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0. Introduction

The basic equations of motion governing a standard linear constitutive
model in hypoelasticity (cf. Piskorek, (1994) equations (0.1) and (1.1), pp.
549-550) are given by

Oip = —v0,p — pOLv,
1
(01) 6{0 = —’Uam'l) + ;aza,

0o = —v9,0 + KO,

where p denotes the density of the hypoelastic medium, v- the velocity field
of its motion, o-the stress tensor field, and & is the physical constant.

In this paper we study the existence, uniquenes and regularity for solu-
tions of the Dirichlet initial-boundary value problem to this system of partial
differential equations (p.d.e.).

The arrangement of the paper is as follows. In Section 1 we formulate
the initial-boundary value problem to the quasilinear system (0.1) of p.d.e.
in one-dimensional case and examine this system. This system is strictly
hyperbolic and diagonalizable. In Section 2 we prove existence of C7 —
smooth solution r > 1 to the related linearized system of p.d.e. using classi-
cal iterative method due to Courant (1961) and (1962). The Section 3 is de-
voted to the construction of solution (local in time) of the initial-boundary
value problem to the quasilinear system (0.1) of p.d.e. as the limit of se-
quences of solutions of linearized initial value problems (the contraction
mapping principle). In this manner we prove local in time well posedness



504 A. Piskorek, A. Szymaniec

of the initial-boundary value problem in the space* of C" — smooth and
bounded functions with bounded derivatives up to order r in R, X R which
we denote by C} (R4 X Ry), where Ry = {t€e R : t > 0}.

1. Formulation of the problem
We consider the quasilinear system of p.d.e. in the first quadrant of (¢, z)
— space, i.e. in Ry x R4 for three unknown functions p, v, o

Oip = —v0zp — pOzv,
(1.1) O = —v0zv + %Bma,

0:0 = —v0,0 + KOgv.

The quasilinear system (1.1) of p.d.e. describes the motion of the one-
dimensional linear hypoelastic body, which occupies half axis > 0 and
for which p — denotes the mass density, v-the velocity and o-the stress. Of
course the mass density is positive functions, more precisely
(1.2) (t,m)elgiqu p(t,z) > 0.

We denote by **

(1.3) V= (VL V3L V3* = (p,v,0)",
-V v 0 —-v —p 0
(1.4) AV)=| 0 -V* g |=|0 —v 2
0 k =V? 0 w -v
and rewrite the system (1.1) of p.d.e. in the form
(1.5) 8V = A(V)o, V.

The characteristic matrix A(V') of this system of p.d.e. has three distinct
real eigenvalues

(16) /\1=—<v+\/§> N = —o AS:_(@_ %)

* This space endowed with a norm
lullor =sup{ Y |(6i65u)(t,2)|: (t,2) € Ry x Ry}, 21
I+k<r

is a Banach space. Cg (R4 x R4) denotes the space continuous and bounded function in
R4 x Ry where:

at:_ 8$=—.

** ()* denotes transpose of a ( )
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)\3—)\2:)\2—)\1=\/§>0

it means that the quasilinear system of p.d.e. (1.1) or (1.5) is strictly hyper-
bolic and diagonalizable (cf. Mizohata (1977), Chap. 6, §3, p. 324).

In the quadrant R, x Ry we seek a solution of (1.1) or (1.5) which
satisfies the initial condition

with property

(1.7) V(0,z) = Vo(z) := (po,v0,00)"(z) T € R4
together with boundary condition
(18) (BV)(t)O) = %(t) = (pb,’l)b,O'b)(t) te R+

and we assume that pg, vo, 90, Pb, Vb, 0 € C(Ry) 7 > 1
The conditions (1.7), (1.8) should establish a well posed problem, here
we assume the non-characteristic condition

(1.9) det A(V) = v (g -~ vz) £0
on the boundary z =0, ¢t > 0, i.e.
(1.10) O#U;é:i:\/g z=0,t>0

and the eigenvalues (1.6) of A(V) split into two groups {\;},_, ,, and
{’\j}j=l+1,...,3 satisfying
(1.11) /\13---S/\z<0<)\z+15---3)\3-

