
DEMONSTRATIO MATHEMATICA 
Vol. XXXIII No 3 2000 

Milan Medved 

NONLINEAR SINGULAR DIFFERENCE 
INEQUALITIES SUITABLE FOR 

DISCRETIZATIONS OF PARABOLIC EQUATIONS 

Abstract . In this paper we solve a nonlinear, singular difference inequality which is 
a discrete version of generalized integral inequalities of Henry-Gronwall type and their 
Bihari nonlinear version. 

1. Introduction 
Many problems in the theory of parabolic partial differential equations 

can be written as a Cauchy initial value problem 
du 

(1) — + Au = f(t,u), u<EX, u(0) = «o, 
dt 

where X is an appropriate Banach space and A : X —> X is a linear sectorial 
operator. In the theory of such problems developed by D. Henry in his book 
[3] an important role is played by inequalities of the form 

t 
(2) u(t) ^ a(t) + $(i - s) / 3-1F(s)w(n(5))ds, 

o 

where 0 < (5 < 1. The case ¡3 = 1, a, F, u continuous, nonnegative, u 
linear is covered by the Gronwall lemma and the case ¡3 = continuous, 
nonnegative, nonlinear is covered by the Bihari result published in [2] and 
its generalizations (see [4]). The case 0 < f3 < 1 and co linear is solved by D. 
Henry [3]. In the paper [6] a new method for solving the case 0 < (3 < 1 and 
io nonlinear is developed. This method is also applied in the paper [7] in the 
proof of a stability theorem for a class of initial value problems of type (1) 
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and in the proofs of results on nonlinear singular integral inequalities in two 
and n independent variables published in [8]. 

The numerical analysis of the abstract Cauchy initial value problem (1) 
provides strong motivation for the study of a discrete analogue of the in-
equality (2). In connection with an error estimate for the discretization in 
time 

(3) (Xi - + Axi — f(U,Xi-1), x n | n = 0 = x0 

(i e N, t is a time step, ti = it; A is a sectorial operator in a Banach space 
X,Xi £ X¡3 = D(AP),Q < (3 < 1; see [3]) of the equation (1), the linear 
inequality 

71—1 
(4) un S an + L^2(tn - tkf-xukT 

k=1 
({an}^L1; {un}^L1 are sequences of nonnegative real numbers, L > 0,0 < 
/? < 1) is solved by M. Slodicka in the paper [12]. By an iteration argument, 
applied also by D. Henry [3] in the proof of his result on linear singular 
integral inequality, it is proven in [12] that if 0 < r < 1,0 < f3 < 1, L > 0, 
tn = nr and (4) is satisfied, then 

n—1 n—1 
(5) un ^ L[an + - tkf-'akr + £ akr], n ^ 1. 

fe=i fc=l 
In the paper [5] linear inequalities of type (4) are also solved. 
In this paper we apply our method developed in [6] for solving nonlinear 

singular difference inequalities. In the case of the inequality (4) we obtain 
an exponential estimate for un. 

2. Discrete inequalities 
In the paper [6] we have defined a special class of nonlinear functions 

and proposed a new method of solving nonlinear integral inequalities with 
singular kernels and nonlinearity of that class. Let us recall the definition of 
this class of functions. 

DEFINITION 1. Let g > 0 and 0 < T ^ oo. We say that a function u : R+ —> 
R (R+ = (0, oo)) satisfies a condition (q), if 

(q) e-qt[u(u)]q <; R(t)u(e~qiuq) for all u G R+, t G (0,T), 

where R(t) is a continuous, nonnegative function and 0 < T ^ oo. 

REMARK. If u(u) = um, m > 0 then 

(1) e~qt[u{u)q} = e{m-1)qtu{e-qtuq) 
for any q > 1, i. e. the condition (q) is satisfied with R(t) = 
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For u(u) = u + aum, where O ^ a ^ l , m ^ l the function u satisfies 
the condition (q) with q > 1 and R(t) = 2^-1eqmt (see [6]). 

