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A LOCALIZATION PRINCIPLE FOR CLASSES OF MEANS

Abstract. Several families of continuous means defined on a square I x I have the
remarkable property of being entirely determined when their values in an arbitrary small
neigborhood of the diagonal {(z,z) : z € I} of the square are known. Some examples are
given of application of this property in solving functional equations.

1. Introduction

Let I be a real interval and denote by @ the square I x I. This paper
is mainly concerned with families of continuous symmetric means on I; i.e.,
with classes of continuous functions u : @ — I satisfying the following three

properties ([1], [2]):
i) plz,z) =z, z € I
i) p(z,y) = ply,z), =,y € I, (symmetry);
iii) p is strictly increasing in both variables z and y.

Important examples of classes of continuous symmetric means are pro-
vided by QA(I), the family of quasiarithmetic means on I,

1) QA(I)= { 1 (f_(ﬁ)%i@) :

f I — R is continuous and strictly monotone},

and L£(I), the family of Lagrangian means ([3],[5],(6]). The Lagrangian mean
on I generated by a continuous and strictly monotone function f: I — R is
defined through

AR A©d), sty
T, =1y

(2) wz,y) = {

By their connection to the Lagrange mean value theorem, these means were
called mean-value means in [7], pg. 343 and ss., and even other names were
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given them in the classic literature. The concise denomination we presently
use come from [5].

Another family of means we have interested in this paper is the family of
anti-Lagrangian means on an interval I. For a given continuous and strictly
monotone function f : I — R, the anti-Lagrangian mean pn generated by f
is

1

(3) w(z,y) = mifdf@), T#y

x’ w:y’

where the integral is understood in the sense of Riemann-Stieltjes. The class
AL(I) of anti-Lagrangian means on I was introduced and studied in [6]
as a remarkable instance of means resulting from the Cauchy mean value
theorem.

This paper addresses the question of localization for classes of symmetric
continuous means. Consider a family F of functions defined on a set X and
taking their values in another set Y; i.e., 7 C Y. Along this paper, the
family F is said to satisfy a localization principle on X when there exists
a proper subset Xy of X such that, for every pair of functions f,g € F,
the equality f = ¢ holds provided that f(z) = g(z), =z € Xo. To emphasize
the role of the set of localization Xy often we say that the family F is
Xo-localizable. For instance, the family P, C R[z] of all polynomials p with
degp < n is Xp-localizable for any Xo C R with n + 1 points at least. A less
trivial example of localization is furnished by the class H({2) of harmonic
functions on a domain Q of R™: H(Q) is Xp-localizable on every non-empty
open subset X of 2. As it is well known, this fact is a direct consequence
of the real analyticity of harmonic functions.

Existence of a localization principle supposedly satisfied by the entire
class of symmetric continuous means is a hopeless question. We show, how-
ever, that the three aforementioned classes of means are U-localizable for
every neighborhood U of the diagonal A(Q) = {(z,z) : = € I} of the square
(. Before our main result in this connection be formally stated and proved,
we would like to convey the reader some intuition of this fact. To this end,
we consider the family of C? quasiarithmetic means on I and we suppose
that p is a member of this family. From (1) we see that

(4) 2f(u(=,9)) = f(z) + fly), =y€l,

for a certain continuous and strictly monotone f defined on I. If we assume,
in addition, that f € C?(I), then a simple application of the implicit function
theorem to (4) shows that u € C%(Q) and so, identity (4) can be twice
implicitly differentiated. In fact, by taking 0%/0z0y on both members of
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(4), we obtain
92 0?
() 0= 5= (@) + F1) = 2 (F(u(z0))

2
~ 25 (fluteags) =2 (f"w,y))%gg—‘; + f’(n(w,y));x—gy) .

Since u(z,z) = z, we have

ou ou _ _
(6) ay(xam)-l-%(z’x)_ 17 ZEEI,

furthermore, the symmetry of p implies

whence we see that
1
(7) a—y(m,m) =5= ——(z, ).

