

Milan Medved

NONLINEAR SINGULAR DIFFERENCE
INEQUALITIES SUITABLE FOR
DISCRETIZATIONS OF PARABOLIC EQUATIONS

Abstract. In this paper we solve a nonlinear, singular difference inequality which is a discrete version of generalized integral inequalities of Henry-Gronwall type and their Bihari nonlinear version.

1. Introduction

Many problems in the theory of parabolic partial differential equations can be written as a Cauchy initial value problem

$$(1) \quad \frac{du}{dt} + Au = f(t, u), \quad u \in X, \quad u(0) = u_0,$$

where X is an appropriate Banach space and $A : X \rightarrow X$ is a linear sectorial operator. In the theory of such problems developed by D. Henry in his book [3] an important role is played by inequalities of the form

$$(2) \quad u(t) \leq a(t) + \int_0^t (t-s)^{\beta-1} F(s) \omega(u(s)) ds,$$

where $0 < \beta < 1$. The case $\beta = 1$, a, F, u continuous, nonnegative, ω linear is covered by the Gronwall lemma and the case $\beta = 1$, ω continuous, nonnegative, nonlinear is covered by the Bihari result published in [2] and its generalizations (see [4]). The case $0 < \beta < 1$ and ω linear is solved by D. Henry [3]. In the paper [6] a new method for solving the case $0 < \beta < 1$ and ω nonlinear is developed. This method is also applied in the paper [7] in the proof of a stability theorem for a class of initial value problems of type (1)

Key words and phrases: difference inequality, Henry - Gronwall inequality, discretization of parabolic equation.

This work was supported by the Slovak Grant Agency Vega, grant number 1/6179/99.

and in the proofs of results on nonlinear singular integral inequalities in two and n independent variables published in [8].

The numerical analysis of the abstract Cauchy initial value problem (1) provides strong motivation for the study of a discrete analogue of the inequality (2). In connection with an error estimate for the discretization in time

$$(3) \quad (x_i - x_{i-1})\tau^{-1} + Ax_i = f(t_i, x_{i-1}), \quad x_{n|n=0} = x_0$$

($i \in N$, τ is a time step, $t_i = i\tau$; A is a sectorial operator in a Banach space X , $x_i \in X_\beta = D(A^\beta)$, $0 < \beta < 1$; see [3]) of the equation (1), the linear inequality

$$(4) \quad u_n \leq a_n + L \sum_{k=1}^{n-1} (t_n - t_k)^{\beta-1} u_k \tau$$

($\{a_n\}_{n=1}^\infty, \{u_n\}_{n=1}^\infty$ are sequences of nonnegative real numbers, $L > 0, 0 < \beta < 1$) is solved by M. Slodička in the paper [12]. By an iteration argument, applied also by D. Henry [3] in the proof of his result on linear singular integral inequality, it is proven in [12] that if $0 < \tau < 1, 0 < \beta < 1, L > 0$, $t_n = n\tau$ and (4) is satisfied, then

$$(5) \quad u_n \leq L[a_n + \sum_{k=1}^{n-1} (t_n - t_k)^{\beta-1} a_k \tau + \sum_{k=1}^{n-1} a_k \tau], \quad n \geq 1.$$

In the paper [5] linear inequalities of type (4) are also solved.

In this paper we apply our method developed in [6] for solving nonlinear singular difference inequalities. In the case of the inequality (4) we obtain an exponential estimate for u_n .

2. Discrete inequalities

In the paper [6] we have defined a special class of nonlinear functions and proposed a new method of solving nonlinear integral inequalities with singular kernels and nonlinearity of that class. Let us recall the definition of this class of functions.

DEFINITION 1. Let $q > 0$ and $0 < T \leq \infty$. We say that a function $\omega : R^+ \rightarrow R$ ($R^+ = \langle 0, \infty \rangle$) satisfies a condition (q), if

$$(q) \quad e^{-qt}[\omega(u)]^q \leq R(t)\omega(e^{-qt}u^q) \quad \text{for all } u \in R^+, t \in (0, T),$$

where $R(t)$ is a continuous, nonnegative function and $0 < T \leq \infty$.

REMARK. If $\omega(u) = u^m$, $m > 0$ then

$$(1) \quad e^{-qt}[\omega(u)]^q = e^{(m-1)qt}\omega(e^{-qt}u^q)$$

for any $q > 1$, i. e. the condition (q) is satisfied with $R(t) = e^{(m-1)qt}$.

