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ORTHOGONAL STABILITY OF THE CAUCHY EQUATION
ON BALLS

Abstract. We deal with stability of some functional equations postulated for orthog-
onal vectors in a ball centered at the origin. The maps considered are defined on a finite
dimensional inner product space and take their values in a real sequentially complete
linear topological space. The main result establishes the stability of the corresponding
conditional Cauchy functional equation and as a consequence we obtain some other sta-
bility results. Results which do not involve the orthogonality relation are considered in
more general structures.

1. Introduction

R. Ger and J. Sikorska [2] considered the stability of the Cauchy func-
tional equation postulated for orthogonal vectors only and defined on the
whole space. F. Skof 7], [8] and F. Skof & S. Terracini [9] dealt with stabil-
ity of the Cauchy and quadratic equations on the interval. Z. Kominek [3]
studied stability of the Cauchy equation on the N-dimensional cube in the
space RV,

In the present paper we unify all these investigations by considering the
stability of the Cauchy equation postulated only for orthogonal vectors (or-
thogonal stability) from a ball centered at the origin. Because of methods
used in proofs we restrict ourselves to the orthogonality in a finite dimen-
sional inner product space.

In what follows let (X, (-|-)) be a real inner product space and dimX =
N for some integer N > 2. Let Y be a real sequentially complete linear
topological space and V' be a nonempty bounded convex and symmetric
with respect to zero subset of Y. Let, further, for some positive number r,
the set B, := {z € X : ||z|| < v} denote the open ball in X centered at the
origin and having radius 7, where || - || stands for a usual norm in the inner
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product space. Unless explicitely stated we shall permanently use the just
introduced notation.

We shall say that two vectors z,y € X are orthogonal (z L y) if and
only if (z|y) = 0. Moreover, the symbols N, Ny, R, R* and R} will stand
for the sets of positive integers, nonnegative integers, real numbers, positive
and nonnegative real numbers, respectively.

2. Auxiliary results

To show the orthogonal stability of the Cauchy functional equation on
a ball centered at the origin we have to prove first several lemmas. We say
that a function f : B — Y is additive (on a ball B) if and only if for all
z,y € B such that z+y € B we have f(z+y) = f(z)+ f(y), and a function
f: B —Y is quadratic (on a ball B) if and only if for all z,y € B such that
z+y,z—y € B wehave f(z+y)+ f(z —y) = 2f(z) + 2f(y). We say that
a function f : B — Y is orthogonally additive (on a ball B) if and only if for
all z,y € B such that z+y € B and z L y we have f(z+7vy) = f(z) + f(v).

LEMMA 1. If f: B, — Y is additive (odd orthogonally additive, quadratic,
even orthogonally additive), then there ezists ezactly one additive (odd ortho-
gonally additive, quadratic, even orthogonally additive) mapping F : X -Y
such that F|p, = f.

Proof. We give the proof for an odd orthogonally additive function. In the
remaining cases the proofs are similar.

Assume that f : B, — Y is odd orthogonally additive. For an arbitrary
z € B, there exists a y € B, such that z L y and z + y L £ — y. Moreover,
since £ 1 —y and f is odd, we have

-1 (2)1(52) - (5213 (9)
< (1552) 1) 1) ) -2 )

Hence, for an arbitrary = € B,., the following condition is satisfied

f(z)=2f (g)

Observe that for every m,n € Ng, if %,;x € B, then

1 n 1 1 1
(1) 2“+mf<2n+mx)=2 -2mf(§n—1-2—nx>=2"f(§;z).
Define a function F: X — Y by the formula

F(z):= 2"f(2inx) for all z € X,
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where n is an integer such that 3 - € B,. Equality (1) guarantees that the
function F' is well defined.

We show that F' is odd orthogonally additive Fix z,y € X such that
xz 1 y. There exist nl,nz e Nog such that si-z, 2,,2y € B,. Let n :=
max{ni,n2} + 1. Then = 2,, z, 2,1y, 3= Lz +v), 5= (z —y) € B, and

1
F@)+F6) =21 (50) + 2 (50
- 2"f<ia:+ ly) F(z +y).
2n 2n
To show that F' is unique, assume that there exist two functions Fi, F5 :

X =Y such that Fi|p, = F»|g, = f. Fix arbitrary z € X. Let n € Ny is
such that 5 Lz € B,. Then

) =20 () = 2( ) =2 (1) = Pt

hence F; = F;.
LEMMA 2. Let f : B, — Y be odd orthogonally additive. Then f is additive.

