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A LOCALIZATION PRINCIPLE FOR CLASSES OF M E A N S 

Abstract. Several families of continuous means defined on a square 7 x 7 have the 
remarkable property of being entirely determined when their values in an arbitrary small 
neigborhood of the diagonal {(x,x) : x 6 7} of the square are known. Some examples are 
given of application of this property in solving functional equations. 

1. Introduction 
Let 7 be a real interval and denote by Q the square 7 x 7 . This paper 

is mainly concerned with families of continuous symmetric means on 7; i.e., 
with classes of continuous functions ¡j, : Q —» 7 satisfying the following three 
properties ([1], [2]): 

i) fi(x, x) — x, x € 7; 
ii) n(x,y) = n(y,x), x,y G 7, (symmetry); 

iii) fj, is strictly increasing in both variables x and y. 

Important examples of classes of continuous symmetric means are pro-
vided by QA(I), the family of quasiarithmetic means on 7, 

and £(7), the family of Lagrangian means ([3],[5],[6]). The Lagrangian mean 
on 7 generated by a continuous and strictly monotone function / : 7 —> R is 
defined through 

By their connection to the Lagrange mean value theorem, these means were 
called mean-value means in [7], pg. 343 and ss., and even other names were 

(1) 

/ : 7 —> R is continuous and strictly monotone 

x ^ y 
x = y. 
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given them in the classic literature. The concise denomination we presently 
use come from [5]. 

Another family of means we have interested in this paper is the family of 
anti-Lagrangian means on an interval I . For a given continuous and strictly 
monotone function / : I —> R, the anti-Lagrangian mean ¡i generated by f 

is 

where the integral is understood in the sense of Riemann-Stieltjes. The class 
AC(I) of anti-Lagrangian means on I was introduced and studied in [6] 
as a remarkable instance of means resulting from the Cauchy mean value 
theorem. 

This paper addresses the question of localization for classes of symmetric 
continuous means. Consider a family T of functions defined on a set X and 
taking their values in another set V; i.e., J- C Y x . Along this paper, the 
family T is said to satisfy a localization principle on X when there exists 
a proper subset Xo of X such that, for every pair of functions f,G G J-, 
the equality / = g holds provided that / (x ) = g(x), x G Xo- To emphasize 
the role of the set of localization XQ often we say that the family T is 
XO-localizable. For instance, the family PN C K[x] of all polynomials p with 
degp < n is Xo-localizable for any Xo C R with n + 1 points at least. A less 
trivial example of localization is furnished by the class Ti ( f l ) of harmonic 
functions on a domain ft of Kn : Ti( fl) is Xo-localizable on every non-empty 
open subset Xo of f2. As it is well known, this fact is a direct consequence 
of the real analyticity of harmonic functions. 

Existence of a localization principle supposedly satisfied by the entire 
class of symmetric continuous means is a hopeless question. We show, how-
ever, that the three aforementioned classes of means are ZY-localizable for 
every neighborhood U of the diagonal A ( Q ) = { (x , x) : x 6 1} of the square 
Q. Before our main result in this connection be formally stated and proved, 
we would like to convey the reader some intuition of this fact. To this end, 
we consider the family of C2 quasiarithmetic means on I and we suppose 
that fi is a member of this family. From (1) we see that 

for a certain continuous and strictly monotone / defined on I . If we assume, 
in addition, that / G C2(I), then a simple application of the implicit function 
theorem to (4) shows that FI £ C2(Q) and so, identity (4) can be twice 
implicitly differentiated. In fact, by taking d2/dxdy on both members of 

(3) 
x x = y, 

(4) 2f{iM{x,y)) = f(x) + f(y), x,y € I, 
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(4), we obtain 

<5> " - « ^ ( / « • / ( » » - » a g f W ' . v ) » 

Since n(x,x) = x, we have 

(6) ^ ( x , x ) + ^ ( x , x ) = l, I E / ; 

furthermore, the symmetry of fi implies 

whence we see that 

By making y —> x in (5) and using (7) we finally arrive at the second order 
linear differential equation 

(8) f"(x) + 4A(x)f'(x) = 0, 

where A{x) = (d2fi/dxdy)(x,x). 