For $\omega(u) = u + au^m$, where $0 \leq a \leq 1$, $m \geq 1$ the function ω satisfies the condition (q) with $q > 1$ and $R(t) = 2^{q-1}e^{qmt}$ (see [6]).

Let us recall a discrete analogue of Gronwall–Bihari theorem.

LEMMA 1 ([4, Theorem 3.3]). *Let $\omega : R^+ \rightarrow R$ be a continuous, nondecreasing function with $\omega(y) > 0$ for $y > 0$, $c > 0$ and $\{y_n\}_{n=0}^\infty$ be a sequence of nonnegative numbers satisfying the inequality*

$$(2) \quad y_n \leq c + \sum_{k=0}^{n-1} b_k \omega(y_k), \quad n \geq 0,$$

where $0 \leq y_0 \leq c$ and $\{b_n\}_{n=0}^\infty$ is a sequence of nonnegative numbers. Then

$$(6) \quad y_n \leq \Omega^{-1}[\Omega(c) + \sum_{k=0}^{n-1} b_k], \quad 1 \leq n \leq N_0,$$

where

$$N_0 = \sup\{i \mid \Omega(c) + \sum_{k=0}^{i-1} b_k \in \Omega(R^+)\}, \quad \Omega(v) = \int_{v_0}^v \frac{du}{\omega(u)}, \quad v \geq v_0 > 0,$$

v_0 is a constant.

If $\Omega(\infty) \neq \infty$ then we also assume that

$$\sum_{k=0}^{i-1} b_k < \Omega(\infty) \quad \text{for } i = 1, 2, \dots.$$

REMARK. The inequality (6) is one of discrete analogues of the well-known Gronwall - Bihari inequality. Inequalities of such kind can be found e. g. in the monograph [1] by R. P. Agarwall and in the papers [9]–[11] by B. G. Pachpatte.

COROLLARY.

1. If $\omega(u) = u$ then (6) yields the inequality

$$(7) \quad y_n \leq c \exp \sum_{k=0}^{n-1} b_k.$$

2. If $\omega(u) = u^m$, where $m > 1$, then

$$(8) \quad y_n \leq c[1 - (m-1)c^{m-1} \sum_{k=0}^{n-1} b_k]^{-\frac{1}{m-1}}, \quad 0 \leq n \leq N_0,$$

where

$$N_0 = \sup\{i \mid (m-1)c^{m-1} \sum_{k=0}^{i-1} b_k < 1\}.$$

Applying the method developed in the paper [6] for solving nonlinear integral inequalities with weakly singular kernels and using Lemma 1 we shall prove the following theorem.

THEOREM 2. *Let $c > 0, d > 0, \{a_n\}_{n=0}^{\infty}, \{F_n\}_{n=0}^{\infty}$ be sequences of nonnegative numbers, $\{t_n\}_{n=0}^{\infty}$ be an increasing sequence of positive numbers, $\omega: R^+ \rightarrow R$ be a continuous, nondecreasing function, $\omega(y) > 0$ for $y > 0$ and $\{u_n\}_{n=0}^{\infty}$ be a sequence of nonnegative numbers with*

$$(9) \quad u_n \leq a_n + \sum_{k=0}^{n-1} (t_n - t_k)^{\beta-1} \tau_k F_k \omega(u_k), \quad n \geq 0,$$

where $\beta > 0, \tau_k = t_{k+1} - t_k$ with $\tau = \sup_{k \geq 0} \tau_k < \infty$. Then the following assertions hold:

(i) Suppose $\frac{1}{2} < \beta < 1, a_n^2 e^{-2\tau t_n} \leq c$ for all $n \geq 0$ and ω satisfies the condition (q) with $q = 2$. Then

$$(10) \quad u_n \leq e^{\tau t_n} \{ \Omega^{-1} [\Omega(2c) + \tau^{2(1-\beta)} B \sum_{k=0}^{n-1} F_k^2 R(\tau t_k)] \}^{\frac{1}{2}}, \quad 1 \leq n \leq N_0,$$

where Ω is as in Lemma 1,

$$N_0 = \sup \{ i | \Omega(2c) + \tau^{2(1-\beta)} B \sum_{k=0}^{i-1} F_k^2 R(\tau t_k) \in \Omega(R^+) \},$$