By this assumption I(= 1,2, 3) is the number of characteristics through-
out the origin 0 which point upward in to the first quadrant of the (¢, z)-
plane. Then the first characteristics through a point ¢ > 0 near to 0 also
point into the first quadrant. The characteristic C; through 0 separates the
quadrant adjacent to 0 in two regions such that all / characteristics drawn
from a point (¢,z) in the region left from C; towards decreasing ¢ intersect
the positive t-axis, prowided we restrict ourselfs to « sufficiently small region
adjacent to 0.

Thus, the boundary condition (1.8) admit a following form

(1.12) BV =V_-MV,

where V_ denotes the projection of V' onto the negative [-dimensionale
eigenspace of A(V'), and V. — the projection of V onto the positive (3 —r)
— dimensional eigenspace of A(V), M is given matrix [ x (3 — [) with
[|M]| < 1. Without loss of generality (cf. Courant, (1962), p. 472, (8)—(10))
we can assume that M = 0.



506 A. Piskorek, A. Szymaniec

REMARK 1.1. Along the characteristics through 0 the solution will have dis-
continuities unless “consistency conditions” at 0 for the data are stipulated
for t,x = 0. First order consistency, i.e., continuity of V depends on the
conditions
FgO)=v©0) =1,.,L

Similar conditions are obtained by differentiation for consistency derivatives
to the r — order.

In order to obtain existence results for the related initial value problem
(1.1)-(1.2) or (1.8)—(1.9) in next section we consider the related initial value
problem to the linearized system of p.d.e..

2. Solution of linearized system of p.d.e.
We consider the related linearized system of p.d.e.

(2.1) 8U = A(W)0,U

where U is an unknown vector function with the components U, U2, U3,
ie. U= (U U2 U®)*. Here

(2.2) W= WL, W2W3* = (mw,7)*
is given Cj (R4 x R.) vector function, which satisfies the condition (2.3)
(2.3) itnf Wt(t,z) = itnf7r (t,z) >0
and matrix A(W) has (cf. formula (1.4)) following form
-w? —-w' 0 —w -m 0
(2.4) AW) = 0 -W?* 31 |=]10 -w 1
0 Kk —W? 0 Kk -w
To the system (2.1) of p.d.e. we add initial data
(2.5) U(0,z) = Vo(z) = (po, vo,00)" ()
and boundary data
(2.6) Vi(t) = (b, Vb, 00)(t).

The linear system (2.1) of p.d.e. is strictly hyperbolic, since its characteristic
matrix A(W) has three different real eigenvalues

(2.7) A1=—(w+\/§), As = —w, Ag,:—(w— %)

with (cf. (1.6)) property Az — Ay = Ay — A; = /Z > 0, and we assume
(cf.(1.9)) det A(W) # 0.

System (2.1) of p.d.e. with initial-boundary condition (2.5)-(2.6) is the
initial-boundary value problem for which it is desired to prove the existence
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C7-smooth solution. In order to be able to do this by applying the iterative
method due to Courant (see Courant (1962), Chapt V, § 6, pp. 461-474)
the system (21) of p.d.e. must be converted to a first order diagonal system
of p.d.e.

With the aid (cf. Mizohata, (1977), Chapt 6, § 3, pp. 324-326; § 9, pp.
356-362) of the eigencovectors of the characteristic matrix A(W), which

have following form
o= (o5 )
™

(2.8) Il = (—K'aO’ —W)

we construct the matrix

0 VE -1
(2.9) NW) = ( -5 0 —7r)
0 —-/& -1

with property

—(w+\/§) 0 0
0

(2.10) N(W)A(W),N"Y(W) = -w 0

0 0 —(w+ /%)
Setting (see Mizohata (1977), Chapt 6, § 3, p. 325)
(2.11) u=NW)U

in the system (2.1) of p.d.e., after simple calculation, we obtain the diagonal
form of this system with new unknown vector function u = (u?, u?, u3)*

