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REMARKS ON DECOMPOSABLE SETS

Abstract. In this paper we present some properties of decomposable sets, which are
analogous to known properties of convex sets. In particular, an analogy of the classical
theorem of Kakutani is given.

Introduction

Let (X, | -]|) be a Banach space, (€2, %, 1) be a measure space and L; =
L,($2, %, ) be Banach space of equivalence classes [f] (with respect to the
relation of equality -a.e. in ) of E-measurable function f : 2 — X with
the norm || f||z = {;, || flldpe < +00. A set K C Ly is called decomposable if
for any [u],[v] € K and each A € &, [x,u + Xq,4?] € K, where x, denotes
the characteristic function of A. Cz. Olech in [1] has showed, that certain
properties of convex sets can be carryed on decomposable sets. Described in
[1] properties are analogues of Krein—-Milman and Carathéodory theorems
(for X =R", Q = [a, b], p—the Lebesgue measure).

The purpose of this note is to examine some other similarities between
properties of convex and decomposable sets.

Properties of decomposable sets
The main result of this note is the following analogy of the classical
Kakutani theorem.

THEOREM 1. If A, B C Ly are decomposable and disjoint sets, then there is
a decomposable set K such that:

a) Ly \ K is also decomposable,
b) AC K and B C L1 \ K.

In the proof of the Theorem 1 we use the following lemma.
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LEMMA 1. Let T be an arbitary set of indexes. Assume that for everya € T
we have a family A, of sets in & such that p((;—; A;) >0 for eachn € N
and Ay,..., A, € A,. Let (C,<) be the ordered set of all families A,,
a € T, with the ordering A, < Ag iff A, C Ag. Then for every A, € C
there exists a mazimal family Ay in C such that Ay, C Ag.

Proof. Note first, that every chain R C C has an upper bound A =
UAQGRAQ. If Ay,...,A, € A, then there are A,,,...,A,, € R such
that A; € A,,...,A, € A, . Because R is a chain, we receive that
Ai,...,A, € A,, for certain a;. Hence u(ﬂzzl Ak) > 0 and A € C.

To end the proof, it suffices to use the Kuratowski—Zorn lemma. =

REMARK 1. Immediately from the definition we have following properties of
the maximal family Ag in C:

(W 1) Qe Ay,
(W 2) Neoy Ax € Ag for each n € Nand Ay,..., A, € Ay,
(W3)if AeXand u(BNA) >0 for every B € A, then A € Ay.

Proof of Theorem 1. Let A, B C L; be disjoint decomposable sets. Put
A= Jlfl, B= g, and Apg={teQ: f(t)#g(t)}.

{fleA {gleB

We will show that the family Af, = {A;, : f € 4,9 € B} is such that
p(Ny Ay, g.) > 0 for each n € N and each {Ay, 4,,...,Af, g, } C Ay g.
Let us take fi, fo € A, g1,92 € B and put

f=Faxa, , tHhl=xa, €4 g=@xa,  +9{l-xa  )€EB

Then we have that Af,=Ay o, NAy, o, and hence p(Ay o NAy, 4,) >0.
Repeating this process for Af, and the next sets Ay .., we obtain
p(ﬂ;;l Afi,gi) > 0. By Lemma 1 there exists a maximal family &4y € C
such that A¢ , C Ag. Consider a set K C L, such that
(1) [h] eK & HAEAO afEfi Vica f(t) = h(t)
We will show that K satisfies assumptions of Theorem 1.

Because {2 € Ag we have that A C K. To prove that K is a decomposable
set let us take [u], [v] € K, D € Z. Then there exists A1, Az € Ao, f1, /2 € A
such that u(t) = f1(t) for t € A; and v(t) = fa(t) for t € A,. The functions
Xp¥ + Xa\p? a0d Xpna f1 + X\ (ona) f2 coinside on the set A = A; N Ao.
Since the second function belongs to A and A € Ay (by W 2), then [x,u+
Xa\o?] € K.

The next step of our proof is to show that B C Ly \ K. If [g] € B
and [h] € K then there exist A € Ag and f € A such that h(t) = f(t)
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for each t € A. Because (A N Ay ,) > 0 (the definition of Ag) we receive
that [g] # [h]. To show that L; \ K is a decomposable set let us consider
[11],[v2] € L1 \ K and D € ¥. Then

(2) VAEAO er,ci atn ity €A 71(t71) # f(t')'l) and 72(“"12) # f(t’Yz)'

Let us take a function h such that [h] € K. Now let us fix a set Ag € A
and a function f € A such that f(t) = h(t) for t € Ag. Existence of such
A and f is guaranted by the condition (1).

Let us denote By = {t € Q : v1(t) # f(¢t)} and By = {t € Q : y2(t) #
f(t)}. By the maximality of Ay, property (W 3.) and condition (2) we obtain
u(B1NA)>0and u(B2NnA) > 0 for every A € Ay. Useing again property
(W 3) we receive that B;,By € Ag and u(B1 N B2 N Ap) > 0. Let us
consider the function v = X7 + Xqp72- Notice that 7(t) # f(t) for every
t € By N By N Ag. Because u(B; N B2 N Ag) > 0, we have [y] # [h], and
because [h] € K has been chosen arbitraily, [y] cannot belong to K. This
completes the proof. m

The same result has been obtained independently by W. Kubi$ [2] as a
consequence of a theorem characterizing spaces having the Kakutani separa-
tion property. However, the method presented here is direct and completely
differen than the one used in [2].

As an immediate consequence of Theorem 1 we obtain the following
corollaries.

COROLLARY 1. If [f],[g] € L1 and [f] # [g], then there exist decomposable
sets K and Ly \ K such that [f] € K and [g] € L1 \ K.

COROLLARY 2. If A C Ly is a decomposable set, then A= \gcp, acx K,
where K and L1\ K are decomposable sets.

Notice that not all properties of convex sets have their substitutes for
decomposable sets. For example an analogy of Helly theorem does not hold
for decomposable sets. Namely, for every n € N we can create a family of
closed and decomposable sets Ay,. .., An, Ant1 such that (1, Ak, # 0 for
each {k;}2, Cc {1,...,n+ 1} and ﬂ?:ll Ay = 0. For instance to construct
such a family let us take zg,...,z, € X such that zx # z; for k # [ and for
k=1,...,n let us define functions gx : § — X by the formula g, (t) = zx.
Now for k = 1,...,n let A, be the smallest decomposable set containing
a fixed combination of n — 1 elements of {[¢g1],...,[gn]} and [go] and let
Ap41 be the smallest decomposable set such that {[g1],...,[gn]} C An+1.
Similarly one can prove that the Radstrom cancellation law does not hold
for Minkowski’s sums of decomposable closed and bounded sets.
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