By making y — z in (5) and using (7) we finally arrive at the second order
linear differential equation

(8) f'(z) + 4A(z)f'(z) = 0,
where A(z) = (0%u/0z0y)(z, z).

Given a non-constant particular solution ¢ to equation (8), its general
solution f is computed as

(9) f=oap+p,
with «, 8 real constants. Moreover, a non-constant solution to (8) satisfy

T

¢)'(a:):exp(—4SA(§)d§)>0, r €l

so that every pair ¢, f of monotone solutions to equation (8) are related by
(9) with a non zero constant «. In this way, if two C? quasiarithmetic means
g1 and p2 coincide in a neighborhood U of the diagonal A(Q) of the square
Q, then

Pur _ uy

—— =——  onl,

0zdy  Oz0Oy
and therefore (02u1/0z0y)(z,z) = (8%u2/820y)(z,z), = € I. By assuming
that p; is generated by f; (i = 1,2), we see that f; and f, are monotone
solutions to the same equation (8) and so, there exist two constants «, 3,
a # 0, such that fo = af; + 3. But then, for every z,y € I, we have
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/1/2(1',:1/) — f2——1 (fg(CL‘) ';' f2(y))

(efi(z)+8)+(afi(y)+8) B
R

«x

=fit <—f1(x) ;— f1(y)) = p1(z,y).

In short, we have proved that whenever two C? quasiarithmetic means co-
incide in a neighborhood of the diagonal A(Q) of the square @, then they
will coincide over the entire square . This localization principle for regular
quasiarithmetic means is shared by other families of continuous symmetric
means. By following a procedure like the previous one, it is not difficult to
see that the equation

(10) f(z) + AA(z) f'(z) = 0,

with A(z) = (8%u/020y)(zx,z) and A = 12 is satisfied by the monotone
function f € C? generating a regular Lagrangian mean p and the same
equation holds with A\ = 6 when f is the generating function f € C2? of
a regular anti-Lagrangian mean u. Then, we conclude that the families of
regular quasiarithmetic, Lagrangian or anti-Lagrangian means all are U-
localizable for any neighborhood U of the diagonal A(Q). But we will see
that the requirement of regularity can be relaxed so that we can state the
following result.

THEOREM 1. Let I be a real interval and U be a neighborhood of the diagonal
A(Q) of the square Q = I x I. Then, the families QA(I), L(I) and AL(I)
of continuous symmetric means are U-localizable.

To prove this theorem is devoted our next section. Some examples of its
applications in solving functional equations and a few remarks on possible
generalizations are given in Section 3 of the paper.

2. Proof of Theorem 1

Let M(I) denote any one of the three classes of means QA(I), £(I)
or AL(I). In view of definitions (1), (2) and (3), a member u of M(I) is
generated by a continuous and strictly monotone function f : I — R, which
we generally indicate by writing u = [f]. The proof we give of Theorem 1
is supported by the following basic result of representation of means in the

classes QA(I), £(I) and AL(I).

THEOREM 2. If [f],[g] € M(I), then [f] = [g] if and only if there exist two
real constants a, 3, a # 0, such that g = af + (.



A localization principle for classes of means 561

The fact that [af + 3] = [f] for o, 8 € R, a # 0, turns out to be a simple
computation with (1), (2) and (3). At least in the case in which f and g are
regular, say f,g € C%(I), a proof of the converse can be given along the lines
at the end of previous section: if [f] = [g], then f and g are two non-constant
solution to the same differential equation (10), hence g = af + 5 with a # 0.
For the proof of the general case when M(I) = QA(I) the reader is remitted
to Theorem 2, pg. 290, of [1] or Corollary 5, pg. 246, of [2]. See Corollary 7 in
[5] (also, in a slightly different version, Theorem 1, pg. 344, of [7]) for a proof
in the case M(I) = L(I). As for the final case in which M(I) = AL(I), a
proof can be found in [6]. n

