1.2) is called Cauchy-type problem [45, Section 42}. 

The existence and uniqueness of the solution of the problem (1.1)-(1.2) 
and some of its modifications were studied by many authors in some, ba-
sically continuous, spaces of functions. However, they have not completed 
these investigations. The most of the authors obtained some results not for 
the initial value problems, but for the corresponding Volterra integral equa-
tions. Some authors considered only particular cases. Moreover, some of their 
results contain mistakes in the proof of the equivalence of Cauchy-type prob-
lems and the Volterra integral equations and in the proof of the uniqueness 
theorem. 

We study the Cauchy-type problem (1.1)-(1.2) in the space L(a,b) of 
summable functions on a finite interval [a, b], and suppose that the relations 
(1.1) and (1.2) are satisfied in almost every point x G [a, b] for y(x) G L(a, b). 
First we give the conditions for the equivalence of the Cauchy-type prob-
lem (1.1)-(1.2) and the nonlinear Volterra integral equation of the second 
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kind 

(1 8) v(x) = T bj- fx - a)a~i + — [ 

in the sense that if y(x) £ L(a,b) satisfies (1.1) and (1.2), then it satis-
fies (1.8), and inverse almost everywhere. Then using method of successive 
approximations, we give the conditions for the existence and uniqueness of 
a solution y(x) of the Cauchy-type problem (1.1)-(1.2). In particular, we 
consider this problem in the case 0 < Re(a) < 1: 

(1.9) (D2+y)(x) = f [ x , y ( x ) ) (0 < Re(a) < 1), ( / ^ a y ) ( a + ) = bu h e C, 
being arisen in applications, and the weighted Cauchy-type problem: 
( 1 . 1 0 ) 
{Da

a+y){x) = f[x,y(x)] (0 < Re(a) < 1), lira (x - a)l~ay{x) = c, c € C. 
x—>a+ 

We present the corresponding assertions for ordinary differential equations 
and give some examples in conclusion. 

The paper is organized as follows. In Section 2 we give a short survey 
of the known results in the theory of fractional differential equations (1.1). 
Section 3 contains preliminary results from the theory of absolutely contin-
uous functions and fractional calculus operators in the space L(a, b). Section 
4 is devoted to the equivalence of the Cauchy-type problem (1.1)-(1.2) and 
the nonlinear integral equation (1.8). Section 5 deals with the existence and 
uniqueness of the Cauchy-type problem (1.1)-(1.2), while the problems (1.9) 
and (1.10) are studied in Section 6. Examples are presented in Section 7. 

2. Some results in the theory of fractional differential equations 
Pitcher and Sewell [42] first considered the nonlinear fractional differen-

tial equation (1.1) with 0 < a < 1 provided that f ( x , y ) is bounded in the 
special region G lying in R x R and Lipschitzian with respect to y. They 
proved the existence of the continuous solution y(x) for the corresponding 
nonlinear integral equation of the form (1.8). But the main result of Pitcher 
and Sewell given in [42, Theorem 4.2] for the equation (1.1) is not true be-
cause they have used only the particular case of the composition relation 
(3.14) between fractional integral and differential operators and 
However, the paper of Pitcher and Sewell contained the idea of reduction 
of the solution of fractional differential equation (1.1) to the solution of 
Volterra integral equation (1.8). 

Barrett [7] first considered the Cauchy-type problem for the linear dif-
ferential equation 

(2 .1 ) {D%+y){x) - A y ( x ) = f ( x ) ( n - 1 < R e ( a ) < n , a + n - 1 ) , 
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where n is the smallest positive integer such that n > Re(a) > 0, with 
the initial conditions (1.2). He reduced this problem to the linear Volterra 
integral equation of the form (1.8) and proved [7, Theorem 2.1] that if f(x) 
belongs to L(a, b), then such a problem has the unique solution y(x) in some 
subspace of L(a, b) given by 

n 
(2.2) y(x) = £ bkxa~kEa^k+1 (X(x - a)a) + 

fc=l 
X 

+ \(x-t)a~1Ect,a [A(x-t)a]f(t)dt. 
a 

Here Ea ß(z) is an entire function, called the Mittag-Leffler function, defined 
by 

°o k 
(2.3) EaJ}(z) = J2 TvTIm (Q € C> R e ( Q ) > 0; e c, Re(/3) > 0), 

fe=o 1 + P) 
see the books by Erdelyi, Magnus, Oberhettinger and Tricomi [22, Chapter 
18] and Dzhrbashyan [15]. 