Given a non-constant particular solution <f> to equation (8), its general 
solution / is computed as 
(9) f = a<t> + p, 

with a,f3 real constants. Moreover, a non-constant solution to (8) satisfy 
X 

<j>'{x) = e x p ( - 4 $ > 0, x £ l , 

so that every pair 4>, f of monotone solutions to equation (8) are related by 
(9) with a non zero constant a . In this way, if two C2 quasiarithmetic means 
/¿i and ¿¿2 coincide in a neighborhood U of the diagonal A (Q) of the square 
<5, then 

d V i __ d2M2 o n u 

dxdy dxdy ' 

and therefore (d2/j,i/dxdy)(x,x) = (d2^/dxdy)(x,x), x e I. By assuming 
that Hi is generated by fi (i = 1,2), we see that f\ and fa are monotone 
solutions to the same equation (8) and so, there exist two constants a,/3, 
a / 0 , such that fa = afa + ¡3. But then, for every x,y € I, we have 
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M2 (x,y) = f2 

/ {afi(x)+P)+{<*fl(v)+P) 
1 a 

j = m (x,y) 

In short, we have proved that whenever two C2 quasiarithmetic means co-
incide in a neighborhood of the diagonal A ( Q ) of the square Q, then they 
will coincide over the entire square Q. This localization principle for regular 
quasiarithmetic means is shared by other families of continuous symmetric 
means. By following a procedure like the previous one, it is not difficult to 
see that the equation 

with A(x) — (d2fi/dxdy)(x,x) and A = 12 is satisfied by the monotone 
function / 6 C2 generating a regular Lagrangian mean fj, and the same 
equation holds with A = 6 when / is the generating function / € C2 of 
a regular anti-Lagrangian mean /J,. Then, we conclude that the families of 
regular quasiarithmetic, Lagrangian or anti-Lagrangian means all are U-

localizable for any neighborhood U of the diagonal A ( Q ) . But we will see 
that the requirement of regularity can be relaxed so that we can state the 
following result. 

Theorem 1. Let I be a real interval andU be a neighborhood of the diagonal 

A ( Q ) of the square Q = I x I. Then, the families QA(I), C(I) and AC(I) 

of continuous symmetric means are U-localizable. 

To prove this theorem is devoted our next section. Some examples of its 
applications in solving functional equations and a few remarks on possible 
generalizations are given in Section 3 of the paper. 

2. Proof of Theorem 1 
Let M.(I) denote any one of the three classes of means QA(I), C{I) 

or AC(I). In view of definitions (1), (2) and (3), a member fi of M(I) is 
generated by a continuous and strictly monotone function / : / —> R, which 
we generally indicate by writing p, — [/]. The proof we give of Theorem 1 
is supported by the following basic result of representation of means in the 
classes QA{I), C(I) and AC(I). 

Theorem 2. If [/], [p] e M(I), then [/] = [5] if and only if there exist two 

real constants a, ¡3, a / 0, such that g = af + ¡3. 

(10) /"Or) + XA(x)f'(x) = 0, 
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The fact that [af + j3] = [/] for a, (3 G R, « / 0 , turns out to be a simple 
computation with (1), (2) and (3). At least in the case in which / and g are 
regular, say /, g G C2(I), a proof of the converse can be given along the lines 
at the end of previous section: if [/] = [g], then / and g are two non-constant 
solution to the same differential equation (10), hence g — a f+f3 with a 0. 
For the proof of the general case when M. (I) = QA(I) the reader is remitted 
to Theorem 2, pg. 290, of [1] or Corollary 5, pg. 246, of [2]. See Corollary 7 in 
[5] (also, in a slightly different version, Theorem 1, pg. 344, of [7]) for a proof 
in the case M.(I) = C{I). As for the final case in which M(I) = AC{I), a 
proof can be found in [6]. • 

