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AN ABSTRACT SECOND ORDER CAUCHY PROBLEM
WITH NON-DENSELY DEFINED OPERATOR, I

Abstract. By using the theory of extrapolation space X_; associated with an oper-
ator A which is non densely defined in Banach spaceX, the existence and uniqueness of
solutions of linear second order differential initial value problem (1) is proved.

1. Introduction

Our main objective is to investigate the abstract semilinear second order
initial value problem

2
d—;‘ —Au+f (t,u,@) , te(0,T]
(1) dt dt
d
u(0) = up, d—z(o) =uy, Ug,u1 €KX,

where X is a Banach space, u is a mapping from R to X, f is a nonlinear
mapping from R x X x X into X. The problem (1) was considered by
many authors and their results are presented in the great number of papers.
Usually on the operator A in (1) is assumed that it is the infinitesimal
generator of a strongly continuous cosine family of linear operators in X.
It is known that this assumption follows among other that the operator
A: X — X is densely defined in X.

In this paper we try to give a treatment of the problem of existence,
uniqueness and smoothness of solutions of the linear problem corresponding
to (1) when the operator A is non-densely defined. The nonlinear problem
(1) will be the subject of the forthcoming paper.

Our main tools are the theory of strongly continuous cosine family of
linear operators in Banach space, the certain weak continuous cosine family
and some extrapolation spaces associated to a linear operator A.
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2. Preliminaries

Let the operator A defined in Section 1 be the generator of strongly con-
tinuous cosine family {C(t);t € R} of bounded operators from X into itself.
Recall that a one parameter family {C(t);t € R} bounded linear operators
mapping the Banach space X into itself is called a strongly continuous cosine
family if and only if
(2) C(t+s)+ C(t—s)=2C(t)C(s) for all s,t € R,
3) Co)=1

(4) R>t— C(t)z is continuous for each z € X.
We define the associated sine family {S(t);t € R} by

(5) St)z = SB C(s)zds,z € X,t € R.

The infinitesimal generator of a strongly continuous cosine family {C(¢);
t € R} is the operator A : X — X defined by

d2C(t)z
dt?

{6) Az = lt=o for z € D(A),

where

(7Y D(A):={z € X:R>t— C(t)z is twice continuously differentiable}.
Let
E:={z€e X:R>t— C(t)z is once continuously differentiable}.

PROPOSITION 1 ([8; Prop. 2.1 and 2.2]). Let {C(t);t € R} be a strongly
continuous cosine family in X with infinitesimal generator A. The following
are true:

(1.1) C(t) =C(-t) for allt € R,

(1.2)  C(s),S8(s),C(t) and S(t) comute for all s,t € R,

(1.3)  the mapping R >t — S(¢t)x is continuous for each fized z € X,
(14) S(t) = —S(=t) for allt € R,

(1.5)  S(t+s)=S(s)C(t)+ S(t)C(s) for all s,t € R,

(1.6)  there exist constants M > 1, w > 0 such that

t
IC)ll < Me!®,|IS(t)]| < M | {e¥lds | for te R,
0
(1.7)  forz € X and s,r € R we have

§S )zdt € D(A) and AES(t)xdt=[C(r)—C(s)]z,

§ 3

(1.8) 3§, C(t)C(r)zdtdr € D(A) for all s,r € R, z € X,
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(1.9)  if z € D(A) then C(t)z € D(A) and d?/dt’C(t)z = AC(t)z =
C(t)Az,

(1.10) ifz € E then lim;_,0 AS(t)z =0,

(1.11)  ifz € E then S(t)z € D(A) and d/dtC(t)z = AS(t)z,

(1.12) D(A) is dense in X and A is a closed operator in X.

THEOREM 1. ([4; Th. 3.1]). The operator A is the infinitesimal generator of
a cosine family satisfying (1.6) if and only if resolvent R(\2, A) exists for
A > w is strongly infinitely differentiable there and such that the inequality

ar 9 Mn!
(8) “d)\" [AR(A®, A)]|| < Do)t for A>w,n € N hold

3. The adjoint cosine family

Let {C(t);t € R} be a cosine family on a Banach space X. The adjoint
cosine family {C*(t);t € R} on the dual space X* is the family of operators
obtained from {C(t);t € R} by taking pointwicely in ¢ the adjoint operator
C*(t) := [C(t)]*. It is elementary to see that the family {C*(¢);t € R}
satisfies the equations (2) and (3), i.e. {C*(¢);t € R} is a cosine family on
X*, which is weak*-continuous, but it need not to be strongly continuous
on X*.

