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A N A B S T R A C T SECOND ORDER C A U C H Y PROBLEM 
W I T H NON-DENSELY DEFINED OPERATOR, I 

Abstract. By using the theory of extrapolation space X - \ associated with an oper-
ator A which is non densely defined in Banach spaced, the existence and uniqueness of 
solutions of linear second order differential initial value problem (1) is proved. 

1. Introduction 
Our main objective is to investigate the abstract semilinear second order 

initial value problem 

where X is a Banach space, u is a mapping from R to X, f is a nonlinear 
mapping from R x X x X into X. The problem (1) was considered by 
many authors and their results axe presented in the great number of papers. 
Usually on the operator A in (1) is assumed that it is the infinitesimal 
generator of a strongly continuous cosine family of linear operators in X. 
It is known that this assumption follows among other that the operator 
A : X —> X is densely defined in X. 

In this paper we try to give a treatment of the problem of existence, 
uniqueness and smoothness of solutions of the linear problem corresponding 
to (1) when the operator A is non-densely defined. The nonlinear problem 
(1) will be the subject of the forthcoming paper. 

Our main tools are the theory of strongly continuous cosine family of 
linear operators in Banach space, the certain weak continuous cosine family 
and some extrapolation spaces associated to a linear operator A. 

(1) 

u ( 0 ) = u0, — (0) = i t i , 
dt \ 



490 J. Bochenek 

2. Preliminaries 
Let the operator A defined in Section 1 be the generator of strongly con-

tinuous cosine family {C(t ) ; t G R} of bounded operators from X into itself. 
Recall that a one parameter family {C(t)\t G R} bounded linear operators 
mapping the Banach space X into itself is called a strongly continuous cosine 
family if and only if 

(2) C(t + s) + C(t -s) = 2C(t)C(s) for all s,teR, 
(3) C(0 ) = / , 
(4) R 3 t C{t)x is continuous for each x G X. 

We define the associated sine family {S(t)\ t G R} by 

(5) S(t)x = \t0C{s)xds,x G X,t G R. 

The infinitesimal generator of a strongly continuous cosine family (C(i ) ; 
t G R} is the operator A : X —> X defined by 

(6 ) = | t = 0 for XED(A), 

where 

(7) D(A) := {x G X : R 3 t —> C(t)x is twice continuously differentiable}. 

Let 

E := {x € X : R 3 t —> C(t)x is once continuously differentiable}. 

PROPOSITION 1 ([8; Prop. 2.1 and 2.2]). Let {C(t);t G R} be a strongly 
continuous cosine family in X with infinitesimal generator A. The following 
are true: 

(1.1) C(t) = C(-t) for all t G R, 
(1.2) C(s),S(s),C(t) and S(t) comute for all s,t G R, 
(1.3) the mapping R 3 t —> S(t)x is continuous for each fixed x G X, 
(1.4) S{t) = -S(-t) for all t G R, 
(1.5) S{t + s) = S(s)C(t) + S(t)C(s) for all s,t G R, 
(1.6) there exist constants M > 1, u> > 0 such that 

t 

||C(t)|| < Mew 1*1. ||S(i)|| < M | 5ew|s|ds | for t G R, 
o 

(1.7) for x € X and s,r G R we have 
r r 

\ S(t)xdt G D{A) and A \ S(t)x dt = [C(r) - C(s)]x, 
5 S 

(1.8) Jo Jo C(t)C(r)x dt dr G D{A) for all s,r G R, x £ X, 
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(1.9) if x e D(A) then C{t)x G D(A) and d2/dt2C(t)x = AC(t)x = 
C(t)Ax, 

(1.10) if x £ E then l im t_ 0 AS(t)x = 0, 
( 1 . 1 1 ) i f x e E then S(t)x € D(A) and d/dtC(t)x = AS(t)x, 
( 1 . 1 2 ) D(A) is dense in X and A is a closed operator in X. 
T H E O R E M 1. ([4; T H . 3 .1 ] ) . The operator A is the infinitesimal generator of 
a cosine family satisfying (1.6) if and only if resolvent R(X2,A) exists for 
\ > LJ is strongly infinitely dijferentiable there and such that the inequality 

(8 ) | | ^ L [ A I ? ( A 2 , A ) ] | | < ( A
 M^n+1 for \>u,neN hold. 