Let us recall a discrete analogue of Gronwall-Bihari theorem. 

LEMMA 1 ([4, Theorem 3.3]). Let u : R+ —> R be a continuous, nondecreas-

ing function with u ( y ) > 0 for y > 0, c > 0 and {yn}^Lo be a sequence of 

nonnegative numbers satisfying the inequality 

n-1 

( 2 ) y n < . c + ^ 2 b k u j ( y k ) , n ^ 0 , 

fc=o 
where 0 ^ y o = c and is a sequence of nonnegative numbers. Then 

n—1 
( 6 ) yn ^ n-^Slic) + £ h ] , 

k=0 

where 
i — 1 V , 

No = sup{i| 0(c) + V ] b k e n(R+)}, Q(v) = \ « ^ vo > 0, 
k=0 «o V ' 

Vo is a constant. 

/ / f i (oo) oo then we also assume that 

i-1 
^ fefc < iî(oo) /or ¿ = 1 ,2 , . . . . 
k=0 

REMARK. The inequality (6) is one of discrete analogues of the well-known 
Gronwall - Bihari inequality. Inequlities of such kind can be found e. g. in the 
monograph [1] by R. P. Agarwall and in the papers [9]—[11] by B. G. Pach-
patte. 

COROLLARY. 
1. I f u ( u ) = u then (6) yields the inequality 

n —1 
(7) Vn = c exp ^ bk • 

k=0 

2. If uj{u) = um, where m > 1 , then 

n—1 
(8) y n ^ c i l - i m - l ^ - ^ b k } - ^ , O S n ^ N o , 

k—0 

where 
n—X 

N0 = sup{z| (m - l ) ^ " 1 ^ h < !}• 
fc=o 
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Applying the method developed in the paper [6] for solving nonlinear 
integral inequalities with weakly singular kernels and using Lemma 1 we 
shall prove the following theorem. 

T h e o r e m 2. Let c > 0,d > 0, {on}^L0> { ^ n K ï L o sequences of nonnegative 
numbers, be an increasing sequence of positive numbers, w : R+ 

be a continuous, nondecreasing function, u(y) > 0 for y > 0 and {tin}^_0 
be a sequence of nonnegative numbers with 

n-1 
(9) u n ^ a n + Y^(- tn- tk) 0~ 1T kF ku(u k ) , n ^ O , 

fc=0 

where ¡3 > 0,rk = tfc+i — tk with r = supfc>0Tfc < oo. Then the following 
assertions hold: 

(i) Suppose ^ < P < 1, a2e~2rtn ^ c for all n ^ 0 and u satisfies the 
condition (q) with q = 2. Then 

n—l 
(10) un ^ eT t"{0-1[Q(2c) + T2^Bj2^R(rtk)}}^, 1 ^ n ^ N0, 

k=0 
where Q is as in Lemma 1, 

i-1 
N0 = s u p f i ( 2 c ) + t2{1~^B Y^ ^R(rtk) G N{R+)}, 

k—0 

B = jpzrrT(2f3 — 1), T is the Eulerian Gamma function. IfQ(oo) ^ oo then 
we assume 

n — l 

T2{i-p)B F2
kR{rtk) < fi(oo), n = 1 ,2 , . . . 

fc=o 

(ii) Let 0 < P = z ^ 1, u satisfies the condition (q) with q = 
z + 2,p= , i. e. ± + i = 1, ale-qTin ^ d for all n ^ 0. Then 

n — l 

(11) un ^ eTtn{n-1[n(2q-1d) + TKGj2FqR(Ttk)}*, l^n^no, 
k=0 

where 
i-1 

n0 = s u p Î î ( 2 î _ 1 d ) + TKG ^ F^R(rtk) E fl(R+)}, 
k=0 
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J/ÎÎ(oo) ^ oo, then we assume 
n-1 

<iî (oo) , n = 1 ,2 , . . . 