Analogously as in the theory of adjoint semigroups we define the weak*-
generator of a weak*-continuous cosine family on X*.

Let {U(t);t € R} be a weak*-continuous cosine family on X*. The
weak*-generator of U(t) is the linear operator B on X* defined by D(B) :=
{z* € X* : R>t — U(t)z* is twice weak*-continuously differentiable};

U (t)z*
dt?

Bz* := weak * — lt=o0 for z* € D(B).

We have the following

THEOREM 2. A* is the weak*-generator of the cosine family {C*(t);t € R},
D(A*) is a C*(t) - invariant subspace of X* and for all z* € D(A*) we
have A*C*(t)z* = C*(t)A*z*.

The proof of this theorem is similar to the proof of an analogous theorem
in the theory of semigroups and is omitted.

Let {C(t);t € R} be a strongly continuous cosine family on X. We define

X0 .= {z* e X*: }irr(l) |C*(t)z* — z*|| = 0}.
THEOREM 3 ([7]). We have:

(i) X© is a closed, weak*-dense, C*(t) -invariant linear subspace of X*;
(i) X© = D(A*) where the closure is in norm of X*,
(ili) CO(t) := C*(t)|xo fort € R is a strongly continuous cosine family

on X©,
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(iv) the part of A* in X©, which is denoted by A®, is the generator of
family {C®(t);t € R}.
(v) for each t € R C*(t) is a closure of C®(t) in weak*-topology on X*.

REMARK 1. Similarly to (5) we define the adjoint sine family {S*(¢);¢ € R}
on the dual space X*, taking S*(t) := [S(¢)]* for each t € R. From this by
(5) we have

¢
(9) S*(t)z* ={C*(s)z* ds, 2 € X*, t € R,

0
where the integral in (9) is the weak*-integral.

Starting from strongly continuous cosine family {C®(t);t € R} on X©,
the duality construction can be repeated. We define C®*(t) to be adjoint of
C®(t) and write X©© for (X®)®; C®9(t) and A9 are defined analogously.
It is known that the mapping

(10) jiX— XO*
defined by
(11) < jz,z° >=< 2%z > forz € X,2° € X©

is an imbending isomorphism and jX is a closed subspace of X®©. If
JX = XO©9 then X is said to be @-reflexive with respect to C(t). More-
over, C®9(t) is an extension of jC(t) and A®® is an extension of jA4 and
jD(A) = D(A®®)NnjX.

Similary to the Cy-semigroup we may to charakterize of the space X© in
terms of the resolvent for the generator A of the cosine family {C(t);t € R}.

PROPOSITION 2 ([6;Prop.1.4.4]). z* € X© if and only if
(12) lim |AR(M, A%)z* —z*|| =0
A—00

4. Ekstrapolation spaces

Here we introduce the concept of the extrapolation spaces X ! and X_;.
The extrapolation space X ~! was introduce by Da Prato and Grisvard (2]
and X_; by R. Nagel [5]. This section is based on [6;Ch.3].

Let A be a closed linear operator on the Banach space X with non-empty
resolvent set p(A). We do not assume that A is densely defined. We define
(see [6]).

(12) X 1:=(X xX)/Ga,

where G4 denote the graph of the operator A. Note that G4 - is a closed
linear subspace of X x X since A is closed. Let us define

(13) i:X>z—ir:=(0,z)e XL
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The function (13) maps the space X onto the linear subspace iX of X 1.
This allows us to identify X with ¢X. We also define a linear operator A~!
on X! by

(14) DA™Y =X,

(15) A7Y0,z) := (=z,0) for z€X.

Note that if z € D(A) then (~z,0) = (0, Az) = A~1(0,z).

The operator A~! should not to be confused with the inverse of A if this
inverse exists. If we identify X with X, we may regard A~! as a bounded
linear operator X — X ~!. In fact if z € D(A) then A~z := A=%(0,z) = Az
so A~ is an extension of A. In the space X ~! it may be defined an equivalent
norm by formula
(16) [z, y)|u = [[AR(k, A)z — R(u, Ay
for each p € p(A) and (z,y) € X L.

THEOREM 4 ([6;Th.3.1.6]). The space X is dense in X' if and only if A

is densely defined, i.e. D(A) = X.

If the operator A is closed with nonempty resolvent set, we define the
space X _1 as the closure of X in the norm of X 1. From this and Theorem 4
follows that if A is densely defined, then X_; = X 1.

Let us denote by A_; the part of A=! in X_; and by Ay the part of A
in X, := D(A). Clearly, A_; is an extension of A.