Al-Bassam [3], Leskovskii [34], Arora and Alshamani [6] and El-Sayed 
[18] investigated the Cauchy-type problem (1.1)-(1.2). The simplest case of 
this problem (1.9) with 0 < a < 1 and a = 0 was studied by Al-Abedeen 
[1], Al-Abedeen and Arora [2], Tazali [49], Semenchuk [46], Hadid and Al-
shamani [25], Luszczki and Rzepecki [37], El-Sayed [17], Hadid [24], Hadid, 
Masaedeh and Momani [26], Hadid, Ta'ani and Momani [27], and systems 
of these equations—by Tazali and Karim [50]. But, as was indicated in 
Introduction, their investigations were not complete. In particular, in the 
space L(a,b) the existence result for the Cauchy-type problem (1.1)-(1.2) 
was proved only for the correponding integral equation. 

We also mention other results in the theory of fractional differential 
equations. For more general, than (1.1), fractional differential equations the 
Cauchy type problem with the initial data (1.2) was considered by El-Sayed 
[19], and with the initial data 

(2 .4) y(k)(a) = dk, dfc G R (fc = 1 , 2 , . . . , n ) 

- by El-Sayed and Ibragim [21], El-Sayed and Gafar [20]. Delbosco and 
Rodino [11] investigated the Cauchy-type problem 

(2.5) (D%+y)(x) = f[y(x)], y(a) = b (0 < a < 1, a > 0, b G R) 

and the weighted Cauchy-type problem 

(2.6) (D$+y){x) = f(y(x)), l i m z 1 " 0 ^ ) = b (0 < a < 1, a > 0, b G R ) 
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Hayek, Trujillo, Rivero, Bonilla and Moreno [28] studied the Cauchy-type 
problem 

(2.7) (Dg+y){x) = f[x,y(x)] (x > 0), y(x0) = yo (x0 > 0, yQ G R) 

and the corresponding vectorial case. 
Dzhrbashyan and Nersasyan [16] established the existence and unique-

ness theorem of the Cauchy-type problem in the space of continuous func-
tions for the linear fractional diferential equation of the form (2.1)-(1.2), in 
which the fractional derivative DQ+ is replaced by the composition of sev-
eral Riemann-Liouville derivatives, see [45, Section 42.2] in this connection. 
Podlubny [43, Section 3.1] considered such a problem by using Laplace trans-
form. He have also studied the nonlinear Cauchy-type problem (1.1)-(1.2) 
with such fractional sequential derivative in the space of continuous func-
tions, but his proof of the uniqueness result in [43, Theorem 3.4] contains 
mistake. 

Several approaches were developed to obtain explicit solutions of some 
fractional differential equations. For linear diferential equations of fractional 
order with constant coeficients the Laplace transform method was discussed 
by many authors, see [23], [38], [39] and [43], while the operational method— 
by Luchko and Srivastava [36], Luchko and Gorenflo [35]. Connections of 
the solutions of the corresponding homogeneous equations with the roots 
of their characteristic quasipolynomials were discussed by Campos [9] and 
Miller and Ross [39]. The exact solution of a certain nonlinear fractional dif-
ferential equation via solution of some transcendental equation was given by 
Kilbas and Saigo [30]. Formal power series solutions of some linear fractional 
differential equations were obtained by Al-Bassam [4], [5] and by Miller and 
Ross [39, Section IV.3]. The methods based on compositions of fractional 
differentiation operators with special functions were developed by Kilbas 
and Saigo [31]-[32], Saigo and Kilbas [44] and Kilbas, Bonilla, Rodriguez, 
Trujillo and Rivero [29], and were applied to obtain solutions of certain lin-
ear fractional differential equations with nonconstant coefficients. We also 
indicate that Srivastava, Owa and Nishimoto [48] and Campos [9] gave so-
lutions of some fractional differential equations with fractional derivatives 
in the complex plane, see [45, Sections 22 and 43] in this connection. 