(2.12) Oul= — (w + \/g) (t, z)0zu' + ﬁm—)

‘ [am ‘ (w ; @) azw] (t,2)(w + ),

Ou? = —w(t,z)0u? + %[Bgr + wo,m(t, z)(u! + u?),

ot = — <w - \/g) (¢, 2)9uu
- 47r(—1:1:5 |:3t7l' + (w - ﬁ-) a,w] (t,5)(u} + )
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and with new initial and boundary data (2.13)

1(0) = (@)= v0a)y | = — o0(o), wl(t) = vs(t) ﬁt—) —au(8),
(2-13)u?(0) =ud(x) := —kpo(z) — po(z)oo(T), uj(t)=—rps(t)=pu(t)os(t),

0= x)\/—— oo(z), ud(t) = —vs t)\/» ot

REMARK 2.1. Our assumptions insure the equivalence of the initial-bound-
ary value problem for U and wu.

In order to use iterative method due to Courant (cf. Courant (1962),
Chapt. V, § 6, pp. 461-474) we consider in the quadrant (¢,z),t >0,z >0
the characteristic curves Cy, C2, C3 of the system (2.12) of p.d.e., which pass
through a given point (¢, z). They are, of course, the solutions of the initial
value problems to the ordinary differential equations

dy
ds
where A; are given by (2.7). Under our assumptions (2.2) they exist uniquely
and have the form

(2.15) y = y;(st,z), i=1,2,3

here the functions y; possess continuous derivatives of order up to r with
respect to s, ¢ and z.

Now we consider in (¢, z) quadrant a closed domain G so that the charac-
teristic curves C1, Cz, C3 followed from a point (¢, z) in G backwards towards
decreasing values s, meet a given sections I; of the positive z-axis in points
(0,y1(05¢,)), (0,y2(0;¢,z)), (0,y3(0;¢,z)) respectively, and I of the posi-
tive t-axis in point (0,y; }(0;¢,),0), (0,45 *(0;¢,2),0), (0,43 ' (0;¢, ), 0) re-
spectively, so that I; Ul contains the domain of dependence for all points of
G. In order to construed the C; — smooth solution of the initial-boundary
problem (2.12)—(213), eo ipso of the initial-boundary problem (2.1)—(2.6), we
integrate (2.12), taking into account (2.13), (2.14) and (2.15), along the char-
acteristic curves Cj,C2,Cs from max(0,y; '(0;t,)), max(0,y;*(0;t,x)),
max(0,y3 *(0;t,z)) to ¢, and we obtain the following related system of inte-
gral equations

(2.16) w'(t,z) = fi(t,2)
t
+ | [om Gt a))] @+ u) s vlsit ) ds,
max(O,yl_l(O;t,:z:))

(2.14) = —A;(s,y), 7=1,2,3, yt) ==z,
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(2.16)cont. u2(t,x) = f2 (t,z)
t
1
+ | §3s7f(8,y1(8;t,93)] (u! +u®)(s;y2(s; 8, 2)) ds,
max(0,y; *(0;t,z))

u3(t1-77) = fa(t7‘7")

t
- S [65 In «, W(s,yl(s;t,z))] (u' 4+ u®)(s; y3(s;t,x)) ds
max(O,ya_l(O;t,:n))
where
it z) = ( —1(0;t,z)) foryj_l(O;t,a:)>0 193
up(y™H(03t,2)) for y;(058,2) =0

Let A be a linear integral operator defined by the right-side of the system
(2.16) with the domain D 4 which consists all C" — smooth vector functions
v in G i.e.