Proof. On account of Lemma 1 there exists an odd orthogonally additive
extension F' : X — Y of function f. Hence, from J. Réatz’s paper [6, Corol-
lary 7], F is additive, and so is f = F|p,.

LEMMA 3. Let f : B, — Y be even orthogonally additive. Then [ is
quadratic. More precisely, there ezists an additive function b : Rf — Y

such that f(z) = b(||z||?) for all z € B,.

Proof. Follows from Lemma 1 and from J. Rétz’s paper [6, Corollaries 7
and 10].

As an immediate consequence of Lemma 2 and Lemma 3 we obtain the
following

COROLLARY 1. Let f: B, — Y be orthogonally additive. Then there exist
additive mappings a : X —» Y and b : RY — Y such that f(z) = a(z) +
b(||z||?) for all z € B,.

The following lemmas establish some stability results concerning odd
and even orthogonally additive mappings, respectively.

LEMMA 4. Let f: B, — Y be an odd function satisfying condition:

20 (@y,z+yeBy, zly) implies flz+y) - f(z)-fly) eV.

Then for each two linearly dependent vectors z and y we have
z,y,z+y € B, implies f(zx+y)— f(z)— f(y) € 3V.
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Proof. Fixanz € B,. Thereexistsay € B, such that z L y and ||z| = ||yl

Then“” J_—Hand ( ) <2y)€V,
- 1) -i(3)-1(3) v

Y
1)-1(5)+5(5) v
Consequently, we infer that

f(z) - 2f<§) €3V

Now, we are going to show that for each real A and each z € B, such that
Az, (A + 1)z € B, the following relationship
(3) flz+ Xz) — f(z) — f(Az) € 3V
holds. To show this let us distinguish four cases:
() A>0, (i)A=0 (ii)-1<Ai<0, (@(v)A<-1.

(i) Take an z € B, such that (A + 1)z € B,. There exists a vector
y € X such that z L y and z +y L Az — y. It is easy to check that
¥,z +y, \z —y € B,. Hence

flz+Az) - flz+y) - fAz—y) €V,
flz+y) - flz) - fly) €V,
fOz —y) - fhz) + fy) €V,

whence (3) immediately follows.

(if) Then (3) is obviously fulfilled, because f(0) € V C 3V.

(iii) Fix an = € B, such that Az € B,. Then, using (i) and the oddness
of f, we infer that

flz+Az) — f(z) — f(Az) = f(z + Az) + f(—Az) — f(z)
= f(z+)z)+f <<—1+LA> (1+/\)x> ~f ((1+/\)x+ (-%) (1+)\):c> e 3v.

(iv) Fix an z € B, such that Az € B,. Using (i) again and the oddness
of f we obtain

f(@+Az) - f(z) - f(Az) = (1= A)(—=)) + f(—=) = f((-X)(-z)) € 3V.

This completes the proof of the lemma.

(
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LEMMA 5. Let f : B, — Y be an odd function satisfying (2). Then there
ezists an additive function a: X — Y such that

(4) a(z) — f(z) € kiseqclV  for all z € B,
where
ki = 25 for N =2,
' 1 (10N +8) for N >3.

Proof. Without loss of generality we can assume that B, is the unit ball
(r = 1) and put B := Bj. Let ui,...,un be vectors in the space X such
that u; L uj for ¢ # j, 4,5 € {1,...,N}, |lui| = 3,7 € {1,...,N} and
X =lin{uy,...,un}. An arbitrary z € X can be written as z = Zf\,:l o;u;,
for some (uniquely determined) a;,...,any € R. Write further o; as n;+m;,
where n; stands for the integral part of number «; and m; = a; — n;
(t€{1,...,N}). Then

N
= Z (nju; + myu;).
i=1

Define a map F' : X — Y by the formula
N

F(z) =Y (mf(w)+ f(miws)).

i=1
Moreover, let Fi(z) (i € {1,...,N}) stands for the i-th summand of the
above sum. Fix z € B. Since