$B = \frac{1}{4\beta-1} \Gamma(2\beta - 1)$, Γ is the Eulerian Gamma function. If $\Omega(\infty) \neq \infty$ then we assume

$$\tau^{2(1-\beta)} B \sum_{k=0}^{n-1} F_k^2 R(\tau t_k) < \Omega(\infty), \quad n = 1, 2, \dots$$

(ii) Let $0 < \beta = \frac{1}{1+z}, z \geq 1$, ω satisfies the condition (q) with $q = z + 2, p = \frac{z+2}{z+1}$, i. e. $\frac{1}{p} + \frac{1}{q} = 1, a_n^q e^{-q\tau t_n} \leq d$ for all $n \geq 0$. Then

$$(11) \quad u_n \leq e^{\tau t_n} \{ \Omega^{-1} [\Omega(2^{q-1} d) + \tau^\kappa G \sum_{k=0}^{n-1} F_k^q R(\tau t_k)] \}^{\frac{1}{q}}, \quad 1 \leq n \leq n_0,$$

where

$$n_0 = \sup \{ i | \Omega(2^{q-1} d) + \tau^\kappa G \sum_{k=0}^{i-1} F_k^q R(\tau t_k) \in \Omega(R^+) \},$$

$$G = 2^{q-1} \left[\frac{\Gamma(1-\alpha p)}{p^{1-\alpha p}} \right]^{\frac{1}{p}}, \quad \alpha = 1 - \beta = \frac{z}{1+z}, \quad \kappa = 1 - (1 - \alpha p)^{\frac{q}{p}} = 1 - \frac{1}{(1+z)(2+z)^2} > 0.$$

If $\Omega(\infty) \neq \infty$, then we assume

$$\tau^\kappa G \sum_{k=0}^{n-1} F_k^q < \Omega(\infty), \quad n = 1, 2, \dots$$

P r o o f. First we shall prove the assertion (i). Using the Cauchy-Schwarz inequality and the condition (q) we obtain from (9)

$$\begin{aligned} u_n &\leq a_n + \tau^{\frac{1}{2}} \sum_{k=0}^{n-1} (t_n - t_k)^{\beta-1} \tau_k^{\frac{1}{2}} e^{\tau t_k} e^{-\tau t_k} F_k \omega(u_k) \\ &\leq a_n + \tau^{\frac{1}{2}} \left[\sum_{k=0}^{n-1} (t_n - t_k)^{2\beta-2} \tau_k e^{2\tau t_k} \right]^{\frac{1}{2}} \left[\sum_{k=0}^{n-1} F_k^2 e^{-2\tau t_k} \omega(u_k)^2 \right]^{\frac{1}{2}} \\ &\leq a_n + \tau^{\frac{1}{2}} \left[\sum_{k=0}^{n-1} (t_n - t_k)^{2\beta-2} \tau_k e^{2\tau t_k} \right]^{\frac{1}{2}} \left[\sum_{k=0}^{n-1} F_k^2 R(\tau t_k) \omega(e^{-2\tau t_k} u_k^2) \right]^{\frac{1}{2}}. \end{aligned}$$

Let us estimate the first sum

$$\begin{aligned} \sum_{k=0}^{n-1} (t_n - t_k)^{2\beta-2} \tau_k e^{2\tau t_k} &\leq \int_0^{t_n} (t_n - s)^{2\beta-2} e^{2\tau s} ds = e^{2\tau t_n} \int_0^{t_n} \eta^{2\beta-2} e^{-2\tau \eta} d\eta \\ &= \frac{e^{2\tau t_n}}{(2\tau)^{2\beta-1}} \int_0^{2\tau t_n} \sigma^{2\beta-2} e^{-\sigma} d\sigma \leq \frac{e^{2\tau t_n}}{(2\tau)^{2\beta-1}} \Gamma(2\beta-1) \end{aligned}$$

and thus

$$(12) \quad u_n \leq a_n + \left[\frac{e^{2\tau t_n}}{2^{2\beta-1}} \tau^{2(1-\beta)} \Gamma(2\beta-1) \right]^{\frac{1}{2}} \left[\sum_{k=0}^{n-1} F_k^2 R(\tau t_k) \omega(e^{-2\tau t_k} u_k^2) \right]^{\frac{1}{2}}.$$