To prove Theorem 1 we first assume that I is a compact real interval. Let 
/Xj, (i = 1,2), be two means in M(I) such that fi\(x,y) = ¡j,2(x,y), (x,y) G 
U, being U any neighborhood of the diagonal A(Q) of the square Q = I x I. 
We can suppose that every m is generated by a strictly monotone real 
function fi defined and continuous on I; i.e., m = [/¿], i = 1,2. Cor-
responding to every x € /, there exists a S > 0 such that the square 
Q(x;6) = ((x — 6,x+6) x (x — S,x+S))r\Q C U and therefore, an application 
of Theorem 2 shows that, calling I(x) = (x — 5, x + 6) C\ I, the equality 

(11) h\Hx) (0 = <*x h\I{x) ( 0 + £ € I(x), 
holds for two constants ax / 0 and [3X. Now, by compactness, there are 
a finite number of points x\ < X2 < • • • < xn of the interval I such that 
I U L i I(xk)- For every f € I(xk) H I(xk+1), we obviously have 

a*k h\i(xk) (0+Pxk = aXk+1 /i|/(Xfc+1) (0 + Pxk+1, 

whence, taking into account that /(xfc) fl /(xfc+1) is a non-void open subset 
of I and the strict monotonicity of /i, we deduce 

(12) aXk = OLXk+li Pxk — Pxk+1-

Since these equalities hold for k = l , 2 , . . . , n — 1, we conclude from (11) 
that 
(13) /2(0 = « / I ( 0 + /3, 
being a and ¡3 the common value of aXk and f3Xk, respectively. As a conse-
quence of (13), for every x,y G I we have 

M2 (x,y) = [f2](x,y) = [afi+p](x,y) = [fi](x,y) = m (x,y), 

which proves Theorem 1 when I is a compact interval. 
Now suppose that I is not compact. Then we can choose a sequence {/„} 

of compact intervals such that In+i C 7n C /, n G N, and ¡n — I- The 
just proved part of the theorem shows that, for every n G N, y) = 
Hi(x,y) for x,y G /n; hence, fi2(x,y) = /ii(x,y), x,y € I. This completes 
the proof of Theorem 1. • 
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3. Examples and remarks 
A list follows of examples of application of Theorem 1 to solve some 

functional equations. Our first example has to do with the Jensen functional 
equation 

(14) / ( £ ± 2 ) _ M + M , I i y 6 i , 

where I is a real interval. That the general continuous solution to equation 
(14) is given by 

{ f ( x ) = ax + (3:a,/3<E R}, 

the family of affine function, is a classical result (see, for example, [1], pg. 43, 
or [2], pg. 242). Now let us consider a neighborhood U of the diagonal A (Q) 
of the form {(x,y) G Q : \x — y| < <5}, (5 > 0), and the Jensen equation 
(14) with domain U\ i.e., 

(15) = { l , v ) e u . 

Continuous solutions to this equation must be locally affine functions and 
so, a compactness argument shows that they really are affine. To the same 
conclusion we will alternatively arrive by using Theorem 1. As a first step, 
we show that every non-constant continuous solution to equation (15) must 
be strictly monotone in I. Indeed, if the equality f(xo) = f(yo) were true 
for two points xo,yo G I, XQ < yo] then, due to the continuity of / , there 
exist x\,yi G I, x\ < j/i, with |xi — y\\ < 5 and f(xi) = / (y i ) = c. From 
(15) we conclude that f((xi + yi)/2) = (c + c)/2 = c or, after an inductive 
reasoning, / ( (1 — d)x\ + dy\) = c for every dyadic rational d € [0,1]. Since / 
is continuous, we can ensure that f(x) = c, x G [xi,yi]. Define [x\,y*] to be 
the maximal subinterval of [xo,2/o] containing {x\,y\] and such that / = c 
on {x\,y\}. We will see that y\ — yo. In fact, if y{ < yo, then by eventually 
replacing / by — / we can suppose that there exists a sequence {yn} such 
that y{ < yn < yn+l < y0, n £ N, yn | y{ and f(yn) > c, n G N. Hence, 
fixed a small enough e > 0 an n G N can be found such that yn < y\ + e 
and we would attain the following contradiction: 

c = f ( ( y i - £ ) + yn\ = f ( y i - e ) + f(yn) > c 

Thus yl = yo and we can similarly prove that x\ = XQ] that is, / = c on 
[xo,yo]- Finally, an argument like the previous one shows that the maximal 
subinterval I* of I containing [xo,yo] and such that / = c on I* must 
coincide with / ; thus, / = c on / . 