(2.17) (Av)(t,z) = +§9 (s,t,z)(8salt, s, z))v(s; y(s; ¢, z)) ds,
0
)

where f(t,z) = (f1(t,z), f2(t,z), f3(t,z)) and a(t, s, z) denotes (3 x 3) —
matrix of the form

In/7(s,y1(s,t,2)) 0 In</m(s,y1(s,t,z))
(2.18) af(t,s,z) = s7(s,y2(s;t, 7)) 0 37(s,y2(s;t, z))

—In /7(s,ys(s,t,z)) O —In</7(s,ys(s,t,z))

v(s,y(sit, ) = (v(s,01(s5:¢,2)), v*(s,32(s:t,2)), v*(s,y3(s3t,2)) and
6(t, s, z) denotes

H(s—max(0,y; 1(0;¢,z))) 0 0
0(t,s,z)= 0 H(s — max(0,y5;1(0;t,z))) 0
0 0 H(s—max(0,y5(0;t,2)))
_f1 fort>0
H(t) = 0 fort<O.

It is easily seen that the unique solution of the initial-boundary value
problem (2.12)-(2.13) is a unique fixed point of the operator A. For suitable
narrow strip Gr = GN{(s,y): 0 < s < T, y € R, } the desired fixed point
will be constructed by iterations as the uniform limit n — oo of

(2.19) Vat1 = Avy, n=1,2,.

starting with an arbitrary element vy = f(t,z) of D4. For simplicity we
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assume that 7 = 1 and in this case we prove the existence results. We set
(2.20) lenllgo = R

and consider in D4 the subset Z defined by

(2.21) Z ={v€Da:|vi|ce = Ro,|Jv|l1 < R1}

where (cf. footnote *), p. 504):

(2.22) [v1llco = sup{|o(t, z)| : (¢,z) € Gr},
(2.23) |v]1=sup{ %(t,x)‘—%’g—;(t,x) : (t,x)eGT},

Ry and R, are large enough so that: R < Ry and R+ Ry < R;.

In order to examine the regularity of Av for each v € Z we remark first
that from (214),(215) and regularity of A;, j = 1,2,3 (cf. (2.2), (2.7) follow
(cf. Antontzev, Kazhikhov, Monakhov, (1983), Chap. II, §z 1, pp. 46-47)
after a long but easy calculations the formulae

(2.24) %ﬁf@; tz) = Aj(t 2 exp ( = [(9ehs)(s1,95(s158,2))s, ),
(235)  (s; t,2) = exp ( — [(0us) (51,5 (o031,0) din ).

t

With the aid of above formulae we can differentiate with respect to variables
t and z a function Av for each v € Z. The first order derivatives a(;u) (¢, z),
w(t, x) exist and are continuous. In fact, the first term in right-side (2.16)
we differentiate using the chain rule and formulate (2.24), (2.25), and with
respect to the second one we must combine the chain rule and the integration
by parts Finally (cf. (2.17), (2.18), (2.24), (22.5)) we can write

0(Av)

(2:26) F(t2)

= 0uf(t,z) + (Bsalt, s,2))v(s,y(s;t, )] _,

oyt _
- (asa'(ta S, :E))U(S, y(S; t’m))|s=max(0,y—1(0;t,m))%(0; t I)H(y 1(0; t,ﬂ?))

+ S 0(s,t,z)(0za(t, s, z))(Ozv)(s,y(s; t, :v))-g—?:(s, t,z)ds
0
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- SB(s,t,a:)(ata(t,s,a:)) (at'u)(s,y(s;t,a:))-{—(atv)(s,y(s;t,x))%(s;t,m) ds
0

+ (ata’(t’ t x))v(t, :E) - (6ta'(t7 S, :L‘))’U(S, y(s; t ﬂ))) lszmax(O,y—l(O;t,z))’

(2.27) a(;v) (t,z) = 8:f(t,z)
(9 —1
_ (65a(t7s’x)),v(s’y(s;t’x))l.?:max(o,y_l(o;t,m)) . —g?—(O;t,a:)H(y‘l(O;t,m))

t

+ S 0(s,t,z)(0sa(t, s, z))(0zv)(s, y(s; ¢, x))%(s, t,xr)ds
: )

t

— 80(3, t,z)(0zalt, s, z))- {(Btv)(s, y(s;t, z))+(6zv)(.s, y(s;t, m))%(s, t,x)|ds
0

+ (B:alt, £, )v(t,2) — (Bealt, 5, 2)J0(5, ¥(55 £ 2))], _rmaxio.y-1 00

By virtue of formulae (2.17), (2:18), (2.24)—(2.27) we obtain the estimates
of ||Av||co and |Av|; in terms of norm ||v||co and seminorm |v|;, then, if we
pick Ry and R, large enough, for T chosen sufficiently small it is easy to
show that the integral operator leaves Z invariant, i.e.