3. The adjoint cosine family 
Let {C(t)]t £ R} be a cosine family on a Banach space X. The adjoint 

cosine family {C*(t);t € R} on the dual space X* is the family of operators 
obtained from {C{t)\t € R} by taking pointwicely in t the adjoint operator 
C*(t) := [C(t)]*. It is elementary to see that the family {C*(t)\t £ R} 
satisfies the equations (2) and (3), i.e. {C*(t);t £ R} is a cosine family on 
X*, which is weak*-continuous, but it need not to be strongly continuous 
on X*. 

Analogously as in the theory of adjoint semigroups we define the weak*-
generator of a weak*-continuous cosine family on X*. 

Let {U(t);t € R} be a weak*-continuous cosine family on X*. The 
weak*-generator of U(t) is the linear operator B on X* defined by D(B) 
{x* € X* : R B t —> U(t)x* is twice weak*-continuously differentiable}; 

d2U(t)x* , „ , x 
Bx* := weak * — t = 0 for x* € D(B). 

dtz 

We have the following 

T H E O R E M 2. A* is the weak*-generator of the cosine family {C*(t)-,t£R}, 
D(A*) is a C*(t) - invariant subspace of X* and for all x* £ D(A*) we 
have A*C*(t)x* = C*(t)A*x*. 

The proof of this theorem is similar to the proof of an analogous theorem 
in the theory of semigroups and is omitted. 

Let {C(t); t S R} be a strongly continuous cosine family on X. We define 

X® := {x* £ X* : lim \\C*(t)x* -x*\\ = 0}. 

T H E O R E M 3 ([7]) . We have: 
(i) X® is a closed, weak*-dense, C*(t) -invariant linear subspace of X*; 

(ii) X® = D(A*) where the closure is in norm of X*, 
(iii) C®(i) := C*(t)\xo for t £ R is a strongly continuous cosine family 

on X 
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(iv) the part of A* in X 0 , which is denoted by A®, is the generator of 
family {C®(t);t € R}. 

(v) for each t 6 R C*(t) is a closure ofCe(t) in weak*-topology on X*. 

R E M A R K 1. Similarly to ( 5 ) we define the adjoint sine family { < S *( I ) ; I € R} 
on the dual space X*, taking S*(t) := [<S(i)]* for each t € R. From this by 
(5) we have 

t 

(9) S*{t)x* = \ C*(s)x* ds, x* G X*, teR, 
o 

where the integral in (9) is the weak*-integral. 
Starting from strongly continuous cosine family {C®(i);t 6 R} on X®, 

the duality construction can be repeated. We define C®*(i) to be adjoint of 
C®(i) and write X 0 0 for ( X 0 ) 0 ; C 0 0 ( i ) and A 0 0 are defined analogously. 
It is known that the mapping 

(10) j :X XG* 

defined by 

(11) < jx,xQ >=< xe,x> forxeX,xeeXQ 

is an imbending isomorphism and jX is a closed subspace of X 0 0 . If 
jX = XQ& then X is said to be ©-reflexive with respect to C(t). More-
over, C®®(t) is an extension of jC(t) and J4 0 0 is an extension of jA and 
jD(A) = D(A&Q) n jX. 

Similary to the Co-semigroup we may to charakterize of the space X 0 in 
terms of the resolvent for the generator A of the cosine family {C(t)\ t € R}. 

PROPOSITION 2 ([6;Prop.l.4.4]). X* 6 X& if and only if 

(12) lim ||Ai?(A, A*)x* — x*|| = 0 
A—>oo 

4. Ekstrapolation spaces 
Here we introduce the concept of the extrapolation spaces X - 1 and 

The extrapolation space X - 1 was introduce by Da Prato and Grisvard [2] 
and by R. Nagel [5]. This section is based on [6;Ch.3]. 

Let A be a closed linear operator on the Banach space X with non-empty 
resolvent set p(A). We do not assume that A is densely defined. We define 
(see [6]). 

( 1 2 ) X " 1 : = ( X x X ) / G A , 

where GA denote the graph of the operator A. Note that GA - is a closed 
linear subspace of X x X since A is closed. Let us define 

(13) i: X B x -+ix := (0,x) G X'1. 
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The function (13) maps the space X onto the linear subspace iX of X 1. 
This allows us to identify X with iX. We also define a linear operator A~1 

on X'1 by 
(14) DiA'1) := iX, 
(15) A_1(0,a;) := ( -x .O) for x £ X. 
Note that if x E D(A) then (-x, 0) = (0, Ax) = 4 - 1 ( 0 , x). 