We also mention that Dzherbashyan [14] and Nakhushev [40] studied 
some boundary value problems for a Sturm-Liouville fractional differential 
operators, Delbosco [10]—the existence of solution of Dirichlet type prob-
lem for a particular linear fractional differential equation, and numerical 
treatment of solutions of fractional differential equations began to develop 
recently by Shkhanukov [47], Blank [8], Diethelm [12], Diethelm and Walz 
[13] and Podlubny [43]. 
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3. Absolutely continuous functions and fractional integro-differ-
entiation of summable functions 

Let [a, 6] (—oo < a < b < oo) be a finite interval of the real axis R, 
let AC [a, 6] be the space of functions absolutely continuous on [a, 6] and let 
L(a, b) be space of Lebesgue measurable (real or complex valued) functions 
ip(x): 

b 
(3.1) L(a, b) = {f : \\ip\h = \\<p(t)\dt < oo}. 

It is known (for example, see [33, p. 338]) that AC[a,b] coincides with the 
space of primitives of Lebesgue summable functions: 

X 

(3.2) g(x) G AC[a, b] ^ g{x) = c + J (p(t)dt, <p(x) G L(a, b), 
a 

and therefore absolutely continuous function g(x) have a summable deriva-
tive g'(x) — <p(x) almost everywhere on [a, 6]. 

For n G N — {1, 2 , . . . } we denote by ACn[a, 6] the space of functions 
g(x) which have continuous derivatives up to order n — 1 on [a, b] with 
S ( n _ 1 ) ( x ) G AC[a,b\. It is clear that AC1 [a,b] = AC[a,b}. Similarly to (3.2) 
the following property holds [45, Lemma 2.4]: 

P R O P E R T Y 1. The space ACn[a,b] consists of those and only those functions 
g(x), which are represented in the form 

1 X 71 — 1 
(3.3) g(x) = — - t)n~l<p(t)dt + £ ck(x - a)k, <p{x) € L(a, b), 

where c^ are arbitrary constants. It follow from (3.3) that 
, x qWi11) 

(3.4) <p(x) = gM(x), = (/c = 0 , 1 , . . . , n — 1). 

Let a G C (Re(a) > 0), let D"+ be the Riemann-Liouville fractional 
diferentiation operators defined by (1.3). If 0 < Re(a) < 1, then 

(3.5) v m r ( l - a + [Re(a)]) dx[{x- t)a~ tRe(a)l' 

and when a > 0, 

(3.6) ( % „ ) ( * ) = ( ¿ ) W + 1 (a > 0), 

in particular for 0 < a < 1: 

(3.7) ( B S f i ) W = _ L _ - | ^ | ( 0 < o < l ) . 
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Now we present some properties of the fractional calculus operators 
and defined by (1.3) and (1.6). Properties 2-4 and 6-7 are given in [45, 
Section 2], while Property 5 follows from Properties 3 and 4. 

PROPERTY 2. The fractional integration operator is bounded in L(a,b) 

PROPERTY 3. The fractional integration has the semigroup property 

(3.9) (I2+lH+g)(x) = (l£ßg)(x) (a G C, Re(a) > 0; ß G C, Re(/3) > 0), 

which is satisfied in almost every point x G [o, b] for g(x) G L(a, b). 

PROPERTY 4. If a G C (Re(a) > 0) and g(x) G L(a,b), then the equality 

(3-10) (DZ+IZ+g)(x) = g(x) 

holds almost everywhere (a.e.) on [a,b]. 

PROPERTY 5. If a G C and ß e C be such that Re(a) > Re(ß) > 0, then 
for g(x) G L(a, b) the relation 

(3-11) (Dßa+I-+g)(x) = I^ßg(x) 
holds a.e. on [a, 6]. 

P R O P E R T Y 6 . Let a G C ( R e ( a ) > 0 ) , n = - [ - R e ( A ) ] and (I^ag)(x) be 
the fractional integral (1.6) of order n—a. If g(x) G L(a,b) and (I^ag)(x) G 
ACn [a, b], then the equality 

(3-12) 

(IZ+DZ+g)(x) = g{x) - E F ( a " 3n-a{x) = (I^ag)(x), 

holds a.e. on [a, b]. 
In particular, if a = n £ N 

(3.13) {Ina+Dna+g){x) = g(x) - £ - a)k, 
fc=o K-

and if 0 < Re(a) < 1, 

(3.14) (IZ+DZ+g)(x) = g(x) - - a )«" 1 , 9l-a(x) = (I¡+ag)(x). 

PROPERTY 7. If a G C (Re(a) > 0 ) and ß G C (Re(/3) > 0), then 

(3.15) - a f 1 ) (x) = - a ) ^ " 1 
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and 

(3.16) [D"a+{t - a f - 1 ) (x) = (x - a ) " — 1 . 

