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SOME SEQUENCE SPACES 
D E F I N E D B Y ORLICZ F U N C T I O N S 

Abstract . The object of this paper is to introduce a new concept of lacunary strong 
convergence with respect to an Orlicz function and examine some properties of the result-
ing sequence spaces. We establish some elementary connections between lacunary strong 
convergence and lacunary strong convergence with respect to an Orlicz function which 
satisfies ¿^-condition. It is also shown that if a sequence is lacunary strongly convergent 
with respect to an Orlicz function then it is lacunary statistically convergent. In addi-
tion, lacunary strong convergence with respect to an Orlicz function is compared to other 
summability methods. 

1. Introduction 
By a lacunary sequence 9 = r = 0 ,1 ,2 , . . . , where ko = 0, we shall 

mean an increasing sequence of non-negative integers with kr — kr-\ —> oo. 
The intervals determined by 9 will be denoted by Ir = (kr-i,kr], and we 
let hr = kr — kr-1- The ratio kr/kr-1 will be denoted by qr. The space of 
lacunary strongly convergent sequences Ng was defined by Freedman et al. 
[5] as follows 

N® denotes the subset of those sequences in Ng for which t = 0. (N®, || • ||e) 
is also a BK-space. There is a strong connection [5] between Ng and the 

1991 Mathematics Subject Classification: Primary 46A45, 40H05; Secondary 40A05, 
40D25, 40F05. 

Key words and phrases: Lacunary sequence, strong convergence, statistical conver-
gence, sequence space, Orlicz function, /^-condit ion. 

Ng = { x = (Xk) : lim hr
 1 7 \x\t — ¿1 = 0 for some I 

I 1—>oo 
k e i r 

The space Ng is a BK-space with the norm 
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space uj of strongly Cesaro summable sequences, which is defined by 
n 

u — \ x = (Xk) : lim n~l > \xk —¿1 = 0 for some i\. 
L n—too J fc=1 

In the special case where 6 = (2r), we have Ng = u. 
Recall [9]—[12] that an Orlicz function M is a continuous, convex, non-

decreasing function defined for x > 0 such that M(0) = 0 and M(x) > 0 for 
x > 0. Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to 
construct the sequence space 

oo I I 

t-M = {x = (zfc) : T M(—-) < oo for some p > 0}. 
t i P 

The space ¿m with the norm 

| | ® | | = i n f { p > 0 : ^ M ( ^ i ) < l } 

becomes a Banach space which is called an Orlicz sequence space. Linden-
strauss and Tzafriri proved that every Orlicz sequence space ¿m contains 
a subspace isomorphic to ip for some p > 1, thereby answering a general 
conjecture that every infinite dimensional Banach space contains a closed 
subspace isomorphic to Co or some £p, positively for a class of spaces (see 
[11] and [18] for discussion of this and related conjectures). For M(x) — xp; 
1 < p < oo, the spaces ¿m coincide with the classical sequence spaces iv. 

Recently, Parashar and Choudhary [20] have introduced and examined 
some properties of four sequence spaces defined by using an Orlicz function 
M, which generalized the well-known Orlicz sequence space ¿m and strongly 
summable sequence spaces [C, 1 ,p], [C, l,p]o and [C, l,p]oo- It may be noted 
here that the spaces of strongly summable sequences were discussed by Mad-
dox [14]. Nuray and Gulcii [19], Demirci [3] and others have also used an 
Orlicz function to construct some sequence spaces. 

In the present paper we introduce a new concept of lacunary strong con-
vergence with respect to an Orlicz function and examine some properties of 
the resulting spaces. We establish some elementary connections between la-
cunary strong convergence and lacunary strong convergence with respect to 
an Orlicz function which satisfies /^-condition. It is shown that if a sequence 
is lacunary strongly convergent with respect to an Orlicz function then it 
is lacunary statistically convergent. Also, lacunary strong convergence with 
respect to an Orlicz function is compared to other summability methods. 

We now introduce the generalizations of the spaces of lacunary strongly 
convergent sequences. 