To prove Theorem 1 we first assume that I is a compact real interval. Let
i, (i =1,2), be two means in M(I) such that py(z,y) = pao(z,y), (z,y) €
U, being U any neighborhood of the diagonal A(Q) of the square @ = I x I.
We can suppose that every u; is generated by a strictly monotone real
function f; defined and continuous on I; ie., u; = [fi], ¢ = 1,2. Cor-
responding to every x € I, there exists a 4 > 0 such that the square
Q(z;0) = ((z—6,z4+ ) x (x—d,2+6))NQ C U and therefore, an application
of Theorem 2 shows that, calling I(z) = (z — §,z + §) N I, the equality
holds for two constants a, # 0 and §,. Now, by compactness, there are

a finite number of points ;7 < z2 < .-+ < z, of the interval I such that
I C Ug=1 I(zk). For every § € I{zy) N I(zk4+1), we obviously have

Qzy, fllI(a:k) (f) + :Bxk = Qg fllj(z,H_l) (é) + /sz+1’

whence, taking into account that I(zg) N I(zk1) is a non-void open subset
of I and the strict monotonicity of f1, we deduce

(12) Czp = Qzpyg, /sz = ﬁ$k+1'

Since these equalities hold for £ = 1,2,...,n — 1, we conclude from (11)
that

(13) L) =afi(§)+8, €1,

being a and 3 the common value of oz, and f,,, respectively. As a conse-
quence of (13), for every z,y € I we have

p2(z,y) = [fol(z,y) = [@fr + Bl(z,v) = [fil(z,9) = m(z,y),
which proves Theorem 1 when [ is a compact interval.

Now suppose that I is not compact. Then we can choose a sequence {I,,}
of compact intervals such that I,41 C I, C I, n €N, and U2 I, = I. The
just proved part of the theorem shows that, for every n € N, ua(z,y) =
pi(z,y) for z,y € I,; hence, ua(z,y) = pi(z,y), z,y € I. This completes
the proof of Theorem 1. L]
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3. Examples and remarks

A list follows of examples of application of Theorem 1 to solve some
functional equations. Our first example has to do with the Jensen functional
equation

(14) f(x+y) _ @)+ 1)

I
2 2 ) x’ y e ¥
where I is a real interval. That the general continuous solution to equation
(14) is given by
{f(z)=az+B:a,BER},

the family of affine function, is a classical result (see, for example, [1], pg. 43,
or [2], pg. 242). Now let us consider a neighborhood U of the diagonal A(Q)
of the form {(z,y) € @ : |z —y| < 8}, (§ > 0), and the Jensen equation
(14) with domain U; i.e.,

(15) f(m+y):f(x)+f(y), (@.y) € U.

2 2

Continuous solutions to this equation must be locally affine functions and
S0, a compactness argument shows that they really are affine. To the same
conclusion we will alternatively arrive by using Theorem 1. As a first step,
we show that every non-constant continuous solution to equation (15) must
be strictly monotone in I. Indeed, if the equality f(zo) = f(yo) were true
for two points zg,yo € I, ¢ < yo; then, due to the continuity of f, there
exist z1,y1 € I, 1 < y1, with |z; — 11| < § and f(z1) = f(y1) = ¢. From
(15) we conclude that f({z1 + v1)/2) = (c+ ¢)/2 = c or, after an inductive
reasoning, f((1—d)z1 +dy1) = c for every dyadic rational d € [0, 1]. Since f
is continuous, we can ensure that f(z) = ¢, © € [z1,y1]. Define [z}, y]] to be
the maximal subinterval of [zg,yo] containing {z1,y:1] and such that f = ¢
on [z7,yf]. We will see that y7 = yo. In fact, if y] < yo, then by eventually
replacing f by —f we can suppose that there exists a sequence {yn} such
that 47 < ¥n < Un+1 <%, n €N, yn | 37 and f(yn) > ¢, n € N. Hence,
fixed a small enough € > 0 an n € N can be found such that y, < y] +¢
and we would attain the following contradiction:

(yi —€) + ¥n f(yi =€)+ f(yn)
c:f( — )Z —

Thus y] = yo and we can similarly prove that ] = zo; that is, f = c on
[0, yo]. Finally, an argument like the previous one shows that the maximal
subinterval I* of I containing [zg,yo] and such that f = ¢ on I* must
coincide with I; thus, f =con I.