N
z=) o
i=1
and vectors u; are pairwise orthogonal, we deduce that

lzll* = lleawll® + ... + flenun]l?,

which implies that a;u; € B for alli € {1,...,N}.
Observe that

F(z) - Z ni f (w) + f(miu;)) (Zo‘lui)

2

N

(i (na f (us) + f(miu;)) Zf a;u;) ) (Zf(a u;) <Za,u,))

=1

=§:n,f (ws) + flmaus) = f(ngus +mqus)) + (i flawus) - f(Za,u,))
i=1

=1
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An easy induction argument shows that

Zf o) (Zalu,) -1V

Put
A; = nif(ui) + f(miui) — f(niui + miui), 1 € {1, s ,N}.

Observe that if £ € B then
N

1
1> ol = 3 el = 3 S,

=1 =1

whence Zfil a? < 4, and consequently |a;| < 2foralli € {1,..., N}. More-
over, for at least three ¢ € {1,..., N}, we have |a;| > 1. Let us distinguish
four cases.

(a) 1 < @; < 2. Then n; = 1 and, on account of Lemma 4, we state that
A; = f(ui) + f(m,-ui) — f(uz + miui) € 3V.

(b) 0 < a; < 1. Then n; =0 and A4; = 0.
(¢) -1 < a; <0. Then n; = —1 and

A; = —f(u;) + f(mu;) — f(—u; + mu;) € 3V.
(d) —2 < a; < —1. In this case n; = —2. Since (—1 + m;)u; € B,
Ai = = 2f(uw;) + f(miu;) — F(=2u; + myu;)
= (=f(us) + f(mau;) — f(—ui + myu;))
+ (f(—u; + miu;) — fu;) — f(—2u; + miu;)) € 6V.
Consequently,

13v for N = 2,
(5) F(z) - f(z) € { (4N +8)V for N > 3.

We shall show now that for every z,y € X one has
F(z+y)— F(z) - F(y) €E6N V.

For this purpose fix z,y € X. Obviously z and y we can represented in the
form

N
T = E au; = E (nju; + msu;),

=1

y= Zﬂzuz—z (ksui + Lius)
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with some (uniquely determined) real numbers a;, 3; (i € {1,...,N}); n;, k;
stand here for the integral parts of a; and ;, respectively, and m; := o; —n;,
li:=B;—k; (ie{1,...,N}). Fixie{l,..., N}. Assume first that m;+{; < 1.
Then
Fi(z +y) — Fi(z) — Fi(y) = ((n: + ki) f(wi) + f((mi + L))
— (nif (wi) + f(miwi)) — (ki f (us) + f(liwi))
= f((mi + Li)u;) — f(maw;) — f(lsu;) € 3V.
Let now 1 < m; +[; < 2. Then (m; — 1)u; € B and
Fi(z +y) — Fi(z) — Fi(y)
= ((ni + ki + 1) f(us) + f((ms + 1 — Dws))
— (nif(us) + f(maw;)) — (kaf (w) + f(liwi))
= f(wi) + f((mi + L — Dwi) — f(mau) — fliw)
= (f(us) + f((ms — Dw;) — f(msus))
+ (F((ms + 1 ~ Dug) — f((mi — Dw;) = f(lius)) € 6V

Hence
F(z+y) - Z iz +y) — Fi(z) — Fi(y)) € 6NV.

From J. Ratz’s paper [5] we derlve the existence of an additive function
a: X — Y such that for all z € X we have
a(z) — F(z) € 6N seqclV and a(z) = lim 2—F(2" z).
n—0o0
This jointly with (5) gives (4), what ends the proof.

A thorough inspection of the proof of the above lemma allows to observe
that the condition z L y in (2) and the oddness of function f were used in
the inner product space only for estimating the Cauchy difference for vectors
that were linearly dependent. So, the above result can be reformulated in a
slightly different form.

LEMMA 6. Let (X, |- ||) be a real normed space, dimX = N, let B, := {z €

X : ||z]| < r} for some positive constant r and let f : B, — Y fulfil the
condition

Then there exist an additive function a : X — Y and a real constant ko =
ko(N, || - ) such that

a(z) — f(z) € kyseqd V. for all z € B,.
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Proof. Let ||-|| be any norm in X coming from an inner product. Then, as in
the previous lemma, we get the existence of an additive mappinga: X - Y
such that for all z € B, := {z € X : ||z|| < r} one has

(6) a(z) — f(z) € k' seqclV,

where

K = (6N —1) for N < 3,
" 14N +2) for N >3.