Some sequence spaces defined by Orlicz functions 573 

DEFINITION 1 .1 . Let M be an Orlicz function and p = (pk) be any sequence 
of strictly positive real numbers. We define the following sequence spaces 

We denote [Ng,M,p], [Ne,M,p]0 and [ N g , M , p ] a s [N0,M], [Ng,M]0 

and [Ng,M]oo when pk = 1 for all k . l f x G [Ng,M] we say that x is lacunary 
strongly convergent with respect to the Orlicz function M. 

Some well-known spaces are obtained by specializing 9, M and p. 
(i) If M(x) = x, Pk = 1 for all k, then [Ng,M,p] = Ng, [Ne, M, p]0 = 

(Freedman et al. [5]). 
(ii) If M(x) = x, 0 = (2r), then [N0,M,p] = [C,l,p\, [Ng,M,p}0 = 

[C,l,p\0, [Ne,M,p]oo = [C,l,p]oo (Maddox [14]). 
(iii) If M(x) = x, pk = 1 for all k, 9 = (2r) then [Ne,M,p] = u, 

[Ng,M,p]o = wo, [Ne,M,p]oo = ojoo (Freedman et al. [5], Maddox 
[14], [15], [17]). 

(iv) If 9 = (2r) then [N0,M,p] = W(M,p), [Ng,M,p]0 = W0(M,p), 
[Ne,M,p]oo = W00(M,p) (Parashar and Choudhary [20]). 

2. Linear topological structure of [Ng,M,p] spaces and inclusion 
theorems 
In this section we examine some topological properties of [Ng, M, p] 

spaces and investigate some inclusion relations between these spaces. 

T H E O R E M 2 .1 . For any Orlicz function M and a bounded sequence p = (pk) 
of strictly positive real numbers, [Ng,M,p], [Ng,M,p]o and [N$, M,p]^ are 
linear spaces over the set of complex numbers. 

P r o o f . We shall prove only for [Ng,M,p]o- The others can be treated sim-
ilarly. Let x, y € [Ng,M,p}o and a, [3 £ C. In order to prove the result we 

[Ng,M,p] = { x = (xfc) : 

= 0 for some and p > 
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n e e d t o find s o m e p3 > 0 s u c h t h a t l i m r h;x = 0. 

S i n c e x,y G [iVg, M,p]o, t h e r e e x i s t a p o s i t i v e pi a n d pi s u c h t h a t 

W W - » 
l i m V 1 £ 

fce/r V pi 

a n d 

M(M 
. \ P2 

= 0. l i m V 1 

keir 

D e f i n e = max(2 |o : | / 9 1 , 2\P\p2). S i n c e M is n o n - d e c r e a s i n g a n d c o n v e x , 

Pk 

^ E 
keir 

' M ^\axk + f3yk\^ Pk 

< K 1 E 
keir 

M ( \ a x k \ I l ^ f c h 
. \ P3 P3 J 

Pk 

< k1 y -H-
—

 r ¿—i 2Pk 

keir PI 

Pk 

< 
Pk 

< CK1 £ 
keir 

Pk 

M \Vk\ 
P2 

Pk 

0 a s r —> oo , 

keir 

w h e r e C = m a x ( l , 2H~1), H = s u p p k \ s o t h a t a x + /3y € [ J V 0 , M , p ] o . T h i s 
p r o v e s t h a t [Nq, M , p ] 0 is l inear . 

THEOREM 2 .2 . F o r any Orlicz function M and a bounded sequence p = (pk) 
of strictly positive real numbers, [N$,M,p]o is a topological linear space, 
totally paranormed by 

= inf { p ^ / " : ( V £ [ M ( ^ 1 ) ] P ' C ) 1 / H ^ 1 ' ^ = 1 , 2 , . . . } , 

where H = m a x ( l , s u p f c p f c ) . 

P r o o f . C l e a r l y g(x) = g(—x). B y u s i n g T h e o r e m 2 .1 for a a = ¡3 = 1, w e 
g e t g{x + y) < g(x) + g(y). S i n c e M(0) = 0, w e g e t i n f { p P r / H } = 0 for x = 0 . 
Converse ly , s u p p o s e g(x) = 0, t h e n 
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This implies that for a given e > 0, there exists some pe(0 < pe < e) such 
that 

v ' E 
fce/r . V pe 

Pk\ 1 /H 
< 1. 