We have the following

THEOREM 5 ([6;Prop.3.1.9]). If A is a closed and X € p(A), then

(i) D(A.1))=Xpand A— A_; : Xo— X4,

(ii) A is the part of A_y in X; if A € p(A), then A € p(A_1) and
R(\A) = RO\ A-1)x.

Now we may prove the following theorem which is analogous to the
Theorem 3.1.10 in [6].

THEOREM 6. Let A be linear closed operator on X which resolvent R(\2, A)
ezists for A > w and which satisfies the inequality (8). Then:

(i) Ao generates a cosine family {Co(t);t € R} on Xo and R(\?, 4p) =
R(’\27 A) |Xoa
(if) Xo is X_1 dense in X and (Xo)_1 is isomorphic to X_;,
(iil) under the identification (Xo)-1 = X_1 we have (Ag)-1 = A_;.
Proof. (see [6; proof of Th.3.1.10]). To prove (i) we remark that the operator

Ay is densely defined in Xg. This follows from the fact that AR(\, A)R(u, A)z
€ D(Ap) for each A\, p € p(A) and z € X and

Alim AR(N, A)R(u, A)z = R(u, A)z,
— 00
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that D(Ap) is dense in the dense subspace R(p, A)X of Xo. The assertion
concerning the resolvents is obvious. From this, by Theorem 1, follows the
assertion (i).

(i) At first we remark that by (16) and by definition of the space X_;
it follows that an equivalent norm on X _; may be defined by

(17) |zll-2 = [|B(p, A)z|l, ne€p(A) andzeX.

Let £ € X be arbitrary but fixed. Since R(x, A)z € Xo and D(Ap) is dense
in Xy then there is a sequence {z,} C Xo such that R(u, A)x, — R(u, A)z.
Hence || R(t, 4)(@n — o) = [2n — ol| 1 — 0.

This proves the density of X in X_; in norm || - ||-1.
The inclusion map iy : Xo — X may be extended to an isomorphism
(XO)—l s X_l.

(iii) By Theorem 5 if A € p(A) then A € p(A_1) and R(\, A_1)|x =
R(A, A) for A € p(A). An application of the above to Ay shows that

R()" (AO)—1)|X0 = R()UAU) = R()‘aA)lxo = R(/\,A—l)[X0~

But X is dense in X_; and so it follows that R(\, (4¢)-1) = R(X, A_1).
Therefore (Ag)—1 = A_1.

THEOREM 7 ([6;Th.3.1.11]). Under the assumptions of Theorem 6, the cosine
family {Co(t);t € R} generated by Ay on Xo extends to the cosine family
{C_1(t);t € R} on X_1 whose generator is the operator A_;.

5. The Favard class defined by cosine family

In this section we define and study some properties of the so-called
Favard class. The definition and the properties of this class in entirely similar
to Favard class defined by semigroups (see for exemple [6; sec.3.2]).

Let {C(t);t € R} be a cosine family on X.

Define its Favard class by

(18) Fav(C(t)) = {o € X : lmsup t%uc*(t)x — 2]l < oo}.

From (18) it follows that D(A) C Fav(C(t)).
We have the following

THEOREM 8 ([6;Th.3.2.1]). If z* € X*, then the following assertions are
equivalent:
(i) z= € D(4"),
(i) limsup,_, & [|C*(t)z* — z*| < oo,
(ili) liminf; o & [|C*(t)z* — z*|| < o0.

*
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COROLLARY 1. Fav(C®(t)) = D(A9).
Proof. If z° € Fav(C®(t)), then, by Theorem 8, z® € D(A*). Conversely,
if z* € D(A*), then z* € X© and we have

2
{z* € X® : limsup t—2|[C*(t)$O — 29| < oo}
t—0

— {® € X© : limsup t—22-||C®(t)x® — 29 < o0} = Fan(CO(2)).
t—oo

From this we get
THEOREM 9 ([6;Th.3.2.3)). If we identify the space X with its image j X in
X©*, then
(19) Fav(C(t)) = D(A®*)n X.
COROLLARY 2. If X is ® -reflezive, then Fav(C(t)) = D(A®*) and if X is
reflezive, then
(20) Fav(C(t)) = D(A).
Let A be a closed linear operator on a Banach space X with non-empty

resolvent set p(A), satisfying (8). Restriction Ag := A|x, where X := D(A),
generates the cosine family {Cy(t); t € R}. We denote by

(1) X =(Xo)® = {z* € X" : lim |G} (t)z" — 2" = 0}

where C§(t) denotes the adjoint of C'o(t).-

The {C3(t);t € R} is the cosine family on X generated by A on XQ.
Moreover C{(t) = Cg (t)|X§>.