Since X is finite dimensional, the norms | - || and || - || are equivalent; there
exist then positive constants o and 3 such that

(7) afz)| < llzff < Bll=|

for all x € X. Without loss of generality we may assume that the balls B,
and B, are unit balls (r = 1) and put B := B; and B, := aB;. From (7) we
have B, C B. We continue as Z. Kominek in [3]. There exists a p € N such

that B C 2PB,. If z € B then 2%3: € B,. Take now an arbitrary ¢ € B.

Then also Elra: €Bforle {1,...,p} and

f(zl—l_lzv)—Zf(%w)eV, le{l,...,n}.

It is easy to check that
(8) f(z) 27 f(%z) € (2P — 1)V,
Finally, from (6) and (8), for an arbitrary = € B, we have
a(z) — f(z) =2P{a l:1: ~f —l—m + | 2Pf i:1: — f(z)
B 2P 2p op
€ 2Pk’ seqclV + (2P — 1)V C (2P(k' + 1) — 1) seqclV,

and we get the assertion of the lemma with ko = 2P(k’ +1) — 1, where p € N
depends on [} - || only.

Next results concern even mappings.

LEMMA 7. Let f: B, — Y be an even function satisfying (2). Then for all
z,y € B, such that z +y,z —y € B, one has

(9) flz+y)+ flz—y) - 2f(z) - 2f(y) € 34V.
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Proof. Fix z,y € B, such that ||z|| = |ly||. Then 2% | £-¥ and
T+ T -
f(:v)—f< 2y>—f< 2y)ev,
T+ -z
s -1(52) - 1(45) ev.

Hence for all z,y € B, such that ||z|| = ||y||
(10) flz) - fly) e 2V.

Since dimX > 2, for an arbitrary xz € B, there exists a vector y € B,
such that z L y and ||z|| = ||y||. Using (2), (10) and the eveness of f we get

f@-1(Z52) - 1(35) ew.
(<2 A5) 1)
5o

YORIO
whence

(11) flz) — 4f(§> €7V for all z € B,.

Fix now an z € B, and a real number A > 0 such that Az, (A + 1)z,
(A = 1)z € B,. Then there exists a vector y € B, such that z L y and
z+7y L Az —y. It is easy to check that also z + y, Az — y,2y € B,. From
of (2}, (11) and eveness of function f, we obtain

flz+ Az) + f(z — Az) — 2f(z) — 2f(\x)
=(fle+y+rz—y) - fl@+y) - f(Az—y))
+2(f(z+y) - f(z) - fW) + 2(f(Az - y) — F(Az) — f(-))
+(—flz+y=Az+y)+ f(z - Az) + f(2y))
+(fle+y—-Az+y)~ f(z+y) - f(-Az +y))
+@fy)—fRY) eV +2V 2V +V +V + 7V = 14V.
Therefore

(12) fz+Az) + f(z — Az) — 2f(z) — 2f(\z) € 14V
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for all z € B, and A € Rt such that Az, (A + 1)z, (A — 1)z € B,. Observe
further that for an arbitrary z € X and «, B €R such that az, 8z, (a+8)z,
(o — B)z € B, we have

(13) flaz + Bz) + f(az — Bz) — 2f(az) — 2f(Bz) € 14V.

In fact, when o = 0 or 8 = 0, then condition (13) obviously holds. When
g > 0, then we apply (12) for A := g If g < 0 then (12) applied for
A= —*g and the eveness of f give the required relationship.