521 

fc=0 

P r o o f . First we shall prove the assertion (i). Using the Cauchy-Schwarz 
inequality and the condition (q) we obtain from (9) 

n—1 
Ur ^ a n + ^ ( t n - t k ^ r l e ^ e - ^ F k u i u k ) 

k=0 

ï a n + r i [ ] T > n - t k ) 2 ^ 2 r k e 2 ^ ] * 

k=0 fc=0 

^ an + r* [ - t k ) 2 ^ 2 r k e 2 ^ ] 1 F2R(rtk)u(. 2Ttkul) 
fc=o fc=0 

Let us estimate the first sum 

X > n - ^ ] ( t n - s)2^~2e2rs ds = e2rt» 'f r d r j 
k=0 

2rtn
 2 t <" 2ri„ 

( ¿ 5 ^ 3 1 S - » - ' « - ^ S p ^ z r W - D 

_2rtn l i " " 1 , I 
| _ T 2 < i - « r ( 2 / 3 _ 1 } £ F2R(TtkMe-2^u2

k)] 2 . 
J fc=0 

Since the elementary inequality (a + b)2 ^ 2(a2 + b2) is satisfied for any 
a ^ 0, b ^ 0 we obtain from (12): 

and thus 

(12) u n ^ a n + 

2 Tt„ TI—1 
^ 2 k + I ^ Z î T ^ r ^ - 1) £ F f c

2 i ? ( r i f c ) W ( e - 2 ^^ ) ] , n ^ 0, 

and this yields 

(13) ^ 2C + T 2(x-« W z i ) g ^ ( T t f c ) w ( l > f c ) > n ^ Q) 

fc=0 

k=0 
where 

(14) vn = ul
ne~ZTU, n^O. 
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Prom Lemma 1 we obtain the inequality 

(15) v n < i r 1  « ( 2 + 
k=0 

n > 1 

and from (14) we obtain the inequality (10). 
Now we shall prove the assertion (ii). Let p, q be as in theorem. Applying 

Holder inequality and using the condition (q) we obtain 

n - 1 A 

un £ a n + T* - t k ) - a T * e r t k e - T t k F k u { u k ) 

k=0 
n-1 71—1 

^ a n + r i [ £ ( i n - i f c ) - a p r f c e ^ ] 7 [ £ F ^ M M 9 

k=0 fc=0 

n —1 n —1 

^ an + r i - i ^ - ^ T f c e ^ " ]  7 [ £ F f c ^ ( r i f c ) a ; ( e - ^ ^ ) ' 

fc=0 k=0 

The following estimates hold 
n—1 tn t„ 

- t k ) - a p T k e p r t " ^ 5 ( i n - s ) _ Q p e p T S ds = e p T i " 5 r f ^ e - ^ d t ] 
fc=0 

„prin PT t  prtn 

(.pr) 1 —ap \ a-oPe-" da<——i H l - a p ) . J - ( p r ) l - a p v w 

Obviously 1 — ap = > 0) i- e. r ( l — ap) € iî. Therefore we obtain 

(16) un ^ an 

+T1 
[(pry 

^ r ( l - ap)]  P [ ^ F ' R i r t . M e - ^ u l ) n > 0 . 
k=0 

Since (a + b)q ^ 2 9 _ 1 ( a 9 + bq) for any a ^ 0, b ^ 0 (see [6]) we obtain from 
(16): 

n - l 
(17) < S 2«- 1 [ < + e ? r i " i f p r I + < a i ' - 1 » ^ ) ^ f ' f l iTtfcJwie- '^u«)] , 

fc=0 

where i f = . This inequality yields 

n - l 
(18) ^ 2 * - l d + rKG F^R(rtk)u>(vk), 

k=0 
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where G, d, K are as in the assertion (ii) and 

(19) vn = u le - i T t 

From Lemma 1 we obtain 
n-1 

vn ^ i i - 1 [ 0 ( 2 « - ^ ) + TkG ^ FkR(TTK)}, 1 ^ N ^ n0 

k=0 
and from (19) we have the inequality (11). 

