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0. Introduction 
The basic equations of motion governing a standard linear constitutive 

model in hypoelasticity (cf. Piskorek, (1994) equations (0.1) and (1.1), pp. 
549-550) are given by 

' dtp " -vdxp - pdxv, 

(0.1) dtv = -vdxv + -dxa, 
P 

dtcr = —vdxa + K 8 X V , 

where p denotes the density of the hypoelastic medium, v- the velocity field 
of its motion, er-the stress tensor field, and K is the physical constant. 

In this paper we study the existence, uniquenes and regularity for solu-
tions of the Dirichlet initial-boundary value problem to this system of partial 
differential equations (p.d.e.). 

The arrangement of the paper is as follows. In Section 1 we formulate 
the initial-boundary value problem to the quasilinear system (0.1) of p.d.e. 
in one-dimensional case and examine this system. This system is strictly 
hyperbolic and diagonalizable. In Section 2 we prove existence of Cr — 
smooth solution r > 1 to the related linearized system of p.d.e. using classi-
cal iterative method due to Courant (1961) and (1962). The Section 3 is de-
voted to the construction of solution (local in time) of the initial-boundary 
value problem to the quasilinear system (0.1) of p.d.e. as the limit of se-
quences of solutions of linearized initial value problems (the contraction 
mapping principle). In this manner we prove local in time well posedness 
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of the initial-boundary value problem in the space* of Cr — smooth and 
bounded functions with bounded derivatives up to order r in R+ x R+ which 
we denote by C£(R+ x R + ) , where R + = {t G R : t > 0}. 

1. Formulation of the problem 
We consider the quasilinear system of p.d.e. in the first quadrant of (i, x) 

— space, i.e. in R+ x R+ for three unknown functions p, v, a 

' dtp = -vdxp - pdxv, 

(1.1) dtv = -vdxv + -dxa, 
P 

dtcr = —vdxa + KOxV. 

The quasilinear system (1.1) of p.d.e. describes the motion of the one-
dimensional linear hypoelastic body, which occupies half axis x > 0 and 
for which p — denotes the mass density, u-the velocity and cr-the stress. Of 
course the mass density is positive functions, more precisely 

(1.2) inf p(t, x) > 0. 
(t,x)£R+xR+ 

We denote by ** 

( 1 - 3 ) V = ( V \ V 2 , V 3 ) * : = ( p , v , a y , 

{ - V 2 - V 1 

(1.4) A(V) = 0 - V 2 

\ 0 K 

and rewrite the system (1.1) of p.d.e. in the form 

( 1 . 5 ) dtV = A(V)dxV. 

The characteristic matrix A(V) of this system of p.d.e. has three distinct 
real eigenvalues 

(1.6) A , — + A , — . , A3 = - ( v - J Z 

This space endowed with a norm 

Duller = sup{ Y^ : (i.®) e R+ X R+}, r > 1 
l+k<r 

is a Banach space. ( /?+ x R + ) denotes the space continuous and bounded function in 
R + x R + where: 

A 9 A 9 

** ( )* denotes transpose of a ( ) 
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with property 

A3 - A2 = A2 - Ai = > 0 

it means that the quasilinear system of p.d.e. (1.1) or (1.5) is strictly hyper-
bolic and diagonalizable (cf. Mizohata (1977), Chap. 6, §3, p. 324). 

In the quadrant R+ x R+ we seek a solution of (1.1) or (1.5) which 
satisfies the initial condition 

( 1 . 7 ) V(0,x) = V0(x) := (p0,v0,(T0)*(x) x € R+ 

together with boundary condition 

( 1 . 8 ) (BV)(t,0) = Vb(t) = (pb,vb,ab)(t) t e R + 

and we assume that PO,VQ,(TQ,pb,vb,ab e Cl(R+) r > 1 
The conditions (1.7), (1.8) should establish a well posed problem, here 

we assume the non-characteristic condition 

( 1 . 9 ) detA(V) = v ( ^ - v ^ J ¿ 0 

on the boundary x = 0, t > 0, i.e. 

(1.10) x = 0,t > 0 

and the eigenvalues (1.6) of A(V) split into two groups {Aj} J = 1 v and 
M i =1+1,...,3 satisfying 

(1.11) Ai < . . . < A, < 0 < A,+i < . . . < A3. 