Now, if f is a continuous non-constant solution to equation (15), then
we can write

>c
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%?i:f‘l (f(m);‘f(y)), (z,y) € U;

i.e., the quasiarithmetic mean [f] coincides with the arithmetic mean in
the neighborhood U of the diagonal A(Q). Since the arithmetic mean is
generated by g(z) = z, z € I, Theorem 1 shows that

(16) f(z)=azx+B, =ze€l,

with a # 0, B constants. The argument finishes by observing that constant
solutions to (15) are included in (16) when a = 0.

The ideas just expounded for the Jensen equation can be suitably ex-
tended to the more general equation

(17) f(M(z,y)) = N(f(z), f(¥)), = yellz—y|l <4,
where M and N are quasiarithmetic means defined on intervals I and J,
respectively. As before, a non-constant continuous solution f : I — J to this

equation is proved to be strictly monotone in I (see [4]), so that by writing
M = [¢], N = [¢], equation (17) becomes

[l= (" ollo(f x Nzy) =Weoflley), zyelle-y <o

By Theorem 1 we then conclude

(Yo f)z)=ad(z)+B, zel,

whence
(18) fl@) =9 (ad(z) +8), zel
Of course, the constants o and 3 are not completely arbitrary here: the con-
dition a¢(I) + B C ¥(J) must be fulfilled in order that (18) be meaningful.
Briefly, the general continuous solution to equation (17) is given by (18)
with a, B real constants such that a¢(I) + 8 C (J).

Last we look for continuous solutions to the integral-functional equations

(19) Qe =-w-af(32), @veu,
and v
(20) Jedr© = F@) - L, @) el

e

where U is a neighborhood of the diagonal A(Q). Note that equations (19)
and (20) can be interpreted as prescriptions of the mean value in the Mean
Value Theorem for Riemann and for Riemann-Stieltjes integrals, respec-
tively. Let zop be an interior point of I; then, from (19) we obtain

xo+e

(21) oo | 1©de=(z0),

To—¢€
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for small enough ¢’s; i.e., solutions to equation (19) (locally) have the Mean
Value Property and therefore, they are real analytic functions on I. It follows
that a non-constant continuous solution f to (19) is strictly monotone on I.
In fact, if it were not so, then there would exist two points zg,yp € I, ¢ <
Yo, such that f(zo) = f(yo), whence function f would admit an extremum
z* € (zg,yo). From (19) we then deduce that f = f(z*) in a neighborhood
of z* or, since f is real analytic, f = f(z*) in I, which violates the initial
assumption on f. Now, if f is a non-constant solution f, we can rewrite
equation (19) as follows

-1 1 H r+y
(22) f (y_ng(ads) =2 @y eu.
The right hand side of (22) is the Lagrangian mean generated by f while
the second one is that one generated by g(z) = z, so that Theorem 1 applies
to derive f(z) = az + f, = € I. Summarizing, the family of affine functions
is the general continuous solution to equation (19).

Equation (20) can be similarly studied but details on its treatment will
be omitted. We only observe that every non-constant continuous solution to
(20) is also proved to be strictly monotone on I, whence equation (20) can
be transformed in

{ T
mkdﬂs) ~Z yeu

In this form, equation (20) expresses that the anti-Lagrangian mean [f] is
equal to [z] on U and, as before, Theorem 1 then implies that f(z) = az+/5.

