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NONLINEAR SINGULAR DIFFERENCE
INEQUALITIES SUITABLE FOR
DISCRETIZATIONS OF PARABOLIC EQUATIONS

Abstract. In this paper we solve a nonlinear, singular difference inequality which is
a discrete version of generalized integral inequalities of Henry-Gronwall type and their
Bihari nonlinear version.

1. Introduction
Many problems in the theory of parabolic partial differential equations
can be written as a Cauchy initial value problem

(1) %+Au=f(t>u),U€X’ u(0) = uo,

where X is an appropriate Banach space and A : X — X is a linear sectorial
operator. In the theory of such problems developed by D. Henry in his book
[3] an important role is played by inequalities of the form

t

(2) u(t) £ at) + {(t — )P F(s)w(u(s))ds,
0
where 0 < 8 < 1. The case 8 = 1, a, F, u continuous, nonnegative, w

linear is covered by the Gronwall lemma and the case 8 = 1,w continuous,
nonnegative, nonlinear is covered by the Bihari result published in {2] and
its generalizations (see [4]). The case 0 < 8 < 1 and w linear is solved by D.
Henry [3]. In the paper [6] a new method for solving the case 0 < 8 < 1 and
w nonlinear is developed. This method is also applied in the paper [7] in the
proof of a stability theorem for a class of initial value problems of type (1)
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and in the proofs of results on nonlinear singular integral inequalities in two
and n independent variables published in [8].

The numerical analysis of the abstract Cauchy initial value problem (1)
provides strong motivation for the study of a discrete analogue of the in-
equality (2). In connection with an error estimate for the discretization in
time
3) (zi — 2io1)7 7' + Azi = f(ti, Tio1), Tnjn=o = To
(¢ € N, 7 is a time step, t; = i7; A is a sectorial operator in a Banach space
X,z; € Xg = D(AP),0 < B < 1; see [3]) of the equation (1), the linear
inequality

n—1
(4) Un S anp+ L Z(tn — tk)ﬂ_lukT
k=1

({an}2q, {un}22, are sequences of nonnegative real numbers, L > 0,0 <
B < 1) is solved by M. Slodicka in the paper [12]. By an iteration argument,
applied also by D. Henry [3] in the proof of his result on linear singular
integral inequality, it is proven in [12] that f 0 < 7 < 1,0 <8< 1,L > 0,
t, = n7 and (4) is satisfied, then

n—1 n—1
(5) Un < Llay, + Z(tn — )P lapT + Z axt], n21.
k=1 k=1

In the paper [5] linear inequalities of type (4) are also solved.

In this paper we apply our method developed in [6] for solving nonlinear
singular difference inequalities. In the case of the inequality (4) we obtain
an exponential estimate for u,,.

2. Discrete inequalities

In the paper [6] we have defined a special class of nonlinear functions
and proposed a new method of solving nonlinear integral inequalities with
singular kernels and nonlinearity of that class. Let us recall the definition of
this class of functions.

DEFINITION 1. Let ¢ > 0 and 0 < T' £ co. We say that a function w : Rt —
R (R* = (0, 00)) satisfies a condition (g), if

(q) e w(u)]? £ R(t)w(e™%u?) forall ue RY,te (0,7),
where R(t) is a continuous, nonnegative function and 0 < T' < co.
REMARK. If w(u) = ™, m > 0 then

&) e (u)7] = ™Dy (e )

for any ¢ > 1, i. e. the condition (q) is satisfied with R(t) = e(™~1)¢t,
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For w(u) = u + au™, where 0 £ a £ 1, m 2 1 the function w satisfies
the condition (g) with ¢ > 1 and R(t) = 297 1e?™* (see [6]).
Let us recall a discrete analogue of Gronwall-Bihari theorem.

LEMMA 1 ([4, Theorem 3.3]). Let w : R* — R be a continuous, nondecreas-
ing function with w(y) > 0 fory > 0, ¢ > 0 and {yn}>2, be a sequence of
nonnegative numbers satisfying the inequality

(2) Yo Sc+ S bw(ys), n20,

where 0 < yo < ¢ and {bp}32, is a sequence of nonnegative numbers. Then

(6) Y SQTQ)+ Y bi], 1Sn N,
where
i—1 v
du
— ; + —
Ny = sup{z| Q(c) +kZ%bk € Q(RM)}, Q) = S o)’ v e >0
= Vo

Vg 1S a constant.
If Q(oc0) # oo then we also assume that

1—1
Zbk<Q(oo) fori=1,2,....

REMARK. The inequality (6) is one of discrete analogues of the well-known
Gronwall - Bihari inequality. Inequlities of such kind can be found e. g. in the
monograph [1] by R. P. Agarwall and in the papers [9]-[11] by B. G. Pach-
patte.