Now, if / is a continuous non-constant solution to equation (15), then 
we can write 
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( M + M ) , M e U ; 

i.e., the quasiarithmetic mean [/] coincides with the arithmetic mean in 
the neighborhood U of the diagonal A(Q). Since the arithmetic mean is 
generated by g(x) = x, x G I, Theorem 1 shows that 

(16) f(x) = ax + (3, x € l , 

with a ^ 0, ¡3 constants. The argument finishes by observing that constant 
solutions to (15) are included in (16) when a = 0. 

The ideas just expounded for the Jensen equation can be suitably ex-
tended to the more general equation 

( 1 7 ) f(M(x,y)) = N(f(x),f(y)), x,y G I,\x - y\ < 6, 

where M and N are quasiarithmetic means defined on intervals I and J , 
respectively. As before, a non-constant continuous solution / : I —> J to this 
equation is proved to be strictly monotone in I (see [4]), so that by writing 
M — [4>], N — [xp], equation (17) becomes 

[4>] - ( f 1 ° bl>] ° (/ x f))(x, y) = [ipo f](x, y), x, y G I, \x - y\ < S. 

By Theorem 1 we then conclude 

(if>of)(x) = a<l>(x) + P, x e l , 

whence 
(18) / ( £ ) = i / r J ( * ) + / ? ) > x € l . 

Of course, the constants a and /3 are not completely arbitrary here: the con-
dition a(j){I) + ft C ip(J) must be fulfilled in order that (18) be meaningful. 
Briefly, the general continuous solution to equation (17) is given by (18) 
with a, /3 real constants such that acf)(I) + ¡3 C ip(J). 

Last we look for continuous solutions to the integral-functional equations 

(19) j / ( £ ) d i = ( y _ s ) / ( ' £ ± J i , ) | (x,y)eu, 

and 
y 

( 2 0 ) j i df{0 = (f(y) - f(x))^±V, (x, y) G U, 
X 

where U is a neighborhood of the diagonal A(Q). Note that equations (19) 
and (20) can be interpreted as prescriptions of the mean value in the Mean 
Value Theorem for Riemann and for Riemann-Stieltjes integrals, respec-
tively. Let xq be an interior point of / ; then, from (19) we obtain 

-J XO+E 
(21) T \ m d £ = f ( x o ) , 

xo-e 
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for small enough e's; i.e., solutions to equation (19) (locally) have the Mean 
Value Property and therefore, they are real analytic functions on I . It follows 
that a non-constant continuous solution / to (19) is strictly monotone on I . 
In fact, if it were not so, then there would exist two points xo,j/o € I , XQ < 
yo, such that f(xo) = f(yo), whence function / would admit an extremum 
x* £ (xo,yo). From (19) we then deduce that / = f(x*) in a neighborhood 
of x* or, since / is real analytic, / = f(x*) in I , which violates the initial 
assumption on / . Now, if / is a non-constant solution / , we can rewrite 
equation (19) as follows 

The right hand side of (22) is the Lagrangian mean generated by / while 
the second one is that one generated by g(x) = x, so that Theorem 1 applies 
to derive f(x) — ax + /3, x £ I. Summarizing, the family of affine functions 
is the general continuous solution to equation (19). 

Equation (20) can be similarly studied but details on its treatment will 
be omitted. We only observe that every non-constant continuous solution to 
(20) is also proved to be strictly monotone on I, whence equation (20) can 
be transformed in 

In this form, equation (20) expresses that the anti-Lagrangian mean [/] is 
equal to [x] on U and, as before, Theorem 1 then implies that f ( x ) = ax+f3. 