By this assumption Z(— 1, 2, 3) is the number of characteristics through-
out the origin 0 which point upward in to the first quadrant of the (t, x)-
plane. Then the first characteristics through a point t > 0 near to 0 also 
point into the first quadrant. The characteristic C; through 0 separates the 
quadrant adjacent to 0 in two regions such that all I characteristics drawn 
from a point (t, x) in the region left from Ci towards decreasing t intersect 
the positive i-axis, prowided we restrict ourselfs to x sufficiently small region 
adjacent to 0. 

Thus, the boundary condition (1.8) admit a following form 

(1.12) BV = V_- MV+ 

where V_ denotes the projection of V onto the negative Z-dimensionale 
eigenspace of A(V), and V+ — the projection of V onto the positive (3 — r) 
— dimensional eigenspace of A(V), M is given matrix I x (3 — Z) with 
\\M\\ < 1. Without loss of generality (cf. Courant, (1962), p. 472, (8)-(10)) 
we can assume that M = 0. 
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R E M A R K 1.1. Along the characteristics through 0 the solution will have dis-
continuities unless "consistency conditions" at 0 for the data are stipulated 
for t,x = 0. First order consistency, i.e., continuity of V depends on the 
conditions 

gi(0) = V>(0) j = i,...,i. 
Similar conditions are obtained by differentiation for consistency derivatives 
to the r — order. 

In order to obtain existence results for the related initial value problem 
(1.1)—(1.2) or (1.8)-(1.9) in next section we consider the related initial value 
problem to the linearized system of p.d.e.. 

2. Solution of linearized system of p.d.e. 
We consider the related linearized system of p.d.e. 

(2.1) dtU = A(W)dxlI 

where U is an unknown vector function with the components U1 ,U2 ,U3, 
i.e. U = (U1, U2, U3)*. Here 

(2.2) w= (W\W2,W3)* = (TT.w.T)* 

is given CI (R+ x R+) vector function, which satisfies the condition (2.3) 

(2.3) inf W1 (t, x) = inf 7r (i, x) > 0 
t,x t,x 

and matrix A(W) has (cf. formula (1.4)) following form 

/-W2 -W1 0 \ f-U -7T 0 \ 
(2.4) A(W) = 0 -W2 ^ := 0 - c i . 

\ 0 K -w2 J \ 0 K -U J 
To the system (2.1) of p.d.e. we add initial data 

(2.5) U(0,x) - V0(x) = (po,vQ,*0y{x) 

and boundary data 

(2.6) Vh{t) = (pb,vbiab)(t). 

The linear system (2.1) of p.d.e. is strictly hyperbolic, since its characteristic 
matrix A(W) has three different real eigenvalues 

(2.7) A l = - (u, + y j f ) , A2 = - U i A 3 = 

with (cf. (1.6)) property A3 — A2 = A2 — Ai = > 0, and we assume 
(cf.(1.9)) detA(W) # 0 . 

System (2.1) of p.d.e. with initial-boundary condition (2.5)-(2.6) is the 
initial-boundary value problem for which it is desired to prove the existence 
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Cr-smooth solution. In order to be able to do this by applying the iterative 
method due to Courant (see Courant (1962), Chapt V, § 6, pp. 461-474) 
the system (21) of p.d.e. must be converted to a first order diagonal system 
of p.d.e. 

With the aid (cf. Mizohata, (1977), Chapt 6, § 3, pp. 324-326; § 9, pp. 
356-362) of the eigencovectors of the characteristic matrix A(W), which 
have following form 

(2.8) 

h = ( 0 , A / - , - 1 

h = ( —«,0, — 7r) 

¿3 = 0 , - J - , - l 

we construct the matrix 

with property 

/ - ( c + y f ) 0 
(2.10) N{W)A(W),N~1(W) = 0 

V 0 

o 
- u 0 

0 - ( ^ + V / f ) 
Setting (see Mizohata (1977), Chapt 6, § 3, p. 325) 

(2.11) u = N(W)U 

in the system (2.1) of p.d.e., after simple calculation, we obtain the diagonal 
form of this system with new unknown vector function u = (u1 ,u2, u3)* 