COROLLARY.
1. If w(u) = u then (6) yields the inequality
n—1
(7) yn < cexp Z by
k=0

2. If w(u) = u™, where m > 1, then
(8) yn Sell — (m — lebk] 71, 0Zn< N,

where

Ny = sup{i| (m cm ! Z br < 1}.
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Applying the method developed in the paper [6] for solving nonlinear
integral inequalities with weakly singular kernels and using Lemma 1 we
shall prove the following theorem.

THEOREM 2. Let ¢ > 0,d > 0, {an}5%q, {Fn}32, be sequences of nonnegative
numbers, {t,}2 o be an increasing sequence of positive numbers, w : R* — R
be a continuous, nondecreasing function, w(y) > 0 for y > 0 and {un}32,
be a sequence of nonnegative numbers with

(9) up S ap + Z - tk 'rkaw(uk), n 20,

where § > 0,7, = tg41 — tp with T = = SUPgo Tk < 0. Then the followmg
assertions hold:

(1) Suppose 2 < B <l,a2e % < ¢ for alln 2 0 and w satisfies the
condition (q) wzth q=2. Then

n—1

(10)  un £ ™ {Q71[Q(20) + 72AB Y FZR(Tt)]}5, 1< n < N,
k=0
where ) is as in Lemma 1,
i—1
No = sup{i| (2c) + r2*=AB > " FZR(rt;) € Q(R)},
k=0

B = zI'(28—1), T is the Eulerian Gamma function. If Q(00) # co then
we assume

n—1
r20=ABY " FZR(rty) < Qo0), n=1,2,...
k=0
(ii) Let 0 < ﬂ o z, z 2 1, w satisfies the condition (q) with ¢ =
z+2p—z+1, %+%=1,a$le—q”"§dforalln§0. Then
n-—1 .
(11)  up L™ {Q7Q(271d) + TG ) FUR(rtx)}s, 1< n<ng,
k=0
where
i—1
no = sup{i| Q(277d) + 7°G > F{R(rtx) € QR™)},
k=0

- —ap)1d z 1
G=20"1[TG=2R5, a=1-f = 15, k=1~ (1-ap)> =1~ rryzylapay > 0.
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If Q(o0) # oo, then we assume

n-1
T"GZF,Z <Q0), n=12,...
k=0

Proof. First we shall prove the assertion (i). Using the Cauchy—-Schwarz
inequality and the condition (q) we obtain from (9)

San+ T3 Z(t — tk)ﬂ 1 Tt"e'”kaw(uk)

n—1 1 _n—1 1
<ap+ 7_% [ (tn _ tk)zﬁ—z,rkeznk] 2 [ Flge-.z-rtkw(uk)z] 2
k=0 k=0
n—1 1 _n—1 1
San+7t [ (tn — tk)zﬁ"szezrt"] ’ [ FIER(Ttk)w(C_th"Ui)] ’
k=0 k=0
Let us estimate the first sum
n—1 tn tn
Z(tn _ tk)2ﬁ—27'k62‘rtk é S (tn _ s)2ﬂ—2e27's ds=e2‘rtﬂ S n2,3—26—2‘r17 d77
k=0 0 0
e2‘rtn 27t, eZ‘rtn

=-<5T—)2ﬂ—_1- S 02ﬂ—2€~adUSW—1— (2[3—1)
0

and thus

eZ‘rt % 1
(12) up San+ [22& r21-Ar2s - 1) ] [Z R(rtx)w(e 2'rtkui)] 2

?r

Since the elementary inequality (a + b)? < 2(a? + b?) is satisfied for any
a 2 0,b 2 0 we obtain from (12):

27t n—1
w2 S 2ak + S ATRE - 1) Y FER(rtule  ud)), n 20,
k=0

and this yields

(2 1
(13) vp £ 2¢+ 72(1-F) 45 T )ZFk R(rty)w(vk), n 20,

where

(14) vp =ule I 20,
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From Lemma 1 we obtain the inequality

(15) vngg—l[g() 20-pT26~1) 4;31 ZFk Ttk:I n21

and from (14) we obtain the inequality (10).
Now we shall prove the assertion (ii). Let p, ¢ be as in theorem. Applying
Holder inequality and using the condition (q) we obtain

X 1
Un S an + 79 Z(t” —tk) TP e e Tt Fow(uk)
k=0
n—1 1 n—1 1
<a,+ T3 [Z(tn — tk)“"’"rke””k] ? [ F,ge_q”’“w(uk)q] ‘
k=0 k=0
n—1 n—1

ey

<ap+73 [ (tn —tk)” O‘kae”""] ’ [ F,ZR(Ttk)w(e_q”’“uZ)]

b
Il
o
>
I
=)