Fix arbitrary z,y € B, such that z+y,z—y € B,. If z and y are linearly
dependent, then from (13) it follows that condition (9) holds. Assume that
z and y are linearly independent. Let v and v be vectors from the subspace
lin{z,y} such that u,v € B, and u L v. Therefore z = au+ fv, y = yu+ v
for some a, 3,7,d € R. Using conditions (2) and (13) we get

flz+y) + f(z—y) - 2f(z) - 2f(v)
= fle+Mu+ (B+6)v) + f((a— 7w+ (8- 6)v)
—2f(au+ Bv) — 2f(yu + dv)
= (fla+7)u+ (B +6)v) — flou+yu) — f(Bv + 6v))
+ (f((@=71u+ (B - 6)v) - flou —yu) — f(Bv — dv))
+ (flou+yu) + flau — yu) — 2f(ou) — 2f(yu))
+ (f(Bv + 6v) + f(Bv — 6v) — 2f(Bv) — 2f(dv))
+2(f(au) + £(Bv) — flau+ Bv)) + 2(f(yu) + f(dv) — fyu+ 6v))
eV +V+ 14V + 14V + 2V + 2V = 34V,
which ends the proof.

LemMMA 8. Let (X,|| - |) be a real normed space, dimX = N, let
B,:={z € X : ||z|| <r} for some positive constant r and let ¢ : B, x B, »Y
be a symmetric function such that

o(z1 + 2,y) — @(21,y) — @(22,y) € V whenever z1,72,71 + T2,y € By

Then there exist a symmetric and biadditive mapping ¢ : B, xB, > Y and
a constant k3 = ks(N, || - ||) such that

Y(z,y) — p(z,y) € ksgseqcl V' forall z,y € B,.

Proof. Like in the proof of Lemma 6, assume first additionally, that ||-|| is a
norm in X coming from an inner product. Fixay € B, :={z € X : ||z|| < r}
and define a mapping ¢, : B, — Y as follows

py(z) == p(z,y) forallz € B,.
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From the assumption we get

Py(T1 + T2) — @y(T1) — Py(z2) €V

for all vectors z1,z2 € B, such that z; + z2 € B,. Writing, as previously,
an arbitrary £ € X in the form z = Zf;l(niui + m;u;), define &, : X - Y
by the formula

N

®y(z) := Z(niﬂoy(“i) + py(pi)),
i=1
where pu; = mu;, 1 € {1,...,N}. Similar arguments as in the proof of

Lemma 5 (cf. also the first part of the proof of Lemma 6) show that there
exists an additive function Gy, : X — Y such that

6@ = w@) € { (S gy NS5
for all z € B,.
Let a mapping G : X x B, — Y be defined by the formula
G(z,y) := Gy(z) forallze X, ye B,.
Then for all z,y € B, we have

_ (5N —1)seqclV  for N < 3,
(14) Glz,9) - olz9) € { (4N +2)seqclV for N > 3.
In view of the additivity of Gy, the function G is additive with respect to
the first variable.

Now, we shall show that for every z,y, z € B, such that y + z € B, we
have

G(z,y + z) — G(z,y) — G(z,2) € 2N seqcl V.

Fix an z € B,. Using previous notations, for every k € N, we represent the
vector 2%z in the form

N
26z =) " (mipui + pa)-
i=1
Then
1
3 1msl = lal] < s + sl < 2%l < 2,
whence

1
glni,kl — |l kel < 2,

1 1
§|ni,k| <25 4 |lpikl < 28+ oL
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implying that
Iniel <261 +1, ie{1,...,N}, keN.

Using the above estimation and the fact that Gy(z) = limg_oo 5% ®y(2%2)
(cf. J. Rétz [5]), we may write

G(z,y + 2) — G(z,y) — G(z, 2) = Gy42(z) — Gy(z) — G2(2)
= lim 2ik(<1>y+,(2’°m) _3,(2kz) — &, (2*2))

N

1
= lim -2;(;<nzwy+z(uz)+soy+z<uz 1)) = D naipu() + iy 44)

N
= > (i () + (i)

i=1

k—oo 2

N
. 1
= lim _k Z Nk (P‘y+z(u1 ‘Py(ui) - Pz (ui))

+ (Py+z(pik) — @ytin) — 2 (pik)))

€ ﬂ (2%(2’”1 +1)NV + %NV) = 2N seqcl V.
keN

From Lemma 6 (more precisely, from the part of the proof concerning the
inner product space) we state that there exists a function ¥ : B, x X - Y
additive with respect to the second variable and such that for all z,y € B,
one has

_ 2N(5N —1)seqclV for N < 3,
(15) ¥(z,y) - G(z,y) € {2N(4N +2)seqclV  for N > 3.