Since the elementary inequality $(a+b)^2 \leq 2(a^2 + b^2)$ is satisfied for any $a \geq 0, b \geq 0$ we obtain from (12):

$$u_n^2 \leq 2[a_n^2 + \frac{e^{2\tau t_n}}{2^{2\beta-1}} \tau^{2(1-\beta)} \Gamma(2\beta-1) \sum_{k=0}^{n-1} F_k^2 R(\tau t_k) \omega(e^{-2\tau t_k} u_k^2)], \quad n \geq 0,$$

and this yields

$$(13) \quad v_n \leq 2c + \tau^{2(1-\beta)} \frac{\Gamma(2\beta-1)}{4^{\beta-1}} \sum_{k=0}^{n-1} F_k^2 R(\tau t_k) \omega(v_k), \quad n \geq 0,$$

where

$$(14) \quad v_n = u_n^2 e^{-2\tau t_n}, \quad n \geq 0.$$

From Lemma 1 we obtain the inequality

$$(15) \quad v_n \leq \Omega^{-1} \left[\Omega(2c) + \tau^{2(1-\beta)} \frac{\Gamma(2\beta-1)}{4^{\beta-1}} \sum_{k=0}^{n-1} F_k^2 R(\tau t_k) \right], \quad n \geq 1$$

and from (14) we obtain the inequality (10).

Now we shall prove the assertion (ii). Let p, q be as in theorem. Applying Hölder inequality and using the condition (q) we obtain

$$\begin{aligned} u_n &\leq a_n + \tau^{\frac{1}{q}} \sum_{k=0}^{n-1} (t_n - t_k)^{-\alpha} \tau_k^{\frac{1}{p}} e^{\tau t_k} e^{-\tau t_k} F_k \omega(u_k) \\ &\leq a_n + \tau^{\frac{1}{q}} \left[\sum_{k=0}^{n-1} (t_n - t_k)^{-\alpha p} \tau_k e^{p\tau t_k} \right]^{\frac{1}{p}} \left[\sum_{k=0}^{n-1} F_k^q e^{-q\tau t_k} \omega(u_k)^q \right]^{\frac{1}{q}} \\ &\leq a_n + \tau^{\frac{1}{q}} \left[\sum_{k=0}^{n-1} (t_n - t_k)^{-\alpha p} \tau_k e^{p\tau t_k} \right]^{\frac{1}{p}} \left[\sum_{k=0}^{n-1} F_k^q R(\tau t_k) \omega(e^{-q\tau t_k} u_k^q) \right]^{\frac{1}{q}}. \end{aligned}$$

The following estimates hold

$$\begin{aligned} \sum_{k=0}^{n-1} (t_n - t_k)^{-\alpha p} \tau_k e^{p\tau t_k} &\leq \int_0^{t_n} (t_n - s)^{-\alpha p} e^{p\tau s} ds = e^{p\tau t_n} \int_0^{t_n} \eta^{-\alpha p} e^{-p\tau \eta} d\eta \\ &= \frac{e^{p\tau t_n}}{(p\tau)^{1-\alpha p}} \int_0^{p\tau t_n} \sigma^{-\alpha p} e^{-\sigma} d\sigma \leq \frac{e^{p\tau t_n}}{(p\tau)^{1-\alpha p}} \Gamma(1-\alpha p). \end{aligned}$$

Obviously $1 - \alpha p = \frac{1}{(1+z)^2} > 0$, i. e. $\Gamma(1 - \alpha p) \in R$. Therefore we obtain

$$(16) \quad u_n \leq a_n$$

$$+ \tau^{\frac{1}{q}} \left[\frac{e^{p\tau t_n}}{(p\tau)^{1-\alpha p}} \Gamma(1 - \alpha p) \right]^{\frac{1}{p}} \left[\sum_{k=0}^{n-1} F_k^q R(\tau t_k) \omega(e^{-q\tau t_k} u_k^q) \right]^{\frac{1}{q}}, \quad n \geq 0.$$