In particular, 

(3.17) (D«+(t - a)a">) (x) = 0 (i = 1 , 2 , . . . , [Re(a)] + 1). 

4. Equivalence of the Cauchy-type problem and the Volterra non-
linear integral equation 

In this section we prove that the Cauchy-type problem (1.1)-(1.2) and 
the nonlinear Volterra integral equation (1.8) are equivalent in the sense 
that if y(x) E L(a, b) satisfies one of these relations that it satisfies another 
one also. We prove such a result under the following assumption: 

(4.1) f[x,y(x)} E L(a,b), ||/[®,y(s)]||i = M< oo. 

Below and later we shall understand all relations almost everywhere 
(a.e.) on [a, 6]. 

THEOREM 1. Let Q S C , Re(a) > 0, and let y(x) and f[x,y(x)] be Lebesgue 
measurable functions on [a, b] such that the condition in (4.1) holds. 

If y(x) E L(a,b), then y(x) satisfies a.e. the relations (1.1) and (1.2) if 
and only if y(x) satisfies a.e. the equation (1.8). 

Proof . Firts we prove the necessity. Let y(x) E L(a,b) satisfies a.e. the 
relations (1.1) and (1.2). Then (1.1) means that there exists a.e. on [a,b] the 
fractional derivative 

(4.2) (D"+y)(x) E Li[a,b], 

According to (1.3) 

(4.3) (D^y)(X) = ( J £ a v ) ( * ) , » = [Re(a)] 4- 1, 

and hence by Property 1 (J™+ay)(x) E ACn[a,b}. By (4.1) we can apply 
Property 6 (with g(x) being replaced by y(x)) and in accordance with (3.12) 
we have 
(4-4) ^ 

(.l2+Daa+y){x) = y(x) - ¿ - a)«-'-, yn-a(x) = (I^ay)(x). 

By (1.3) and (4.4) 

(4-5) y t - J \ x ) = ( l i r j ) ~ { a ~ j ) y ) ( x ) = (Daa?y)(x). 
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Using (4.5) and (1.2) we rewrite (4.4) in the form 

( 4 . 6 ) (IZ+DZ+y)(x) = y(x) - £ - a)«^ 

= y(x) - y —— ^ _ a ) « - i . 

By (4.1) and Property 2 the integral ( I £ + f [ t , y(t)])(x) G L(a,b) exists a.e. 
on [a, 6] and there holds the estimate 

(4-7) 

Applying the operator to the both sides of (1.1) and using (4.6), we 
obtain the equation (1.8), and hence necessity is proved. 

Now we prove the sufficiency. Let y(x) € L(a, b) satisfies a.e. the equation 
(1.8). Applying the operator D"+ to the both sides of (1.8), we have 

( % » ) ( * ) = £ r ( a + 1} (£>a+{t - o)a~3) (x) + (D"a+IZ+f% y(t)}) (x). 

Prom here in accordance with the formula (3.17) and Property 4 (with g(x) 
being replaced by f [ x , y ( x ) ] ) we came to the equation (1.1). 

Now we show that the relations in (1.2) are also hold. If 1 < k < n — 1, 
then in accordance with (3.16)-(3.17) and Property 5 (with g{x) being re-
placed by f [ x , y ( x ) ] ) we have 

= + {Daaik(t - (x) + ( D : + h I ^ f [ t , y m ( x ) 

= £ r ( fe - j +1)(x - a)k~3 + 

and hence 
k i -, x 

bi , 1 
( 4 . 8 ) ( D ^ k y ) ( x ) = y ( x - + j ( x - t ) k ~ ' f [ t , y{t)]dt. 

If k = n, then in accordance with (1.5) and (3.15) similarly to (4.8) we 
obtain 

(4.9) ( D ^ n y ) ( x ) = ^ J - ^ x - a r - ' + j - ^ ¡ ( x - t r ^ f [ t , y ( t ) } d t . 

Talcing in (4.8) and (4.9) a limit as x —> a + a.e., we obtain the relations in 
(1.2). Thus sufficiency is proved which completes the proof of theorem. 
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COROLLARY 1. Let a 6 C, 0 < Re(a) < 1, and let y(x) and f[x,y(x)] 
be Lebesgue measurable functions on [a, f>] such that the condition in (4.1) 
holds. 