(2.28) ’ AZ C Z.

To prove uniform convergence or iterations v,4+1 = Av,, n =1,2,... for
n — 00, it is sufficient to show the integral operator A is a contraction in
CY(Gr). Since the kernel d;af(t, s, z) is continuous and bounded (cf. (2.18)),

(2.29) |Av — Ad|lco < Tlallcr||v — || co-

Therefore, it follows that A is a contraction for T small enough, hence
the iterations v, converge uniformly to a continuous vector function u in
Gr. This limit vector function u has obviously the initial-boundary value f,
is a fixed point of the operator A and solves the system of integral equation
(2.16).

However the existence and continuity of the derivatives a—gf, %"Iﬂ of the
iterations v,, n = 1,2,... (cf. (2.26), (2.27)) do not imply existence and
continuity of the derivatives %, 7» of the limit function u. That these
derivatives exist and are continuous will now be proved by showing that the
derivatives %”tn, %ﬂ converge uniformly as the iterations v, for n — oco.
Then according to classical calculus, the limit functions u have these limit

functions as the first order derivatives g—‘t‘, % respectively.
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To prove the uniform convergence of derivatives %ﬂ, %ﬂ we use the same

arguments as above (the contraction property of A with respect to iterations

Un, n = 1,2,...). Then it is sufficient to show that the integral operator A

has the contraction property with respect to the first order derivatives %,

% From (2.17), (2.18), (2.24)—(2.27) following estimates

(2.30) |Av — Ad|y < 3lallci]|v = B)lco + CT|lalcr|v — 9.
With sufficiently small T" such that
(2.31) CTla|lcr <1

we assure the contraction property of A with respect to the first order deriva-

tives 2, 9¢ This property allows us to state the uniform convergence of

ot Oz
%"tn, %ﬂ in a suitable narrow strip G if in this strip the iterations v, con-
verge uniformly (cf. (2.29)). Thus the limit function u has continuous first
order derivatives in G and therefore indeed is the solution of the linearized
system (2.12) of p.d.e. satisfying the initial-boundary condition (2.13) under
assumptions (2.2), (2.3), (1.2) for r = 1.

We have thus showed.

THEOREM 2.1. Under assumptions (1.2), (1.8), (2.2), (2.3) for r = 1 ini-
tial boundary value problem (2.1), (2.5), (2.6) possesses a unique C'-smooth
solution Gt for sufficiently small T.

REMARK 2.2. The preceding reasoning extends without change to continuous
derivatives up to the order r > 1.

REMARK 2.3. The C"-smooth solution u of the initial-boundary value prob-
lem (2.1), (2.5), (2.6) r > 1 can be extended into the wholes domain G and
in larger domain too as long as the assumptions of continuity and boundenes
of the coefficients and the initial data remain satisfied (cf. (2.29), (2.30)).

REMARK 2.4. The C"-smooth solution U, r > 1, of the initial-boundary
value problem (2.1), (2.5), (2.6) depends continuously on the initial and
bound data in C™ topology (cf. (2.16)-(2.18), (2.22)-(2.27)).

3. Solution of quasilinear system of p.d.e.

We turn now to the initial-boundary value problem to the quasilinear
system (1.1) of p.d.e. with the initial and bound conditions (1.7), (1.8) and
briefly describe how this problem can be solved on the basis of existence
and uniqueness results of Section 2 by a slightly different iteration scheme.
The results are exactly the same as those for linearized system (2.1) of p.d.e.
(see. Theorem 2.1).