As a consequence of Theorem 2 we obtain a discrete version of [6, The-
orem 2]. 

Theorem 3. Let c > 0, d > 0, { a n } ~ 0, {F n }~ = 0 , {tn}™=0, {t„}~ 0 and r be 
as in Theorem 2 and be an increasing sequence of positive numbers 
and {un}^L0 be a sequence of nonnegative numbers with 

n —1 
(20) u n S a n + ^ 2 ( t n - t k f - l r ^ F k u k , n ^ l , 

fc=o 
where j3 > 0. Then the following assertions hold: 

(i) If \ < P < 1, a^e - 2 r t n ^ c for all n ^ 0, then 

(21) un ^ V ^ e x p (rtn + b V FA , n £ 1, 
V 2 fc=o 

where B = i^Tr(2/3 - 1). 
(ii) If 0</3 = ^ 1, q = 2 + 2,p = f±f , i.e. J + J = 1, ale'^^d 

for all n^. 0, i/ien 

(22) tin ^ (2«- 1 d)iexp[Ti n + - r ' t G ^ F f c 9 y n ^ 1, 
^ 9 fc=0 ' 

where G, K are as in Theorem 2. 
Remark. Obviously, if the sequence {an}^L0 of nonnegative numbers from 
(4) satisfies the additional condition a^e-T<n ^ c for all n ^ 0 and i ^ 0<1, 
then instead of the Slodicka's estimate (5) we obtain the exponential one 

un ^ v^cexp(rin + ]-TKBnLq), n ^ 0, 
z 

where B is as in the assertion (i) of Theorem 2. If /3 = 2 ^ 1 ,q,d,K,G 
are as in the assertion (ii) of Theorem 2 and aqle~qrt" ^ d for n ^ 0, then 

un <; (2q-1d) * exp + ^ " G n L « ^ , n ^ 0. 
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i 
2 ( m - l ) 

As a consequence of L e m m a 1 and T h e o r e m 2 we o b t a i n t h e following 
theorem. 

THEOREM 4 . Let c > 0,d > 0, { a n } £ ° = 0 , { F n } £ L 0 , {rn}%L0,T be as in Theo-
rem 2, m > 1 and {«„j^o be a sequence of nonnegative numbers with 

n-1 
(23 ) U n ^ a n + ^ i t n - t k f - ' T k F k U 1 ? , n g l , 

fe=0 

where ¡3 > 0 . Then the following assertions hold: 
(i) If \ < (3 < 1 ,ale~2Tt" <; c for all n ^ 0 , then 

|- n — 1 
(24) un ^ eTtn\f2c l-(m-l)(2c)m-1T2{1-'3)Bj2Fke2{rn~1)Ttk 

fc=o 

1 ^ n <; JV0 ) 

where B, k are as in the assertion (i) of Theorem 2, 

i-1 

Nq = sup |z| ( m — l ) ( 2 c ) m _ 1 r 2 ( 1 - ^ ^ ^ p 2 e 2 { m - i ) T t k < 1 j 

fc=o 

(ii) / / 0 < (3 = z ^ 1, 9 = 2 + 2,p = f ± f , a « e " « T t » ^ d, then 

(25 ) ^ e T t " ( 2 ? - 1 d ) i 

x f l - ( m - l ^ - ^ r - ^ G j ^ F y ^ - 1 ^ ] ' 1 ^ , 

k=0 

where G is as in the assertion (ii) of Theorem 2, 1 ^ n ^ no , 

i - 1 
= sup |t| (m - l)(2q~1 d)m~1TK,G < l } . n 0 

fc=o 
I wish to express m y gra t i tude to Michal Feckan for correct ions of s o m e 

errors and mispr ints in t h e first version of this paper . 
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