In the sequel it will be important to have a representation of the Favard
class of the cosine family {C_;(t);t € R} on X_;.

In this purpose we define
(22) XO% .= {z®* € XO* : R(\, A%*)z®* € j X}
(cf.[6;5ec.3.2]).

The subspace X©* is a closed C®*(t) invariant of X©*.

If the operator A satisfies the inequality (8) and is not densely defined
we define
(23) X&* 1= (Xo)®*.

We have the following
THEOREM 10 ([6, Th.3.2.6;4.3.6 and 4.3.7]). If the operator A satisfies the
inequality (8), then

(i) Fav(C-1(t)) is isomorphic to X$*,

(i) X ¢ X$* and this inclusion is continuous.
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PROPOSITION 3 ([6;Prop.4.3.1]). If A is the generator of the cosine family
{C(t);t € R} on the space X, then

(24) X = {z®* € XO* }ina |C®*(#)z®>* — z°*| = 0}.

6. The linear problem corresponding to (1)
In this section we study the following linear Cauchy problem correspond-
ing to (1)

(25) { %‘gﬁ =Au+f for ¢t € (0, T,

u(0) = uo, 4 (0) = uy.
We prove the following
LEMMA 1. If:

1° A: X — X is a linear operator satisfying the inequality (8),
2° f:[0,T] = X is continuous,
then s — C_1(t — s)f(s) is Bochner integrable in X_, and the mapping
¢
(26) [0,T] 5t — v(t) := | C_1(t - 5)f(s) ds
0
is a norm-continuous Xg-valued function such that

lv@)llxo < M| fll(o,17,x0%)>

where Xo := D(A) and M := sup{||Co(¢)|| : t € [0,T]}.
Proof. Since the operator A satisfies the inequality (8), then the operator
Ap = Alx, is the generator of the cosine family {Cy(t);t € R} on the
Banach space Xg. By the asumption 2° and the continuity inclusion X C
X_1 it follows that f : [0,T] — X_; is continuous and so s — C_1(t—s)f(s)
is Bochner integrable in X _;. On the other hand, since the inclusion X C
X§* is continuous (see Theorem 10), we can regard f as a continuous map
f:00,T] — X§*.

Because C_;(t) |Xéax= CP*(t), in order to show that v(t) € Xo, by
Proposition 3 it is enough to check that

(27) lim [|CE (r)v(t) — v(t)]| xox = 0.
We have (cf.[1])
CE*(r) | C§* (t — ) f(s) ds — | C§* (t — ) f (s) ds

0 0

= [ CO"(r)C* (t - 5)f(s) ds — | O (¢ — 5) f(s) ds
0 0



Abstract second order Cauchy problem 497

= %S[Céax(t-*-r—s)+Céax(t—r—s)]f(s)ds—SC(?X(t—s)f(s)ds
0 0

= 2 [1Ce"+r—9)f(s)ds — [ C* (¢~ )(s) ds]
0 0

+%[SC(()9X(1;—T —s)f(s)ds —SCOGX(t__ s)f(s)ds].
0 0

After some rearrangements we obtain

(28)  2[CP™ (r)v(t) — v(t)]

Co*(Mft—T+r) = f(t~7)dr

O e o

+{ et —T—r)— f(t—7)dr

t+r t
+ | e ft+r—r)dr— | COX(0)f(t—r—1)dr

T 0
& () ft+r—r)dr+ | CO* (1) f(t -1~ 7)dr.

0 -r
The norms of the first two terms of the right hand of (28) are less than
Mtsup{[lf(t +7) — F(®)lxox : t € [0,T])
and the norms of the last four terms are less than

Mr sup{||(£)l| o : ¢ € [0,T]).

The latter inequalities imply (27).

Since ||C_1(t)|| = [|ICE* )| = ||Co(t)]l < M, the estimate of v(t) is
trivial.

To show the contimity of the mapping (26) we notice that for t,t + h €
[0, 7]

t+h t
v(t+h)—v(t)= | C_it+h—s)f(s)ds—{C_1(t—s)f(s)ds
0 0
t t+h

=SC~1(7-)[f(t+h—7')—f(t—T)]dT+ S C_1(r)f(t+h—7)dr.

0 t
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From the above it follows that
[o(t + h) — ()]
< M{Tsup || f(t+h)— f(t)]| : t € [0, T] + |h|sup || f(¢)]| : ¢ € [0, T]}
and this implies the norm-continuity of the mapping (26).
THEOREM 11. If:

1° f:[0,T] — X is of class C?,
2° ug € D(Ap) and uy € Ey,
then the problem (25) has ezactly one solution u of class C? in [0,T), given
by formula
¢
(29)  u(t) = Co(t)uo + So(t)ur + | S_1(t — 5)f(s)ds,t € [0,T],
0
where

Ey := {z € Xo : Co(t)x is once continuously differentiable in t}.