(2.12) + 

X dtir + [cu + dxTT 
vr, 

( i .xXu 1 + u 3 ) , 

dtu2 = - u(t,x)dxu2 + ^[ôt7r + wôx7r](i,a;)(u1 + ti3), 

dtu6 = - l u - (t, x)dxu3 

47r(i, x) 
dtn + ( oj - dxTT fax^ + u3) 
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and with new initial and boundary data (2.13) 

(2.13) < u2(0) = ul(x):=-Kpo(x)-po(x)ao(x), u2
b{t) = -Kpb(t)~pb{t)ab(t), 

u*(0) = 4 ( x ) : = - v 0 ( x \ / - ^ y -ao(x), ul(t) = ab(t). 

REMARK 2.1. Our assumptions insure the equivalence of the initial-bound-
ary value problem for U and u. 

In order to use iterative method due to Courant (cf. Courant (1962), 
Chapt. V, § 6, pp. 461-474) we consider in the quadrant (t, x), t > 0, x > 0 
the characteristic curves Ci, of the system (2.12) of p.d.e., which pass 
through a given point (t ,x). They are, of course, the solutions of the initial 
value problems to the ordinary differential equations 

(2.14) g = _A j . ( S ) y ) ) ¿ = 1,2,3, y{t) = x, 

where Aj are given by (2.7). Under our assumptions (2.2) they exist uniquely 
and have the form 

(2.15) V = Vj(s-,t,x), ¿ = 1,2,3 

here the functions yj possess continuous derivatives of order up to r with 
respect to s, t and x. 

Now we consider in (t, x) quadrant a closed domain G so that the charac-
teristic curves C\, C2, C3 followed from a point (t, x) in G backwards towards 
decreasing values s, meet a given sections I\ of the positive x-axis in points 
(0,j/i(0;i,x)), (0,1/2(0; t,x)), (0,ys(0;t,x)) respectively, and I2 of the posi-
tive t-axis in point (0, x(0; t, x), 0), (0, t, x), 0), (0, i, a;), 0) re-
spectively, so that /1U/2 contains the domain of dependence for all points of 
G. In order to construed the CI — smooth solution of the initial-boundary 
problem (2.12)—(213), eo ipso of the initial-boundary problem (2.1)-(2.6), we 
integrate (2.12), taking into account (2.13), (2.14) and (2.15), along the char-
acteristic curves C\,C2,C3 from max(0, yj"1(0; t, x)), max(0, y^"1(0; t, x)), 

max(0, y^"1(0; t, x)) to t, and we obtain the following related system of inte-
gral equations 

(2.16) u \ t , x ) = f \ t , x ) 

t 

+ \ [d s ln \J7r(s, yi(s; t, x)) (u1 + u3){s-,yi(s;t,x)) ds, 

max(0,2/~1(0;t,x)) 
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(2.16)cont. u2(t,x) = f2(t,x) 
t 

+ s 
max(0,y2 1(0;i,x)) 

u3(t,x) = f 3 (t,x) 
t 

-daTT(s,yi(s;t,x) (u1 + u3)(s;y2(s;t,x))ds, 

$ ds In \J7r(s, 2/1 (S; t, x)) (u1 + U3)(s; y3(s; t, x)) ds 
max(0,j/3 1(0;i,a:)) 

where 

'«¿ (y-HOjt .x ) ) for 2/71(0; i, x) > 0 
«¿(îz-HOiî.x)) for 2/71(0; i, x) = 0 J 1 ' 2 ' 3 ' 

Let A be a linear integral operator defined by the right-side of the system 
(2.16) with the domain DA which consists all Cr — smooth vector functions 
v in G i.e.: 

t 
( 2 . 1 7 ) (Av)(t, x) = f(t, x) + J 0(s, t, x)(dsa(t, s, x))v(s; y(s; t, x)) ds, 

o 

where f(t,x) = ( / ^ t , ® ) , / 2 ( i , x ) , / 3 ( i , x ) ) and o(i, s, x) denotes ( 3 x 3 ) — 
matrix of the form 

In y j7r (s , yi(s,t, x)) 0 In y/ir(s, yi(s, t, x)) 