I f y ( x ) G L(a,b), then y(x) satisfies a.e. the relations in (1.9) if and only 
if y(x) satisfies a.e. the equation 

( 4 . 1 0 ) ^ + _ L 
r ( a ) "(a) ¿ ( x - t y 

When a = n G N, the problem (1.1)-(1.2) is equivalent to the problem 
(1.7), while the integral equation (1.8)—to the equation 

(4.11) y(x) = ¿ ~ a)n~j + V x ~ ^ ^ ^ ^ 

Therefore from Theorem 1 we obtain the corresponding statement for the 
Cauchy problem (1.7). 

THEOREM 2. Let n € N and let y(x) and f[x,y(x)] be Lebesgue measurable 
functions on [a, 6] such that the condition in (4.1) holds. 

Ify{x) G L(a,b), then y(x) satisfies a.e. the relations in (1.7) if and only 
if y(x) satisfies a.e. the equation (4.11). 

COROLLARY 2 . Lety(x) and f[x,y(x)] be Lebesgue measurable functions on 
[a, b] such that the condition in (4.1) holds. 

If y{x) £ L(a>b)¡ then y(x) satisfies a.e. the relations 

(4.12) y\x) = f[x,y(x)],y{a) = b1£ C 

if and only if y(x) satisfies a.e. the equation 
X 

(4.13) y(x) = b1 + \f[t,y(t)}dt. 
a 

5. Existence and uniqueness of the solution of the Cauchy-type 
problem 

In this section we establish the existence and uniqueness of the solution 
of the Cauchy-type problem (1.1)-(1.2) in L(a,b) under the conditions of 
Theorem 4.1 and two additional conditions, namely Lipschitzian of f[x, y(x)] 
with respect to y: 

(5.1) \\f[x,y(x)] ~ A*, n* ) ] l l i < Mv(x) ~ Y(x) ||i (A > 0), 

and 
(b _ a)Re(o0 

(5.2) A l , ., < 1. 

We denote by Gn (n € N) the folowing set of the points (x,y) G R 2 : 
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(5.3) Gn = 

|(x,y) G R 2 

(5.4) 

a < x <b, ||y(x) - ^ 

d > 

fr{T(a-j + 1) 

M(b - a)Re(a) 

(x — a)"--'||i < d 

Re(a)|r(a)| ' 
where the constant bj (j = l , . . . , n ) and M are given in (1.2) and (4.1), 
respectively. 

THEOREM 3. Let a e C , Re(A) > 0, and let y(x) and f[x,y(x)] be Lebesgue 
measurable functions on [a, 6] such that the conditions in (4.1), (5.1) and 
(5.2) hold. 

Then there exists a unique solution y(x) G L(a,b) of the Cauchy-type 
problem (1.1)-(1.2) in the region Gn defined by (5.3), (5.4). 

P r o o f . According to Theorem 1 it is sufficient to prove the existence of an 
unique solution y(x) G L(a, b) of the nonlinear Volterra integral equation 
(1.8) in Gn. First we use the method of successive approximation to prove 
the existence of the solution y(x) G L(a, b) of the equation (1.8) in Gn. Let 

(5.5) yo{x) = ^ r ( a - j + l ) 
(x - a)a~ 

, \ , n , 1 f f[t,yn-i(t)]dt 
Vn(x) = y0(x) + \ u_A1_a (n = 1 , 2 , . . . ) . T(a)^ (x-ty 

First of all we show that the points (x ,y n (x ) ) to be lie in Gn. Using (5.5), 
the condition (4.1) and Property 2, we have 

(5.6) Vn{x) -yo(®)||l = 
1 J/[t,yn_i(t)]dt 

< 

F(a)l ( x - t y -

M(b - a)Re(Q) 
Re(a)|r(a)| ' 

Since the condition (5.4) holds, (x ,y n (x ) ) G Gn. 
Now we estimate \\yn(x) — y„_i(a;)||i for n G N. For n = 1 in accordance 

with (5.6) the estimate 

M(b - a)Re(") 
(5.7) ||yi(®) -W)(®)||i < Re(a)|r(a)| 
holds. Using (5.5), (3.8) and apply the Lipschitzian condition (5.1) and (5.7), 
for n = 2 we have 

Wviix) -yi(®)||i = 1 x^[f[t,yi(t)-f[t,y0(t)}}dt 
r ( a ) ¿ (x-t) l—a 
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(ft - g)«*(«) / ( j - , ) M a ) \ 
- Re(a)|r(a)| y Re(a)|r(a)| J ' 