Proof. The basic idea of this proof comes from [6;Ch.4]. In [6;Ch.4] author
considers the Cauchy problem of the first order. For given problem (25) in
which the operator A is non densely defined we first consider the following
problem

d*u

— =A_ t T
(30) dt2 1u+fa € (Oa ]a

w(0) = uo, 4(0) = w,

in the space X*. Solutions of the problem (30), which lie in X, are likely
to be also solutions to the problem (25)(cf[6.Ch.4]).
Since A_; is a generator of cosine family {C_1(¢);t € R} on X_; and
the function f : [0,T] — X which is of class C is also C* class as f;[0,7] —
X_1, then some standard arguments of cosine theory (see[8]) show that the
function u : [0,7] — X_; given by formula
¢

(31) u(t) = C_1(t)up + S—1(t)u1 + S S_1(t—s)f(s)ds, te]0,T]
0

is twice continuously differentiable in [0,T] and satisfies (30).

We shall show that u given by (31) is a classical solution of (25) i.e. u
satisfies the conditions:

(i) wu(t) € D(A) for t € [0,T),

(i) w:[0,T) — X is of class C?,

(i) wu satisfies the problem (25).
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It is obvious that if ug € D(Ap) and u; € Ej then
(32) w(t) 1= C_l(t)’ll,o + S~1(t)u1 =Cy (t)uo + So(t)u1

and so w : [0,T] — X is of class C?,w(t) € D(A) for t € [0,7] and w
satisfies the homogeneous problem (25).
Let

t
(33) v(t) := SS_l(t —s)f(s)ds, te]l0,T].

0
By Lemma 1 it follows that S_]_(t)lxoox € Xo for t € R and so v(t) € Xg

for each t € {0, T).

On the other hand
t

S_1(t—s)f(s) ={C_i(r = s)f(s)dr, 0<s<t,
and from this we get

v(t) = \\C_1(7 — s) f(s) dr ds.

O e o
B ey o

Changing the order of integration we have
t s
(34) v(t) = | [g C_1(s - 7)f(7) dr] ds.
00
Since by Lemma 1 the mapping
0,T]55— SC_I(s —1)f(r)dr
0
is norm-continuous Xy-valued function, then the function v defined by (33)
is of class C' with respect to the norm of Xy and
dv ¢
(35) 5 = fCoai(t—s)f(s)ds for teo,T].
0
By the assumption 1° we have
£(s)=fO)+{f(r)dr for se€[0,T).
0
This implies that
dv

o =§C_1(t—s)f(0)ds+

Oty o

§C_1(t —8)f'(r) dr ds.
0
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Changing the order integration in the last integral we obtain

dv ;
(36) = = S-1()f(0) + S_1(t—s)f'(s)ds.
0
Because the f’ is a continuous function in [0,T], analogously as in above,
from (36) we conclude that the function v is of class C? in [0,7] and

(37) z—zg— =C_1(t)f(0) + S C_1(t—s)f'(s)ds, te]0,T).

On the other hand, since v(t) € Xo = D(A_;) for each t € [0,T], we get
A_qv(t)= Ay [§S_1(t — s)f(0)ds + § sS_l(t —s)f'(r)dr ds].
Changing the order ofointegration in the laZsot integral and using Proposi-

tion 1, p.(1.7) we obtain
A_1v(t) = [C_1(t) — I]£(0) + §[C_1(t —s)—1I]f'(s)ds
0
¢

= C_1(1)f(0) + [ Ca(t — 5)f'(s)ds — f(1).
0
From this and (37) follows that
d2
A_u(t) = E;‘)(t) — f(t)e X foreach tel0,T].
Since A is the part of A_; in X, then it follows that v(t) € D(A) for
te[0,T].
As we have seen above (cf.(31) and (32))
u(t) = w(t) +v(t), tel0,T],
where w(t) € D(A) and w is of class C? in [0,T]. This implies that u is a
classical solution of (25).

To show the uniqueness it is sufficient to notice that if f : [0,7] —
X_1 is continuous, u : [0,T] — X_; is twice continuously differentiable in
(0,T),u(t) € D(A_;) for t € [0,T] and u satisfies (30) then u is given by
(31)(cf.[8;Prop.2.4]). This completes the proof of Theorem 11.
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