From the form of ¥ (defined as the limit of a suitable Cauchy sequence, cf.
J. Rtz [5]) it follows that it is additive with respect to the first variable as
well. Moreover, from (14) and (15), we get that if z,y € B, then

B (2N +1)(5N —1)seqclV for N < 3,
(16) ¥(@y) - ¢l@y) € { (2N +1)(4N + 2)seqclV  for N > 3.

Define a mapping ¢ : B, X B, — Y by the formula

b(z,y) = Y(z,y) ;L Y(y,z)

Obviously 9 is symmetric. Moreover, using the symmetry of ¢ and (16), and

for all z,y € B,.
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equalities
Y(z,y) - p(z,y) = 2(z.y) ; Lw.o) _ p(z,y)
_ Y@y —ely) | ¥(:2) —e(y,2)
2 2

for all z,y € B,, we have
(2N + 1)(5N —1)seqclV for N < 3,
(17) ¥(@y) - pley) € { (2N 4+ 1)(4N + 2)seqclV  for N > 3.

In the finite dimensional space X the norms || -|| and | - || are equivalent.
Now we proceed in the same way as in the proof of Lemma 6. This completes
the proof.

LEMMA 9. Let (X,||-||) be a real normed space, dimX = N, let B, :=

{z € X : ||z|] <} for some positive constant r and let f : B, — Y satisfy
the condition

z,y,0+y,c—y€B, implies f(z+y)+ fle—y) - 2f(z) —-2f(y) € V.

Then there ezist a quadratic function ¢ : X — Y and a constant ky =
ks(N, |- ) such that

(18) q(z) — f(z) € kyseqclV  for all z € B,.
Proof. Functions f,, f.: B — Y, given by the formulas

i) = 1O ICD ) S
are the odd and even parts of f, respectively. For all z,y € B, we have
fo(m + y) + fo(w - y) - 2fo($) - 2fo(y) eV

z € B,,

and

fe(e+y) + fo(z —y) — 2fe(x) — 2fc(y) € V.
Since f, is odd we also have ’

fo(z —y) + folz +y) — 2fo(z) + 2fo(y) € V.

Hence

4f,(y) €2V forally € B,
and so
(19) foly) € %V for all y € B,.

It is easy to check that
1
(20) f0) € 5V
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and

1~
(21) fe(2z) — 4f.(z) € -g-V for all z € EBT'
Let Er/z = %ET Define ¢ : Er/z X g,,/z — Y by the formula

pla,y) = Ul +9) — fulo—y)] forallz,ye By

Obviously, ¢ is also symmetric. Moreover, for all 21,22,y € Er /2 such that
z1 + z3 € B, /;, we have

4(p(z1 + 22,9) — ¢(21,9) — ¢(22,9))
=fe(z1+ T2+ y) — fe(z1+ 32 —y) — fe(z1 + ¥) + fe(z1 — V)
— fe(z2 +y) + fe(z2 — y)
= (fe(z1 + 22+ y) + fe(z1 — 22 — y) — 2fe(z1) — 2fe(22 + 1))
+ (fe(z2 + 9) + fe(z2 — y) — 2fe(z2) — 2fc(y))
+ (= fe(z1 + 22 —y) — fe(z1 — 22 — y) + 2fe(21 — Y) + 2fe(z2))
+ (= fe(z1 — ) — fe(z1 +y) + 2fe(z1) + 2fe(y)) € 4V,
whence
p(z1+z2,y) —o(z1,y) —p(z2,¥) €V  whenever z1, 2,21 + T2,y € ET/Q.

From Lemma 8 we obtain the existence of a symmetric and biadditive func-
tion v : B2 X Brj2 — Y such that

(22) P(z,y) — p(z,y) € ksseqclV  forall z,y € Er/z.
Using (19), (20) and (21) we may write

Ap(z,z) — f(2)) = (fe(22) — £e(0)) — 4(fo(z) + fe(z))
= (fe(2m) - 4fe(m)) - fe(o) - 4fo(x)

3 1 1
2 b 4-2V =4
€ 2V—+— 2V-i- 2V Vv
for all z € Er/z, so that
(23) o(z,z) — f(z) eV forallz € E,/z.