Thus 
Pk\ 1 /H 

< 1. 

Suppose xm ^ 0 for some m € I r . Let e —» 0, then ( i i ^ i ) —> oo. It follows 
that 

fce/r . V pe 

Pfc\ I / » 
OO 

which is a contradiction. Therefore xm = 0 for each m. Finally, we prove 
that scalar multiplication is continuous. Let A be any complex number. By 
definition, 

g(\x) = inf : ( V £ [ m ( ^ i ) J " J ^ < 1, r = 1 , 2 , . . . } . 

Then 

5(Ax) = i n f { ( | A | S r ^ : 
^ ^ keir 

M l®fc I 
Pk\ l/H 

< 1. 

r = 1, 2 , . . . , 

where s = p/\\\. Since lAp'- < max(l , |A|supp''), we have 

g(Xx) < (max(l,|ArPf-))1/'fiinf|sPr/K : (V* J ] ^ ' -

r = 1 , 2 , . . . } 

which converges to zero as x converges to zero in [Ng, M,p] o-
Now suppose A„ —> 0 and x is fixed in [Ng,M,p]o- For arbitrary e > 0, 

let AT be a positive integer such that 

v ' E 
heir 

Pk 
< (e/2)H for some p > 0 and all r > N. 
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This implies that 

keir 
M 

Pk\ 1 /H 
< e/2 for some p > 0 and all r > N. 

Let 0 < |A| < 1, using convexity of M, for r > N, we get 

v ' E 
keir "Or1) 

Pk 

< K 1 £ 
keir 

|A| M ffl) Pk 
< (e/2)H. 

Since M is continuous everywhere in [0, oo), then for r < N, 

m = K 1 £ 

keir ' ) J 

is continuous at 0. So there is 1 > S > 0 such that |/(i)| < (e/2)H for 
0 < t < 6. Let K be such that |An| < 6 for n > K, then for n > K and 
r < N, 

1 /H 

fcr'E 
keir 

M 
|AnXfc| Pk 

< e/2. 

Thus 

keir 
for n > K and all r, so that ^(Aa;) 

Xk\ Pk \ 1 /H 
< e 

0 (A - » 0 ) . 

DEFINITION 2 . 3 [10]. An Orlicz function M is said to satisfy Z^-condition for 
all values of u, if there exists a constant K > 0 such that M(2u) < KM(u), 
u > 0 . 

It is easy to see that always K > 2. The /^-condition is equivalent to 
the satisfaction of inequality M(tu) < K(£)M(u) for all values of u and for 
i > 1. 

LEMMA 2 .4 . Let M be a an Orlicz function which satisfies A^-condition and 
let 0 < S < 1. Then for each x > 8 we have M(x) < Kx5~1M(2) for some 
constant K > 0. 

P r o o f . Since M is non-decreasing and convex, and x < <5-1 x < 1 + 8 ~ 1 x for 
x > 8, it follows that M(x) < Mil+S^x) = M(\-2-\-\-28~lx) < \M(2) + 
|M(28~1x). Since M satisfies .¿^-condition, there is a constant K > 2 
such that M(28~1x) < \K8~1xM{2), therefore M(x) < \K8~ixM(2) + 
\K8~1xM{2) = K8~1xM{2) and hence the lemma. 

THEOREM 2 . 5 . For any Orlicz function M which satisfies A2-condition, we 
have Ng C [Ng,M]. 
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Proof . Let x E Ng so that 

Ar = h^1 ^^ \xk ~ 0 as r ~* o°) f° r some I. 
keir 

Let e > 0 and choose 5 with 0 < <5 < 1 such that M(t) < e for 0 < t < S. 
We can write 

h-1 E M(\xk - = V 1 E M(\x* - 'D 

keir keir,\xk-e\<8 

+h~x E M(\xk-£\) <h-1(hre) + h;1K6-1M(2)hrAr, 
keu, \xk-t\>8 

by Lemma 2.4. Letting r —» oo, it follows that x G [Ng, M\. 
The method of the proof of Theorem 2.5 shows that, for any Orlicz 

function M which satisfies /^-condition, we have N® C [NQ,M]o and C 
{NE,M} OO. 