Repeating such an estimate n times we arrive at the inequality 

(5.8) I f c M - ^ . M I k < 

By (5.2), it follows from here that the sequence yn(x) tends to a certain 
limit funtion y(x) in L(a,b): 

(5.9) lim ||y„(s)-y(x)||i = 0. n—>oo 

Using (3.8) and the Lipschitzian condition (5.1), we have 

1 xrf[t,yn(t)]dt 1 xc f[t,y(t)]dt 
r ( a ) I (x - t ) 1 - « r ( a ) I (x - t y ~ a 

and hence 

/r 1(Vl „ 1 r f[t,yn(t)}dt 1 ' f[t,y(t)}dt 

It follows from (5.9) and (5.10) that y(x) is the solution of the equation 
(1.8) in the space L(a,b). 

Now we show that this solution y(x) is an unique. We suppose that there 
exist two solutions y(x) and Y(x) of the equation (1.8). Substituting them 
into (1.8) and subtracting one from the other we have 

i ? (/[«,»(«)] - / [ t , y ( ( ) ] ) < « „ 

Applying (3.8) and (5.1), we obtain the estimate 

and hence 

(b-a 
- Re(a)|r(a)|' 

which contradicts with the assumption (5.2). Thus there exist a one solution 
y(x) G L(a,b) of the equations (1.8), and hence the Cauchy-type problem 
(1.1)-(1.2). This completes the proof of theorem. 
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COROLLARY 3 . Let a > 0 and lety(x) and f[x,y(x)] be Lebesgue measurable 
functions on [a, 6] such that the conditions in (4.1), (5.1) hold and 

Then there exists a unique solution y(x) G L(a, b) of the Cauchy-type 
problem (1.1)-(1.2) in the region Gn defined by (5.3) and 

(r 1 n\ M(b — a)a 

( 5 " 1 2 ) d * r ( a + 1) • 
When a = n G N, the condition (5.11) takes the form 

( « » J a ^ T K 

n! 
and the set Gn in (5.3), (5.12) is given by 
(5.14) 

Gn = \(x,y) 6 R 2 : a < x < b, y(x) - T bj (x - a ) n < D}, 
1 (n - JV- l J 

(5.15) d > 
n\ 

where the constants bj (j = 1 , . . . ,n) are given in (1.7). Then from Corollary 
3 we obtain the corresponding statement for the Cauchy problem (1.7). 

THEOREM 4. Let n E N and let y(x) and f[x,y(x)] be Lebesgue measurable 
functions on [a, b] such that the conditions in (4.1), (5.1) and (5.13) hold. 

Then there exists a unique solution y{x) € L(a, b) of the Cauchy problem 
(1.7) in the region Gn defined by (5.14), (5.15). 

COROLLARY 4 . Lety(x) and f[x,y(x)] be Lebesgue measurable functions on 
[a, 6] such that the conditions in (4.1), (5.1) hold and A(b — a) < 1. 

Then there exists a unique solution y(x) G L(a, b) of the Cauchy problem 
(4.12) in the region G\ defined by 

(5.16) Gi = {(x,y) G R2 : a<x<b, \\y(x) - 6 J 1 < D}, d > M(b - a). 

6. Existence and uniqueness of the solution of the Cauchy-type 
problems in the case 0 < Re(o:) < 1 

When 0 < Re(a) < 1, the set G\ takes the form 

(6.1) G\ - {(x,y) G R 2 : a<x<b, ||Y(S) - - ^ ( x - a)"'1^ < d}, 
r (a) 

(6.2) 
Re(a)|r(a) 
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Prom Theorem 3 we obtain the existence and uniquenes result for the 
Cauchy-type problem (1.9). 

THEOREM 5. Let a £ C, 0 < Re(a) < 1, and let y(x) and f[x,y(x)] be 
Lebesgue measurable functions on [a, i>] such that the conditions in (4.1), 
(5.1) and (5.2) hold. 

Then there exists a unique solution y(x) £ L(a, b) of the Cauchy-type 
problem (1.9) in the region G\ defined by (6.1), (6.2). 

COROLLARY 5 . Let 0 < a < 1 and let y(x) and f[x,y(x)} be Lebesgue 
measurable functions on [a,b] such that the conditions in ( 4 . 1 ) , ( 5 . 1 ) and 
( 5 . 1 1 ) hold. 