Let h(z) = ¢(z,z) for z € B, /2. Obviously h is quadratic on the ball

B, /2. There exists (cf. Lemma 1) a quadratic mapping g : X — Y such that

qlgr/2 =h.
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. PFixzeB,.Ifze E,_/z then, on account of (22) and (23), we have

q(z) - f(z) = ¥(z,7) — f(z) = (P(z,7) — p(z, 7)) + (¢(2, 2) - f(2))
€ kzseqclV +V C (ks + 1)seqcl V.

Ifze §,. \ ET /2 then %:c € ]§, /2 and from the previous case we obtain

o0~ t1=1(a(1) - (1)) (o1(2e) - 1)
€ 4(ks + 1)seqcl V + g VcC <4k3 + 1—21) seqclV,

which gives the assertion of the lemma with k4 = (4k3 + %)

REMARK 1. If in Lemma 9 we assume additionally that f is even and X is
an inner product space, then
(24) L — 42N +1)(5N —1)+ % for N <3,
T l4@N +1)AN +2)+ L for N >3.
LEMMA 10. Let f: B, — Y be an even mapping satisfying (2). Then there
ezist an additive functionb: RS — Y and a constant ks = ks(N) such that
b(l|z||?) — f(z) € ksseqclV  for all x € B,.

Proof. A consequence of Lemma 7, Lemma 9, Remark 1 and Lemma 3.
The existence of the constant ks results from (9), (18) and (24).

3. Main result
The main result of the paper reads as follows.

THEOREM 1. Let (X, (-|-)) be a real inner product space, dim X =N (N >2),
Y be a real sequentially complete linear topological space and V let be a
nonempty bounded convezr and symmetric with respect to zero subset of Y.
Let, further, B, (r > 0) denote an open ball in X centered at the origin and
with radius r. If a function f : B, — Y fulfils the condition (2)

then there exist additive functionsa : X — Y, b: ]Rg — Y and a constant
k = k(N) such that
a(z) + b()|z||?) — f(z) € k seqclV  forall z € B,.

Proof. Let functions f,, f. : B, — Y denote the odd and even part of func-
tion f, respectively. Then, if f fulfils the condition (2), so do the functions
fo and f.. From Lemma 5 we infer that there exist an additive function
a: X — Y and a constant k; such that

a(z) — fo(z) € k1seqclV  for all z € By,
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and from Lemma 10 we get the existence of an additive function b : Rf — Y
and a constant ks such that

b(||z||?) = fe(z) € ksseqclV  for all z € B;.
Consequently,
a(z) + b(||z||?) — f(z) € (k1 + ks)seqclV  for all z € B,
which gives the assertion of the lemma with k = k1 + k5.

REMARK 2. It is easy to show that, in general, g in the assertion of Theorem 1
is not uniquely determined.

4. Applications

Besides the Cauchy functional equation we can also study the stabil-
ity problem for other functional equations. Now we will give three results,
concerning the stability of the Jensen, Pexider and exponential functional
equations on balls, as an application of the theorem just established (cf.
Z. Kominek [3], K. Nikodem [4], R. Ger [1]).

THEOREM 2. Under the assumptions of Theorem 1, if a function f : B, =Y
fulfils the condition

z+y\ flz)+ fy)
2 )_ 2 €V

then there exist a function g : B, — Y fulfilling for orthogonal vectors the
Jensen functional equation on the ball B,.:

(25) (z,y€ By, ¢ L y) implies f(

(z,y € By, z Ly) implies g(x _;— y) = 9(z) ;—g(y),
and a constant k = k(N) such that
g(z) — f(z) € 4kseqclV  for all =z € B,.
Proof. Define f; : B, — Y by the formula
fr:=f-f(0).
From (25) we have

(26) (a:,ye Br, Ly) — fl(z+y> _ fl(m)+f1(y) € ‘/’

2 2

and f1(0) = 0. Moreover, since for an arbitrary z € X, we have z L 0 and
0Lz s0

(27) f (g) — Ilé—m) €V, zeB,.
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Take z,y € B, such that z +y € B, and z L y. From (27)

fl(””‘;y) bty

which together with (26) and symmetry of V gives
filz +y) — fulz) - fu(y) € 4V.