THEOREM 2.6. Let 0 <pk < qk and (qk/Pk) be bounded. Then [Ne,M,q] C 
[Ng,M,p]. 

Proof . Let x E [N0,M,q]. We write wk = pk/qk = Afc, 
so that 0 < A < Afc < 1, with A constant. Now define uk = wk{wk > 1), 
uk = 0{wk < 1), vk = 0(wk > 1), vk = wk(wk < 1), so that Wk = Uk + vk, 
w£k = ulk + vlk. It follows that < uk < wk and v£k < Therefore 
K1 Zkeir "kk < K1 Efce/r + K1 Efce/r 

Now, for each r, 

keir keir 

< ( E K K 1 v k ) x ] 1 / x ) \ E [ ( ^ 1 ) 1 - a ] 1 / 1 - a ) 1 _ a , 

by Holder's inequality 

= (h;1 E 
keir 

and so, 

k1 E < K 1 + tv1 E 
keir keir keir 

and hence x G [Ng, M, p]. 
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3. Comparison with other summability methods 
In this section lacunary strong convergence with respect to an Orlicz 

function is compared to lacunary statistical convergence and other summa-
bility methods. 

We first study the inclusions [u>,M,p] C [Nq,M,p] and [Ne,M,p] C 
[w, M,p] under certain restrictions on 6 = (kr). 

LEMMA 3.1. Let 6 = (kr) be a lacunary sequence with lim inf r qr > 1, then 
for any Orlicz function M , [u,M,p] C [N$,M,p], where 

f 1 n 

[u, M,p} = <x = (xfc) : lim - Y ] I n—>oo Tl ^' fc=1 
M 

\xk - l\ 
Pk 

= 0 

for some £, and p > 

(we write [u>, M,p} = [w, M,p]o in the case when £ — 0). 

P r o o f . It sufficient to show that [u,M,p]o C [Ne, M,p]0; the general in-
clusion follows by linearity. Suppose lim inf r qr > 1, then there exists S > 0 
such that qr = ( k r / k r - i ) > 1 + S for all r > 1. Then for x G [w, M,p]o, we 
write 

/ I I \ Pk 

Ar = K 1 E 

keir 

kr-

= v 1 E 
k=1 

M 

h. 
T ' K 1 E 

fc=l 

\xk\ 

M 

Pk 

M 

\xk\ 

- V 1 E 
k=1 

^ kr — 1 

hr 

\xk I 
Pk 

kr — 1 

E 
fc=i 

M 
\xk\ 

Pk 

Since hr = kr — kr-1, we have 
kr ^ 1 + S fcr_ i ^^ 1 

hr ~ S hr ~ Ô 

The terms 

fc=i 
M 

\xk I 
Pk 

and k r \ E 
fc=i 

M Ffcl 
Pk 

both converge to zero, and it follows that Ar converges to 0 as r —• oo, that 
is , X e [Ne,M,p]0. 

LEMMA 3.2 . Let 6 — (kr) be a lacunary sequence with limsup r qr < oo, then 
for any Orlicz function M , [N$,M,p] C [ u > , M , p \ . 
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P r o o f . If limsupr qT < oo, there exists B > 0 such that qr < B for all 
r > 1. Let x € [Ng, M,p]o and e > 0. There exists R > 0 such that for every 
j > R 

keij p 

We can also find K > 0 such that Aj < K for all j — 1 , 2 , . . . . Now let m be 
any integer with < m < kT, where r > R. Then 

m r /i„ iMPic 

k=l 
fcr r /1™ i \ n Pfc 

Mdf i Pk e 
M \xk\ 

iPk 

= r 1 ~ k i _ 1 E Kr — i fce/i 
M Ffc 

"T —1 fee/2 

M |®fc| 
Pfc 

L V p ) 

Pk 
+ 

+ /ĉ  /¡/j» j 
fc,— 1 

fce/r 

M 
Pk 

/ĉ» j fcj» j 

+ 
1 
kR 

Ar+ 1 + . . . 

kr — i 

kf* k-p -— j 

< (sup A j ) - + (sup A,) 

kr — 1 
A;r -

A 

i>i T - l j>H fc X —1 

"V — 1 
Since A;r_i —> oo as m —> oo, it follows that 

m 
" E 

k=1 

Pk 

0 and, consequently a; G [u),M,p]q. 