With regard to possible generalizations of Theorem 1, we realize that
means in the three classes QA(I), £(I) and AL(I) are of the form

(23) p(z,y) = f" (S FOp(z,y; d&)) :

I

where f is a strictly monotone and continuous function on I and {p(z,y, ") :
z,y € I} is a given two-parameter family of Borel probability measures on
I satisfying the following properties:

GM1) if z < y, then p(z,y;-) is supported on [z,y];

GM2) p(z,y; -) depends continuously on (z,y) € Q in a weak sense: (z,y) —
§; f(&) p(z,y;dE) is continuous on @ whatever be the continuous function f.

Observe that p(z, z;-) is supported on {z} by GM2), so that p(z,z; ) =
§(z — -), the Dirac measure concentrated at z. Under conditions GM1),
GM2), (23) is a continuous mean on I; i.e., in addition to continuity, (23)
verifies the internality property:

min{z,y} < p(z,y) < max{z,y}, =zyel, z#y.
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As it occurred with quasiarithmetic and Lagrangian means, different families
of means are generated by expression (23) when p is fixed and f varies on
the set of continuous and strictly monotone functions on I. The reciprocal
situation in which f is fixed while it is the two-parameter family of measures
what varies in (23) is also of interest: this is the case that corresponds to
anti-Lagrangian means. Localization properties of the so generated families
of means may considerably differ from that one specified in Theorem 1. Take
for instance the family {u) : A € (0,1)} with

pa(z,y) = F7H(1 = N f(2) + Af(v),

which is derived from the class of Borel measures py(z,y; &) = (1 — A\)é(z —
+ My —-§), A€ (0,1), z,y € I, and from a fixed function f. If the
value of py at a point (zg,yo) out of the diagonal A(Q) is known, then the
corresponding value of A can be computed:

f(pa(zo, y0)) — f(xo)
flyo) = f(zo)

In consequence, the singleton Xy = {(zo, y0)} serves as a localization set for
this family of means whenever (zo,y0) € A(Q).

It should be added that the symmetry condition p(z,y; ) = p(y,z;"),
z,y € I, does not play any important role here. On one hand we could
have stated Theorem 1 by taking U N {(z,y) € Q : z < y} instead of a full
neighborhood U of the diagonal A(Q) but, on the other hand, Theorem 1
admits a simple extension to the case of weighted quasiarithmetic means

w(z,y) = FHof(z) + af(¥)),

where p, g are positive numbers such that p +q = 1.
As an instance of this general viewpoint, we give a passing glance to the
family of means derived from (23) by choosing

20y — )y — 7)) dE, z<y
p(z,y;d€) = { 6(§ — 2), T=Y
26 - z)(y — ) Pxpe(O)dE, >
These means are related to the mean value arising in the Lagrange form of

the complementary term in the second order Taylor expansion of a function.
It is easy to see that the equality

A=

Y

(24) (y —2) [f (ulz,9)) + f(uly, 2)] = 2 [ £(€) d¢,

T

holds for the mean p = [f] generated by the function f. Thus, by applying
0% /80y on both members of (24), then dividing by (y—z) and taking limits
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for y — z, we obtain
27
(25) () + —2—uzy(a:,a:)f'(a7) =0.

In deriving (25) we have used relation (6) from the Introduction and also
the following ones

2 1
/J’:L‘(wax) = g’ .U'y(x,m) = §a ﬂzz(w7x) = _“zy(ram) = /J'yy(m:m)'

Now, the argument at the end of the Introduction works for equation (25)
as well: at least for a regular mean u, the knowledge of 1 in a neighborhood
of the diagonal A(Q) suffices to determine the generating function f and
this, in turn, determine x in the whole square Q).

Finally, we remark that another direction of generalization of Theorem
1 consists in considering means in several variables. For example, a suitable
version of this result holds for quasiarithmetic means in n variables:

1 <f($1)+f($2)+”'+f($n)

n

plz1, z2,...,&n) = ),$1,$2,...,$n61.
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