First we consider (cf. (2.2)) C"-smooth vector function

W= (Wl,WZ,W3)* = (m,w,7)",
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for simplicity we assume r = 1, with the fixed initial and boundary values

(3 1) W(O) = % = (p07v0’0'0)*
' Wy = Vo = (po, v5,08)"

and satisfying inequalities
(3.2) [Wllco < Mo,  |[Wls < M

with fixed Mp and M;. The matrix A(W) given by (2.4) has three distinct
real eigenvalues A;, j = 1,2,3 and matrix N(W) of independent eigencov-
ector of A(W) given by formulae (2.7), (2.8), (2.9) having continuous first
order derivatives with respect to the variables ¢ and z in a fixed domain
Gr to be described presently provided we substitute for W any C*'-smooth
vector function satysfying conditions (3.1), (3.2). The solutions of the initial-
boundary*value problems to ordinary differential equations (2.14) are called
the characteristic Cj, j = 1,2, 3 of the W-fields. For C1-smooth vector func-
tion W satisfying (3.1), (3.2) their slopes are uniformly bounded, then we
specify that a closed domain G and in it the strip G consist of point such
that the characteristics C;, 7 = 1,2,3 of the W-fields backwards towards
t = 0 remain in G and intersect the section I of the z-axis or ¢-axis.

The set of all Cl-smooth function W satisfying (3.1), (3.2) in G we
denote by S.

Now we use the classical iteration method due to Curant (1961). After
substituting C'-smooth vector function W € § in matrix A instead of V in
the system (1.5) of p.d.e., the initial-boundary value problem (1.5), (1.7),
(1.8) becomes linear of the same form (cf. (2.1), (2.5), (2.6)) as we treated
in Section 2.

The solution U of this linearized problem is called U = F(W), is F
denotes the map, carries W € S into the solution U of initial-boundary
value problem (2.1), (2.5), (2.6):

(3.3) W — F(W)=U.

The solution V' of the initial-boundary value problem (1.5), (1.7), (1.8)
is a fixed point of the map F' and we can obtain it as the uniform limit for
n — oo of iterations

up(y~1(0;¢,2)) for y~1(0;t,2) > 0

Va1 = F(V,) with Y = {UO(y—l(O;t,fB)) for y~1(0;¢,2) = 0.
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It is easy to show that fixed My > ||Vi||co we can choose a sufficiently
large and a sufficiently small T such that any vector function U = F(W)
belonging to S.

The map F has the contraction property. In fact, it follows directly, as in
Section 2, by considering for the difference z = U — U of the two functions
U= F(W) and U = F(W) with the difference £ = W — W, the system of
p.d.e.

(3.4) Oz = A(W)B,z + B(W,W,08,U)¢
where (cf. (2.1), (2.4))
.02 8,0% 0

(3.5) BW,W,8,0) = | ;&%= 0.0% 0
0 o;.U? 0

with the initial condition

(3.6) z2(0)=0

and we obtain as in Section 2 an inequality of the form

(3.7) l#llco < CT€]|co.

With sufficiently small T, such that CT < 1, we assure the contraction
property for F. Therefore the iterations V,, converge uniformly to a limit
function V in G which is a Cl-smooth solution of the initial-boundary
value problem to the quasi-linear system (1.5) with the initial-boundary
conditions (1.7), (1.8) eo ipso of the initial-boundary value problem (1.1),
(1.7), (1.8).

Thus we proved:

THEOREM 3.1. Under assumption (1.2), (1.4) for r = 1 the initial-boundary
value problem (1.1), (1.7), (1.8) possesses a unique C'-smooth solution in
Cr for sufficiently small T.

REMARK 3.1. The preceding reasoning extends without change to continuous
derivatives up to the order r > 1.

REMARK 3.2. The C'-smooth solution V = (p,v,0)*, r > 1, of the initial-
boundary value problem (1.1), (1.7), (1.8) depends continuously on the ini-
tial and boundary conditions (1.7), (1.8).
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