Then there exists a unique solution y(x) € L(a, b) of the Cauchy-type 
problem 

(6.3) (DZ+y)(x) = f[x, y(x)] (0 < a < 1), (I^ay)(a+) = bu h € C, 

in the region G\ defined by (6.1), (5.12). 
When 0 < Re(a) < 1, the result of Theorem 5 stays true for the weighted 

Cauchy-type problem (1.10). Its proof is based on two preliminary assertions. 

LEMMA 1. Let a € C, 0 < Re(a) < 1, and let y(x) be Lebesgue measurable 
functions on [a, 6]. If there exists a.e. a limit 

(6.4) lim (x - a)1~ay(x) = c, c 6 C, 
X—>CL-{-

then also there exists a.e. a limit 

(6.5) (7a 1 ;ay)(a+) = lim(/¿+ay)(s) = cT(a). 
x—>a-f 

P r o o f . Choose arbitrary e > 0. By (6.4) there exists S = 5(e) > 0 such that 

(6.6) I C - l ' - » ! ' ) - ! « ^ ^ : ' ^ 

for a < t < a + S. According to (3.15), 

(6.7) r ( a ) = (I^a(t - a ) " " 1 ) ^ ) (0 < a < 1). 

Using (6.7) and (1.6), we have 

\{ll+ay)(x) - cT(a)\ = \(ll+ay)(x) - c(I^(t - a)«"1)^)! 

- | r ( i - a ) | - O - ^ l v W - ^ -

^ irn 1 M - O - ^ i i - a)Re^_1|(i - a)1~ay(t) - c\dt. 
I M 1 - A ) \ ; 
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If we choose a < x < a + 6, then a < t < x < a + 5 and we can apply the 
estimate (6.6) and the relation (3.15) to obtain 

|(/£ay)(®) - cF(a)\ < (ll+Ma\t - a f ^ ' 1 ) (x) = e, 

which proves (6.5). 
LEMMA 2. Let a £ C, 0 < Re(a) < 1, and let y(x) be Lebesgue measurable 
functions on [a, 6] such that there exists a.e. a limit 

(6-8) ( 4 + a y ) ( a + ) = lim = b, be C. x—>a+ 

If there exist a.e. a limit l im x _, a + (x — a)l~OLy{x), then 

(6.9) lim (x-a)1-"y(x) = - ± -x->a+ I (a) 
P r o o f . Suppose that the limit in (6.9) is equal to c: 

lim (x — a) ay(x) = c. r—>a+ 
Then by Lemma 1 

(I^ay)(a+) = \im(I^ay)(x) = cT(a), 
x—*a-f-

and hence, in accordance with (6.8), c = b/T(a), which proves (6.9). 
Prom Theorem 5 and Lemmas 1 and 2 we obtain the existence and 

uniquenes result for the weightd Cauchy-type problem (1.10). 

THEOREM 6 . Let a e C , 0 < R e ( a ) < 1, and let y(x) and f[x,y(x)] be 
Lebesgue measurable functions on [a, b] such that the conditions in (4.1), 
(5.1) and (5.2) hold. 

Then there exists a unique solution y(x) G L(a, b) of the weighted Cauchy-
type problem (1.10) in the region G\ defined by (6.1), (6.2). 

P r o o f . If y(x) satisfies the conditions (1.10), then by Lemma 1 y(x) also 
satisfies the conditions (1.9) with b = c r (a ) : 

(6.10) (D^y)(x) = f[x,y(x)\, (I^ay)(a+) = cT(a). 

According to Theorem 5, there exists an unique solution y(x) E L(a, b) of 
this problem. By Lemma 2 y(x) is also the solution of the weighted Cauchy-
type problem (1.10). This y(x) will be unique solution of (1.10). Indeed, if 
we suppose that the weighted problem (1.10) has two different solutions in 
L(a,b), then by Lemma 1 they will be also two different solutions of the 
Cauchy-type problem (6.10) in L(a,b), which contradicts its uniqueness. 

COROLLARY 6 . Let 0 < a < 1 and let y(x) and f[x,y(x)} be Lebesgue 
measurable functions on [a, 6] such that the conditions in (4.1), (5.1) and 
(5.11) hold. 
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Then there exists a unique solution y(x) G L(a, b) of the weighted Cauchy-
type problem 

(6.11) (D%+y)(x) = f[x,y(x)} (0 < a < 1), lim ( x - o ) 1 " ^ ) = c, c G C, 
x—>a+ 

in the region G\ defined by (6.1), (5.12). 

REMARK 1. The results in Sections 4-5 and 6 can be extended to systems 
of Cauchy-type problems (1 .1)-(1.2) , (1.9) and (1.10). 