The following estimates hold

n—1 tn tn
Z(tn — t) TP eP T < S (tn — 5)"*PeP™ ds=ePTtr S n~Pe~PTMdp
k=0 0 0
ePTt" pTin, N eth“
= ~e"% do £ ————T(1—ap).
- S g e = - P
(pr)i=er o (pr)t-er

Obviously 1 — ap = ﬁ,— > 0, i. e. I'(1 — ap) € R. Therefore we obtain

(16) wu, L ay,

ep‘rtn l n—1

471 [WI‘(l —ap ] [Z FlR(rtr)w(e ‘q”kuq)]% n 2 0.

Since (a + b)7 < 2971(a? + b9) for any a = 0,b 2 0 (see [6]) we obtain from
(16):

n-1
(17) wug <297! [a‘,’l + eITtn K3 p1H(ep=1)(e/p) Z F,gR(’rtk)w(e'qt"uz)],

k=0
'l—a .. . .
where K = 4})%—_7,,22. This inequality yields
) n--1
(18) v 297 475G Z FIR(rtr)w(vk),

k=0
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where G, d, k are as in the assertion (ii) and
(19) vp, = ule I,

From Lemma, 1 we obtain
n—1
vn S Q71 [n(zq—ld) +7G S F,gR(Ttk)], 1<n<ng
k=0
and from (19) we have the inequality (11).
As a consequence of Theorem 2 we obtain a discrete version of [6, The-
orem 2.

THEOREM 3. Let ¢ > 0,d > 0, {an}2 o, {Frn}20, {tn 320, {Tn}32o and T be
as in Theorem 2 and {un}52 o be an increasing sequence of positive numbers
and {un}2 o be a sequence of nonnegative numbers with

n—1
(20) un < ap + Z(tn — tk)ﬁ_l'r,;}Fkuk, n21,
k=0
where 3 > 0. Then the following assertions hold:
(i) If $ <B<1,a2e "= <c for all n 2 0, then

n—1
(21) un £ V2cexp <7'tn +120-0p > F,f) n>1,
2 k=0
where B = 4—51_—F(2ﬂ - 1)
(ii) If 0<8 = r,z 21, q=2+2,p= ﬁi, i.e. -:—)-{--‘15 =1, ale 9" <d
for alln 2 0, then

1 n—1
(22) un < (2771d) % exp (Ttn + ETRG > F,g), n1,
k=0

where G,k are as in Theorem 2.

REMARK. Obviously, if the sequence {a,}32, of nonnegative numbers from
(4) satisfies the additional condition a2e~"*» <cforalln 2 0 and 1 £ <1,
then instead of the Slodi¢ka’s estimate (5) we obtain the exponentlal one

1
un £ V2cexp(rt, + —T"BnLq), n =20,

where B is as in the assertion (i) of Theorem 2. If § = m, z221,q,d,k,G

are as in the assertion (ii) of Theorem 2 and a%e~%"%» < d for n 2 0, then

< (297 1d)% ('rtn + %T"GnLq), n 2 0.
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As a consequence of Lemma 1 and Theorem 2 we obtain the following
theorem.

THEOREM 4. Let ¢ > 0,d > 0,{an}20, {Fn}S20,{Tn}5%0, T be as in Theo-
rem 2, m > 1 and {u,}32, be a sequence of nonnegative numbers with

n—1
(23) Unp g an + Z(tn - tk)'a_lTkauzl’ n g 1,
k=0

where 3 > 0. Then the following assertions hold:
(i) If 2 <B<1,a2e7 2 < for all n 20, then

n-l T 2(m—-1
(24) wu, £ ertn\/%[1_(m_1)(2c)m—172(1—ﬁ)3Z F}?e2(m—1)rt,¢:| ,
k=0

where B,k are as in the assertion (i) of Theorem 2,

i-1
Np = sup {i] (m —1)(20)" " 720=A) Y " e tm= < 1}.
k=0
(i) If 0< B8 = Flz: z221,q=2+2,p= 22 ale 9> < d, then

z+1?
(25)  up S emtn (297 1d)e

n—1 1
X [1 - (m -1 )™ G ) F,geﬂm—l)rtk] T
k=0
where G is as in the assertion (ii) of Theorem 2, 1 < n < ny,

i-1
ne = sup {i| (m - 1)(2 1) 175G Y FeXm-Drin < 1}.
k=0
I wish to express my gratitude to Michal Fetkan for corrections of some
errors and misprints in the first version of this paper.
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