(2.18) a(t,s,x)= (s,p2(s;t,x)) 0 ±ir(s,p2(s;t,x)) 

. - I n yj 7r(s, 2/3(5, t, x)) 0 - I n {/tt(s, y3(s, t, x)). 

v(s,y(s;t,x)) = t/i(s;t,a:)), v2(s,p2(s;t,x)), v3(s,y3(s;t,x)) and 
6(t, s, x) denotes 

9(t, s,x) — 

~H(s-max(0,2/i (0 ; i ,x ) ) ) 0 

0 
0 

H(s - max(0,2/^(0; i , x ) ) ) 0 
0 l ï ( s - m a x ( 0 , % ^ O j i . x ) ) ) . 

tf(i) = { 1 for t > 0 
. 0 for t < 0. 

It is easily seen that the unique solution of the initial-boundary value 
problem (2.12)-(2.13) is a unique fixed point of the operator A. For suitable 
narrow strip GT = G fl {(s,y) : 0 < s < T, y € R+} the desired fixed point 
will be constructed by iterations as the uniform limit n —»• 00 of 

(2.19) Vn+1 = Avn, n = 1 , 2 , . . . 

starting with an arbitrary element v\ = f(t,x) of DA- For simplicity we 
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assume that r = 1 and in this case we prove the existence results. We set 

(2.20) IMIc° = R 

and consider in DA the subset Z defined by 

( 2 . 2 1 ) Z = {v G DA : IHICO = RQ, |M|! < R^ 

where (cf. footnote *), p. 504): 

( 2 . 2 2 ) | H | C o - sup{Hi,x)| : (t,x) G GT}, 

(2.23) |«|i=sup 

RQ and Ri are large enough so that: R < RQ and R + i?o < R\. 
In order to examine the regularity of Av for each v € Z we remark first 

that from (214),(215) and regularity of A,-, j = 1,2,3 (cf. (2.2), (2.7) follow 
(cf. Antontzev, Kazhikhov, Monakhov, (1983), Chap. II, §z 1, pp. 46-47) 
after a long but easy calculations the formulae 

(2-24) ^ ( s ; t,x) = A i ( i , x ) e x p ( - 5 ( 3 a . A i ) ( a i , i / j ( s i ; i , x ) ) s 1 ) , 
t 

dy s 
(2.25) -^(s;t,x) = exp (^-\(dxAj)(s1,yj(s1-,t,x))dsiy 

t 

With the aid of above formulae we can differentiate with respect to variables 
t and x a function Av for each v G Z. The first order derivatives (t, x), 

e x ist and are continuous. In fact, the first term in right-side (2.16) 
we differentiate using the chain rule and formulate (2.24), (2.25), and with 
respect to the second one we must combine the chain rule and the integration 
by parts Finally (cf. (2.17), (2.18), (2.24), (22.5)) we can write 

(2-26) « g i f t , ) 

= dtf(t,x) + (daa(t,s,x))v(s,y(s\t,x)) |s=t 

Qy~ 1 
- (d.a(t, s, x))v(s, y{s\ t, x)) |,=max(o iV-i (0 it,x)) ~ q T *> *> ®)) 

4 dy + \ 6(s, t, x)(dxa{t, s, x))(dxv)(s, y(s; t, x)) — (s; t, x) ds 

dv 
dt (t,x) + d v u \ : (t, x) G GT 
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- ^9(s,t,x)(dta(t)s,x)) 
d y 

(dtv)(s, y(s; t, x)) + {dtv)(s, y(s; i, t, x) ds 

maxiO.y-̂ Oit.x))' + (dta{t, t, x))v(t, x) - (dta{t, s, x))v(s, y ( s ; t, x)) |s= 

(2.27) f % M ( t , x ) = dtf(t ,x) 

dy 
- {daa{t,s,x))v{s,y{s-,t,x))\s=max(0iV-H0ittX)) • — ( 0 • 1 t , x ) H ( y - 1 ( 0 - , t , x ) ) 

+ H 6(s, t, x)(daa(t, s, z))(<9xï;)(s, y(s\ t, x))^(s; t, x) ds 
dt 0 

t dy 
(dtv)(s, y(s\ t, x)) + (dxv)(s, y ( s ; t, x ) •^0(s,t,x)(dxa(t,s,x))- ds 

+ (dxa(t,t,x))v(t,x) - (dxa(t,s,x))v(s,y(s;t,x))|s=max(0iiri(o;tl!B))-

By virtue of formulae (2.17), (2.18), (2.24)-(2.27) we obtain the estimates 
of H-A l̂lco and \Av\i in terms of norm |H|c° and seminorm |u|i, then, if we 
pick RQ and R± large enough, for T chosen sufficiently small it is easy to 
show that the integral operator leaves Z invariant, i.e. 