Since $(a+b)^q \leq 2^{q-1}(a^q + b^q)$ for any $a \geq 0, b \geq 0$ (see [6]) we obtain from (16):

$$(17) \quad u_n^q \leq 2^{q-1} \left[a_n^q + e^{q\tau t_n} K^{\frac{q}{p}} \tau^{1+(\alpha p-1)(q/p)} \sum_{k=0}^{n-1} F_k^q R(\tau t_k) \omega(e^{-q\tau t_k} u_k^q) \right],$$

where $K = \frac{\Gamma(1-\alpha p)}{p^{1-\alpha p}}$. This inequality yields

$$(18) \quad v_n \leq 2^{q-1} d + \tau^\kappa G \sum_{k=0}^{n-1} F_k^q R(\tau t_k) \omega(v_k),$$

where G, d, κ are as in the assertion (ii) and

$$(19) \quad v_n = u_n^q e^{-q\tau t_n}.$$

From Lemma 1 we obtain

$$v_n \leq \Omega^{-1} \left[\Omega(2^{q-1}d) + \tau^\kappa G \sum_{k=0}^{n-1} F_k^q R(\tau t_k) \right], \quad 1 \leq n \leq n_0$$

and from (19) we have the inequality (11).

As a consequence of Theorem 2 we obtain a discrete version of [6, Theorem 2].

THEOREM 3. *Let $c > 0, d > 0, \{a_n\}_{n=0}^\infty, \{F_n\}_{n=0}^\infty, \{t_n\}_{n=0}^\infty, \{\tau_n\}_{n=0}^\infty$ and τ be as in Theorem 2 and $\{u_n\}_{n=0}^\infty$ be an increasing sequence of positive numbers and $\{u_n\}_{n=0}^\infty$ be a sequence of nonnegative numbers with*

$$(20) \quad u_n \leq a_n + \sum_{k=0}^{n-1} (t_n - t_k)^{\beta-1} \tau_k^{\frac{1}{q}} F_k u_k, \quad n \geq 1,$$

where $\beta > 0$. Then the following assertions hold:

(i) If $\frac{1}{2} < \beta < 1, a_n^2 e^{-2\tau t_n} \leq c$ for all $n \geq 0$, then

$$(21) \quad u_n \leq \sqrt{2c} \exp \left(\tau t_n + \frac{1}{2} \tau^{2(1-\beta)} B \sum_{k=0}^{n-1} F_k^2 \right), \quad n \geq 1,$$

where $B = \frac{1}{4^{\beta-1}} \Gamma(2\beta - 1)$.

(ii) If $0 < \beta = \frac{1}{1+z}, z \geq 1, q = z+2, p = \frac{z+2}{z+1}$, i.e. $\frac{1}{p} + \frac{1}{q} = 1, a_n^q e^{-q\tau t_n} \leq d$ for all $n \geq 0$, then

$$(22) \quad u_n \leq (2^{q-1}d)^{\frac{1}{q}} \exp \left(\tau t_n + \frac{1}{q} \tau^\kappa G \sum_{k=0}^{n-1} F_k^q \right), \quad n \geq 1,$$

where G, κ are as in Theorem 2.

REMARK. Obviously, if the sequence $\{a_n\}_{n=0}^\infty$ of nonnegative numbers from (4) satisfies the additional condition $a_n^2 e^{-\tau t_n} \leq c$ for all $n \geq 0$ and $\frac{1}{2} \leq \beta < 1$, then instead of the Slodička's estimate (5) we obtain the exponential one

$$u_n \leq \sqrt{2c} \exp(\tau t_n + \frac{1}{2} \tau^\kappa B n L^q), \quad n \geq 0,$$

where B is as in the assertion (i) of Theorem 2. If $\beta = \frac{1}{1+z}, z \geq 1, q, d, \kappa, G$ are as in the assertion (ii) of Theorem 2 and $a_n^q e^{-q\tau t_n} \leq d$ for $n \geq 0$, then

$$u_n \leq (2^{q-1}d)^{\frac{1}{q}} \exp \left(\tau t_n + \frac{1}{q} \tau^\kappa G n L^q \right), \quad n \geq 0.$$

As a consequence of Lemma 1 and Theorem 2 we obtain the following theorem.