With regard to possible generalizations of Theorem 1, we realize that 
means in the three classes QA(I), £ ( / ) and AC{I) are of the form 

where / is a strictly monotone and continuous function on I and {p(x, y, •) : 
x,y £ 1} is a given two-parameter family of Borel probability measures on 
I satisfying the following properties: 

G M 1 ) if x < y, then p(x,y; •) is supported on [x,y]; 
G M 2 ) p(x, y; •) depends continuously on (x, y) £ Q in a weak sense: (x, y) —» 
5/ J{0p(x> V'i d-C) is continuous on Q whatever be the continuous function / . 

Observe that p(x, x; •) is supported on {x} by G M 2 ) , so that p(x, x\ •) = 
S(x — •), the Dirac measure concentrated at x. Under conditions G M 1 ) , 
G M 2 ) , (23) is a continuous mean on 7; i.e., in addition to continuity, (23) 
verifies the internality property: 

(22) 

(23) 

min{z, y} < fj,(x, y) < max{i , y}, x,y £ I, x ^ y . 
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As it occurred with quasiarithmetic and Lagrangian means, different families 
of means are generated by expression (23) when p is fixed and / varies on 
the set of continuous and strictly monotone functions on I . The reciprocal 
situation in which / is fixed while it is the two-parameter family of measures 
what varies in (23) is also of interest: this is the case that corresponds to 
anti-Lagrangian means. Localization properties of the so generated families 
of means may considerably differ from that one specified in Theorem 1. Take 
for instance the family {fix : A G (0,1)} with 

f i x ( x , y ) = f - 1 ( ( l - \ ) f ( x ) + \ f ( y ) ) , 

which is derived from the class of Borel measures P\(x,y,£) = (1 — A)<5(x — 
£) + A6(y — £), A G (0,1), x,y G I, and from a fixed function / . If the 
value of fix at a point (xo,yo) out of the diagonal A ( Q ) is known, then the 
corresponding value of A can be computed: 

A = f(^x{x0,y0)) - f(xq) 

f ( y o ) ~ /(®0) 

In consequence, the singleton Xq = {(xo,yo)} serves as a localization set for 
this family of means whenever (xo,yo) ^ A(Q). 

It should be added that the symmetry condition p(x,y, •) = p(y,x; •), 
x,y G I, does not play any important role here. On one hand we could 
have stated Theorem 1 by taking U H { ( x , y ) G Q : x < y } instead of a full 
neighborhood U of the diagonal A (Q) but, on the other hand, Theorem 1 
admits a simple extension to the case of weighted quasiarithmetic means 

V(X,V) = r \ p f { x ) + q f ( y ) ) , 

where p, q are positive numbers such that p + q = 1. 
As an instance of this general viewpoint, we give a passing glance to the 

family of means derived from (23) by choosing 

' 2(2/ — 0 ( y — x) -2x[x,i/](0 %<y 
p(x,y\d£)= <<S(£-x), x = y 

. 2 ( £ - x ) ( y - x)-2X[y,x]{0 X > y. 

These means are related to the mean value arising in the Lagrange form of 
the complementary term in the second order Taylor expansion of a function. 
It is easy to see that the equality 

( 2 4 ) (y - x) [ f ( f i ( x , y)) + z ) ) ] = 2 f / ( £ ) 

holds for the mean /i = [/] generated by the function / . Thus, by applying 
d 2 / d x d y on both members of (24), then dividing by (y—x) and taking limits 
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for y —> x, we obtain 

( 2 5 ) f"(x) + ^IMXy(x,x)f'(x) = 0. 

In deriving (25) we have used relation (6) from the Introduction and also 
the following ones 

2 1 
/ i x ( x , x ) =: — , ¡J,y[x,X) = —, ^LXX{X,X) = /Xxy(:E, x ) = /J,yy(x, x ) . 

Now, the argument at the end of the Introduction works for equation (25) 
as well: at least for a regular mean fi, the knowledge of /i in a neighborhood 
of the diagonal A (Q) suffices to determine the generating function / and 
this, in turn, determine fi in the whole square Q. 

Finally, we remark that another direction of generalization of Theorem 
1 consists in considering means in several variables. For example, a suitable 
version of this result holds for quasiarithmetic means in n variables: 

fi(xi,x2, . . . , x n ) = f ~ l + + / ( _ " ) ^ ; X\,X2, . . . , x n € l . 
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