Now, using Theorem 1, we obtain the existence of additive functions a :
X -Y,b:Rf - Y and a constant k = k(IN) such that

a(z) + b(||z||?) — fi(z) € 4kseqclV, <z € B,.

Let g(z) := a(z) + b(||z}}?) + £(0), € X. Such g satisfies both conditions
from the assertion of the theorem.

THEOREM 3. Under the assumptions of Theorem 1, if functions f,g,h :
B, — Y fulfil the condition

(28) (z,y,z+y€ B,, z Ly) implies f(z+y)—g(z)—h(y) eV,

then there exist functions f1, g1, h1 : By — Y fulfilling for orthogonal vectors
the Pezider functional equation on the ball B,:

(z,y,z+y € By, z L y) implies fi(z+y)=g1(z)+ hi(y),
and a constant k = k(N) such that for all z € B, one has
fi(z) — f(z) € 3kseqclV,
g1(z) — g(z) € dkseqclV,
hi(z) — h(z) € 4kseqcl V.
Proof. Since z 1. 0 and 0 L z for all z € X, from (28) we have
f(z)—g(x)-h(0) eV, =zebB,
and
f(@)—9(0)—h(z) eV, ze€B,.
Define functions fg, go, ho : Br — Y by the formulas
fo:=f —g(0) — h(0),
g0 := g —9(0),
ho := h — h(0).
It is easy to see that
fo(z) —go(z) €V, =€ B,
and
fo(z) —ho(z) €V, =z€ B,.
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We show that the following condition is satisfied

(z,y,2+y € B, z Ly) = folz+y) — fo(z) — foly) € 3V.
Indeed, take z,y € B, such that x + y € B, and = L y. We have
folz +y) - folz) - foly) = f(z +y) - f(z) - F(y) + 9(0) + h(0)
= (f(z +y)—g(z) —h(y)) - (f(z) — g(z) - h(0))
—(f(¥)—9(0)—h(y)) € 3V.

Applying Theorem 1 we get that there exist additive functions a: X — Y,
b: R} — Y and a constant k = k(N) such that

a(z) + b(||z||?) = fo(z) € 3kseqclV, z € B,.

Define mappings fi1,91,h1 : X — Y as follows

fi = a(z) + b(||z[|*) + g(0) + h(0),
g1 = a(z) +b(|l||*) + (0),
hy := a(z) +b([lz|*) + h(0).

Such functions satisfy all conditions in the assertion of Theorem 3.

THEOREM 4. Let (X, (-|-)) be a real inner product space, dimX = N (N > 2)
and let B, (r > 0) denote an open ball in X centered at the origin and with
radius r. Given an € € (0,1) and a mapping f : B, — C\ {0} such that

fle+y)
@) 1‘ .

there ezxist an orthogonally exponential mapping g : B, — R\ {0}:

(29) (z,y,z+y € B,, z L y) implies

—_— b

(zy,2+y € By, z Ly) implies g(z+y)=g(z)9(y)
and a constant k = k(N) such that
f(z) ‘ lg(w) ’
== —-1|<6d and |=—-1|<$
‘g(w) B f(z)
for all x € B,, where § = (—1—)1C +1.

l1—¢
Proof. Define ¢ : B, — R as ¢ := |f|. Then for all z,y € B, such that
z+y € B, and z 1 y, from (29), we have

o plety)
1—¢X< —go(a:)tp(y) <l+4e
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Hence we get

1
(z,y,z2+y€ By, z Ly) = |1n<p(m+y)—lngo(:c)—lngo(y)]Slnl_e.

Applying now Theorem 1 for Y := R, V := {:1: ER:|z| <In 1+E} and
function lnop we obtain the existence of additive functions ¢ : X — R,
b: Rf — R and a constant k = k(N) such that

lIn(z) - a(z) - b(||z|*)| < k1n

Ty z € B,.

Define g : X — R by
g(z) = exp(a(z) +b(|lz[*)), z€X.
Then

lln@ <kln

9(z)

, Z€ B,

1—-¢

whence

_ ok < Pl2) A
(1-¢) sg(x)s(1_€>, € B,.

As a consequence we have

f(2) f(z) ( L )k
D < [ 41 () +1,
9(z) 9(z) 1—¢

for all x € B,. Similarly we get the second inequality. This ends the proof
of the theorem.
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