THEOREM 4. *Let $c > 0, d > 0, \{a_n\}_{n=0}^{\infty}, \{F_n\}_{n=0}^{\infty}, \{\tau_n\}_{n=0}^{\infty}, \tau$ be as in Theorem 2, $m > 1$ and $\{u_n\}_{n=0}^{\infty}$ be a sequence of nonnegative numbers with*

$$(23) \quad u_n \leq a_n + \sum_{k=0}^{n-1} (t_n - t_k)^{\beta-1} \tau_k F_k u_k^m, \quad n \geq 1,$$

where $\beta > 0$. Then the following assertions hold:

(i) If $\frac{1}{2} < \beta < 1, a_n^2 e^{-2\tau t_n} \leq c$ for all $n \geq 0$, then

$$(24) \quad u_n \leq e^{\tau t_n} \sqrt{2c} \left[1 - (m-1)(2c)^{m-1} \tau^{2(1-\beta)} B \sum_{k=0}^{n-1} F_k^2 e^{2(m-1)\tau t_k} \right]^{-\frac{1}{2(m-1)}},$$

$1 \leq n \leq N_0,$

where B, κ are as in the assertion (i) of Theorem 2,

$$N_0 = \sup \left\{ i \mid (m-1)(2c)^{m-1} \tau^{2(1-\beta)} \sum_{k=0}^{i-1} F_k^2 e^{2(m-1)\tau t_k} < 1 \right\}.$$

(ii) If $0 < \beta = \frac{1}{1+z}, z \geq 1, q = z+2, p = \frac{z+2}{z+1}, a_n^q e^{-q\tau t_n} \leq d$, then

$$(25) \quad u_n \leq e^{\tau t_n} (2^{q-1} d)^{\frac{1}{q}} \times \left[1 - (m-1)(2^{q-1} d)^{m-1} \tau^{\kappa} G \sum_{k=0}^{n-1} F_k^q e^{2(m-1)\tau t_k} \right]^{-\frac{1}{q(m-1)}},$$

where G is as in the assertion (ii) of Theorem 2, $1 \leq n \leq n_0$,

$$n_0 = \sup \left\{ i \mid (m-1)(2^{q-1} d)^{m-1} \tau^{\kappa} G \sum_{k=0}^{i-1} F_k^q e^{2(m-1)\tau t_k} < 1 \right\}.$$

I wish to express my gratitude to Michal Fečkan for corrections of some errors and misprints in the first version of this paper.

References

- [1] R. P. Agarwall, *Difference Equations and Inequalities*, Dekker, New York, 1992.
- [2] J. A. Bihari, *A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations*, Acta Math. Acad. Sci. Hungaria 7 (1965), 81–94.
- [3] D. Henry, *Geometric Theory of Semilinear Parabolic Equations*, Springer - Verlag, Berlin - Heidelberg - New York, 1981.
- [4] A. A. Martyniuk, V. Lakshmikanthan and S. Leela, *Motion Stability: The Method of Integral Inequalities*, Naukova Dumka, Kiev, 1977 (in Russian).

- [5] S. McKee and T. Tang, *Integral inequalities and application in numerical analysis*, Fasc. Math. 308, 23 (1991), 67–76.
- [6] M. Medveď, *A new approach to an analysis of Henry type integral inequalities and their Bihari type versions*, J. Math. Anal. Appl. 214 (1997), 349–366.
- [7] M. Medveď, *Singular integral inequalities and stability of semilinear parabolic equations*, Arch. Math. (Brno) 34, 1 (1998), 183–190.
- [8] M. Medveď, *Nonlinear singular integral inequalities for functions in two and n independent variables*, to appear in J. Inequal. Appl. 5 (2000), 1–22.
- [9] B. G. Pachpatte, *Finite difference inequalities and their applications*, Proc. Nat. Acad. Sci. India Sect A 43 (1973), 348–356.
- [10] B. G. Pachpatte, *On some nonlinear discrete inequalities of Gronwall type*, Bull. Inst. Math. Acad. Sinica 5 (1977), 348–356.
- [11] B. G. Pachpatte, *On some new inequalities related to certain inequalities in the theory of differential equations*, J. Math. Anal. Appl. 189 (1995), 128–144.
- [12] M. Slodička, *Semigroup formulation of Rothe's method: application to parabolic problems*, Comment. Math. Univ. Carolin. 33, 2 (1992), 245–260.

DEPARTMENT OF MATHEMATICAL ANALYSIS
FACULTY OF MATHEMATICS AND PHYSICS
COMENIUS UNIVERSITY
Mlynská dolina
842 48 BRATISLAVA, SLOVAKIA
E-mail: medved@fmph.uniba.sk

Received February 7, 2000.