(2.28) AZ CZ. 

To prove uniform convergence or iterations vn+i — Avn, n — 1 ,2 , . . . for 
n —> oo, it is sufficient to show the integral operator A is a contraction in 
C®(GT)- Since the kernel dsa(T, s,X) is continuous and bounded (cf. (2.18)), 

(2.29) \\Av - Av\\co < r||a||Ci \\v - €||co. 

Therefore, it follows that A is a contraction for T small enough, hence 
the iterations vn converge uniformly to a continuous vector function u in 
GT• This limit vector function u has obviously the initial-boundary value /, 
is a fixed point of the operator A and solves the system of integral equation 
(2.16) . 

However the existence and continuity of the derivatives of the 
iterations vn, n = 1 ,2 , . . . (cf. (2.26), (2.27)) do not imply existence and 
continuity of the derivatives °f the limit function u. That these 
derivatives exist and are continuous will now be proved by showing that the 
derivatives converge uniformly as the iterations vn for n —> oo. 
Then according to classical calculus, the limit functions u have these limit 
functions as the first order derivatives respectively. 
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To prove the uniform convergence of derivatives , we use the same 
arguments as above (the contraction property of A with respect to iterations 
vn, n — 1 ,2 , . . . ) . Then it is sufficient to show that the integral operator A 
has the contraction property with respect to the first order derivatives 

From (2.17), (2.18), (2.24)-(2.27) following estimates 
(2.30) |Av - Av|x < 3||o||Ci ||u - + CT\\a\\Ci\v - -D|i. 
With sufficiently small T such that 
(2.31) CT|M|Ci < 1 
we assure the contraction property of A with respect to the first order deriva-
tives This property allows us to state the uniform convergence of 

, in a suitable narrow strip GT if in this strip the iterations vn con-
verge uniformly (cf. (2.29)). Thus the limit function u has continuous first 
order derivatives in GT and therefore indeed is the solution of the linearized 
system (2.12) of p.d.e. satisfying the initial-boundary condition (2.13) under 
assumptions (2.2), (2.3), (1.2) for r = 1. 

We have thus showed. 

T H E O R E M 2 . 1 . Under assumptions ( 1 . 2 ) , ( 1 . 8 ) , ( 2 . 2 ) , ( 2 . 3 ) for r = 1 ini-
tial boundary value problem ( 2 . 1 ) , ( 2 . 5 ) , ( 2 . 6 ) possesses a unique C 1 -smooth 
solution GT for sufficiently small T. 
R E M A R K 2 . 2 . The preceding reasoning extends without change to continuous 
derivatives up to the order r > 1. 
R E M A R K 2.3. The Cr-smooth solution u of the initial-boundary value prob-
lem (2.1), (2.5), (2.6) r > 1 can be extended into the wholes domain G and 
in larger domain too as long as the assumptions of continuity and boundenes 
of the coefficients and the initial data remain satisfied (cf. (2.29), (2.30)). 

R E M A R K 2 . 4 . The Cr-smooth solution U, r > 1, of the initial-boundary 
value problem ( 2 . 1 ) , ( 2 . 5 ) , ( 2 . 6 ) depends continuously on the initial and 
bound data in Cr topology (cf. ( 2 . 1 6 ) - ( 2 . 1 8 ) , ( 2 . 2 2 ) - ( 2 . 2 7 ) ) . 

3. Solution of quasilinear system of p.d.e. 
We turn now to the initial-boundary value problem to the quasilinear 

system (1.1) of p.d.e. with the initial and bound conditions (1.7), (1.8) and 
briefly describe how this problem can be solved on the basis of existence 
and uniqueness results of Section 2 by a slightly different iteration scheme. 
The results are exactly the same as those for linearized system (2.1) of p.d.e. 
(see. Theorem 2.1). 