7. Examples 
In this section we give the examples of solution y(x) G L(a,b) of the 

Cauchy-type problem (1.1)-(1.2). All relations below are understood almost 
everywhere on a finite interval [a, 6]. We note that the uniqueness of the 
solutions y(x) G L(a, b) of the Cauchy-type problems for linear differential 
equations of fractional order in Examples 1-4 follows from the uniqueness 
of the solutions y(x) G L(a, b) of the corresponding linear Volterra integral 
equations of the form (1.8). 

EXAMPLE 1. The Cauchy-type problem for the homogeneous linear differ-
ential equation 

(7.1) (D%+y){x) = A y{x) ( a < x < b ; a G C, Re(a) >0); A G C) , 

with the initial conditions (1.2) has the unique solution y(x) G L(a, b): 

(7.2) y(x) = J2 b>*(x - a)a-kEa<a+1_k (\(x - a)a), 
k=l 

where the Mittag-LefHer functions J5QQ+i_fc(z) (k = 1, . . . ,n) are given by 
(2.3). 

EXAMPLE 2. The Cauchy-type problem for the inhomogeneous linear differ-
ential equation 

(7.3) (D%+y)(x) = Ay{x) + f{x) (a < x < b; a G C, Re(a) >0) ; A G C) , 

with f(x) G L(a,b) and the initial conditions (1.2) has the unique solution 
y(x) G L(a,b): 
(7.4) y(x) = 

£ bk(x - a)a-kEata+1.k (X(x - a)a) + \(x - t)a'lEa,a [A(x - t)a] f(t)dt. 
k=1 a 

REMARK 2. The uniqueness of the solutions (7.4) of the Cauchy-type prob-
lem (7.3), (1.2) in some subspace of L(a, b) was proved by Barrett [7, The-
orem 2.1], 
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EXAMPLE 3. The Cauchy-type problem for the equation in the theory of 
voltammetry at expanding electrodes [41, p. 159] 

(7 .5 ) xll2{Dl'*y){x) + xwy{x) = 1 (0 < x < b ) , ( D $ y ) ( 0 + ) = b 

with 0 < w < 1/2 has the unique solution y(x) G L(a, b): 

(7.6) y(x) = b ^ l 2 x - x l 2 E l l W w _ 2 ( - x w ) + ^ 1 / 2 , 2 » , 2 w - 1 ( " 0 • 

Here £1/2,210,210-2(z) is the so-called Mittag-Leffler type function defined 
for a > 0, m > 0 and I £ R by [31] 
(7-7) 

7 , \ ^ k 1 TT R [ A ( I M + / ) + 1 ] -T N \ 
W ) = <* = ! ,<* = n r [ t t ( i m + f + 1 ) 4 - 1 ] i k = 1>2>~ y 

For m = 1, this entire funtion coincides with the Mittag-Leffler function 
(2.4) with the exactness to the multiplier F(al + 1): 

( 7 . 8 ) Ea,lti(z) = T(al + 1 )Ea,al+l(z). 

EXAMPLE 4 . The Cauchy-type problem for the equation of the polarography 
theory [51] 

( 7 . 9 ) ( D $ y ) ( x ) = axPy{x) + a T 1 / 2 (0 < x < b ) , {Dl£y){ 0 + ) - b 

with a G R and —1/2 < /3 < 0 has the unique solution y(x) G L(a, b): 
(7.10) 
y(x) = &7r_1//2£_1/'2.Ea/2,2/3+1,2/3-1 ( a x ^ 2 ) + V^i/2,2/3+1,2/3 (a® /3+1/2) • 

EXAMPLE 5. We denote by B(a, b) C L(a, 6) the space of Lebesgue measur-
able functions on [0,6] bounded almost everywhere on [a, 6]: 

(7.11) j r = | | y ( x ) | | o o < o o . 

If f(x) € L(a, b), n G R (n / 1), G R and A G C, then the Cauchy-type 
problem for the nolinear fractional differential equation 

(7.12) (D%+y)(x) = A { x - a ) / 3 y n ( x ) + f ( x ) (a < x < b; a G C, Re(a) > 0), 

has the unique solution y(x) G B(a,b) in the region Gn defined by (5.3), 
(5.4) with M = |A|Kn(b - a)P+1 + ||/||i provided that 

(7.13) n > 1; (3 > 0; n |A| A , < 1-
Re(a) | r (a) | 
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