The next result follows from Lemmas 3.1 and 3.2. 
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T H E O R E M 3 . 3 . Let 9 = (kr) be a lacunary sequence with 1 < liminfRGR < 
limsup rg r < oo. Then for any Orlicz function M, [u,M,p] = [Ng,M,p] . 

The famous space c of all almost convergent sequences was defined by 
Lorentz [13]. The space of strongly almost convergent sequence [c] was in-
troduced by Maddox [16] and also independently by Freedman et. al. [5] as 
follows: 

p+n 
[c] = \ x = (Xi) : lim n - 1 7 \xi — l\ = 0 uniformly in p, for some I >. 

I n—too ' ) i—p+1 
For any Orlicz function M and a bounded sequence p = (pk) of strictly 
positive real numbers, we extend the space [c] to [c, M, p] as defined below: 

m+n s m-f-r, 
[c, M,p} = \ x = ( x k ) : lim V 

I 71—• OO ' 
> U — 

Pk 
= 0 

fc=m+1 

uniformly in m for some £, and p > 0 j>. 

Note that if we take M(x) = x and pk = 1 for all k, then [c, M, p] = [c]. 

T H E O R E M 3 . 4 . Let M be any Orlicz function and p = (pk) be any bounded 
sequence of strictly positive real numbers, then [c, M, p] C [Ng, M, p] for 
every lacunary sequence 0. 

P r o o f . Let x € [c,M,p] and e > 0. There exists a positive integer no, a 
number £, and p > 0 such that n'1 < e for n > n0 , 
m = 0 , 1 , 2 , . . . . Since 9 is lacunary, we can choose R > 0 such that r > R 
implies hr > n0 and consequently, Ar = h71 ^ 2 k e I r [ M < e. Thus 
x G [Ne,M,p\. 

To show that [Ne,M,p] strictly contains [c ,M,p ] , we proceed as in [5, 
p. 513]. We define x = (Xk) by Xk = 1 if < k < kr+1 + [ v ^ ] for 
some r and xk = 0 otherwise. Then there are arbitrarily long strings of 
0's in the coordinates of x, as well as arbitrarily long strings of consecutive 
l's, from which it follows that x ^ [c,M,p]. However, x 6 [Ng,M]0 since 
h~1 M(\xk\) = h~1[VK]M(l) —> 0 as r —> 00 where [ ] denotes the 
greatest integer function. 

We now introduce a natural relationship between lacunary strong con-
vergence with respect to an Orlicz function and lacunary statistical con-
vergence. The notion of statistical convergence was given in earlier works 
[1], [4], [7], [21]. Recently, Fridy and Orhan [8] introduced the concept of 
lacunary statistical convergence as follows. 

DEFINITION 3 . 5 [8]. Let 9 be a lacunary sequence. Then a sequence x = (Xk) 
is said to be lacunary statistically convergent to a number t if for every 
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e > 0, l imh~1 \Kg(e)\ = 0, where Kg(e) = {kelr : \xk - l\ > e} and \Kg(e)\ 
denotes cardinality of Kg(e). The set of all lacunary statistically convergent 
sequences is denoted by Sg. 

We now establish an inclusion relation between [JVg, M] and Sg. 

THEOREM 3.6. For any Orlicz function M, [Ng,M] C Sg. 

P r o o f . Let x G [ N g , M ] and e > 0. Then 

heir v H / k£ir,\xk-i\>t v y 

> h~1M(e/p)\Kg(e)\ 

from which it follows that x € Sg. 
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