First we consider (cf. (2.2)) Cr-smooth vector function 
W = (W1^2^3)* = (tt,W,T)*, 
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for simplicity we assume r — 1, with the fixed initial and boundary values 

( 3 1 ) W(0) = Vo = (po,vo,voy 

Wb = Vb = (pb,vb,aby 

and satisfying inequalities 

with fixed Mo and M\. The matrix A(W) given by (2.4) has three distinct 
real eigenvalues A j , j = 1,2,3 and matrix N(W) of independent eigencov-
ector of A(W) given by formulae (2.7), (2.8), (2.9) having continuous first 
order derivatives with respect to the variables t and x in a fixed domain 
GT to be described presently provided we substitute for W any C1-smooth 
vector function satysfying conditions (3.1), (3.2). The solutions of the initial-
boundary'value problems to ordinary differential equations (2.14) are called 
the characteristic Cj, j = 1, 2,3 of the PF-fields. For C1-smooth vector func-
tion W satisfying (3.1), (3.2) their slopes are uniformly bounded, then we 
specify that a closed domain G and in it the strip GT consist of point such 
that the characteristics Cj, j = 1,2,3 of the VF-fields backwards towards 
t = 0 remain in G and intersect the section I of the x-axis or ¿-axis. 

The set of all C1-smooth function W satisfying (3.1), (3.2) in GT we 
denote by S. 

Now we use the classical iteration method due to Curant (1961). After 
substituting C1-smooth vector function W G S in matrix A instead of V in 
the system (1.5) of p.d.e., the initial-boundary value problem (1.5), (1.7), 
(1.8) becomes linear of the same form (cf. (2.1 ), (2.5), (2.6)) as we treated 
in Section 2. 

The solution U of this linearized problem is called U = F(W), is F 
denotes the map, carries W € S into the solution U of initial-boundary 
value problem (2.1), (2.5), (2.6): 

The solution V of the initial-boundary value problem (1.5), (1.7), (1.8) 
is a fixed point of the map F and we can obtain it as the uniform limit for 
n —• oo of iterations 

(3.2) \\W\\c° < M0, \W\, < Mi 

(3.3) W F(W) = U. 

for y _ 1 (0 ; i , x ) > 0 
for y - 1 (0 ; t, x) = 0. 
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It is easy to show that fixed MQ > || Vi we can choose a sufficiently 
large and a sufficiently small T such that any vector function U = F(W) 
belonging to S. 

The map F has the contraction property. In fact, it follows directly, as in 
Section 2, by considering for the difference z = U — U oi the two functions 
U = F(W) and U = F(W) with the difference £ = W - W, the system of 
p.d.e. 

(3 .4 ) dtz = A{W)dxz + B(W,W,dxÛ)Ç 

where (cf. (2.1), (2.4)) 

r dxû2 dxÛ2 o-
(3.5) B(W,W,ÔXÛ) = 

dxÛ3 

wiwl dxÛ2 0 
0 dxÛ2 0 . 

with the initial condition 

(3.6) Z(0) = 0 

and we obtain as in Section 2 an inequality of the form 

(3-7) 11 ||C° < CTIKHCO. 

With sufficiently small T, such that CT < 1, we assure the contraction 
property for F. Therefore the iterations Vn converge uniformly to a limit 
function V in GT which is a C1-smooth solution of the initial-boundary 
value problem to the quasi-linear system (1.5) with the initial-boundary 
conditions (1.7), (1.8) eo ipso of the initial-boundary value problem (1.1), 
(1-7), (1.8). 

Thus we proved: 

THEOREM 3.1. Under assumption (1.2), (1.4) for r = 1 the initial-boundary 
value problem (1.1), (1-7), (1 .8) possesses a unique C1-smooth solution in 
CT for sufficiently small T. 

REMARK 3.1. The preceding reasoning extends without change to continuous 
derivatives up to the order r > 1. 

REMARK 3.2. The C1-smooth solution V = (p,v,cr)*, r > 1, of the initial-
boundary value problem (1.1), (1-7), (1.8) depends continuously on the ini-
tial and boundary conditions (1.7), (1.8). 
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