The operator A~x should not to be confused with the inverse of A if this 
inverse exists. If we identify iX with X, we may regard Aas a bounded 
linear operator X —> X~l. In fact if x € D(A) then A_1x := A_ 1(0, x) = Ax 
so A"1 is an extension of A. In the space X - 1 it may be defined an equivalent 
norm by formula 
(16) |Or, y)U == \\AR(fi, A)x - R{p, A)y\\ 
for each p, S p{A) and (x,y) € X - 1 . 
THEOREM 4 ([6;Th.3.1.6]). The space X is dense in X - 1 if and only if A 
is densely defined, i.e. D(A) = X. 

If the operator A is closed with nonempty resolvent set, we define the 
space as the closure of X in the norm of X-1. From this and Theorem 4 
follows that if A is densely defined, then X _ i = X - 1 . 

Let us denote by A^i the part of A"1 in and by Ao the part of A 
in XQ := D(A). Clearly, is an extension of A. 

We have the following 
THEOREM 5 ([6;Prop.3.1.9]). If A is a closed and A € p(A), then 

(i) D(A-i) = X0 and A - A_i : X0 X_lt 

(ii) A is the part of in X; if X € p{A), then A € p(A_i) and 
R(\,A) = R(\,A_1)\X. 

Now we may prove the following theorem which is analogous to the 
Theorem 3.1.10 in [6]. 
THEOREM 6. Let A be linear closed operator on X which resolvent R(\2,A) 
exists for A > u and which satisfies the inequality (8). Then: 

(i) AQ generates a cosine family {Co(t);t € R} on Xo and R(X2,AO) = 
R(*2,A)\Xo, 

(ii) Xo is X-i dense in X and (-Xo)-i is isomorphic to 
(iii) under the identification (Xo)_i = we have (>lo)-i = A_i. 

Proof , (see [6; proof of Th. 3.1.10]). To prove (i) we remark that the operator 
AQ is densely defined in XQ. This follows from the fact that XR(X, A)R(/j,, A)x 
€ D(Ao) for each A, p. G p{A) and x G X and 

lim XR(X, A)R(p, A)x = R(p, A)x, 
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that D(Ao) is dense in the dense subspace R(p,,A)X of Xq. The assertion 
concerning the resolvents is obvious. From this, by Theorem 1, follows the 
assertion (i). 

(ii) At first we remark that by (16) and by definition of the space X_\ 
it follows that an equivalent norm on X_\ may be defined by 

(17) IMI-1 = A)X\\, p,£p(A) and x G X. 

Let x G X be arbitrary but fixed. Since R(p,A)x G XQ and D(Ao) is dense 
in Xq then there is a sequence {xn} C Xo such that R(fi, A)xn —> R(p, A)x. 

Hence \\R(p,,A)(xn - z)|| = \\xn - x | |_i —> 0. 
This proves the density of Xo in X-\ in norm || • ||_i. 
The inclusion map iq : Xo —» X may be extended to an isomorphism 

( X 0 ) _ 1 - » 

(iii) By Theorem 5 if A G p(A) then A G p{A-{) and = 
R(\,A) for A G p(A). An application of the above to Ao shows that 

R(A, (A0)-i)\xo = R(X,A0) = R(\,A)\Xo = i2(A,A_i)|x0. 

But Xo is dense in and so it follows that R(A, (ylo)-i) = R(X,A-i). 
Therefore (A) ) - i = -A-i-

THEOREM 7 ([6;Th.3.1.11]). Under the assumptions of Theorem 6, the cosine 
family {Co(t)',t G R} generated by Ao on Xo extends to the cosine family 
{C-i(t);t G R} on X _ i whose generator is the operator A-\. 

5. The Favard class def ined by cosine family 
In this section we define and study some properties of the so-called 

Favard class. The definition and the properties of this class in entirely similar 
to Favard class defined by semigroups (see for exemple [6; sec.3.2]). 

Let {C(t)-,t G R} be a cosine family on X. 
Define its Favard class by 

2 
(18) Fav(C(t)) := {x G X : limsup -z\\C(t)x - x\\ < oo}. 

t-> o t 
From (18) it follows that D(A) C Fav(C(t)). 

We have the following 

THEOREM 8 ([6;Th.3.2.1]). If x* G X*, then the following assertions are 
equivalent: 

(i) x* G D(A*), 
(ii) limsup^Q £\\C*(t)x* - x*\\ < oo, 

(iii) l iminft-o £\\C*(t)x* - x*|| < oo. 
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COROLLARY 1. Fav(CQ(t)) = D(AQ). 

Proof . If x® G Fav(CQ(t)), then, by Theorem 8, xQ G D(A*). Conversely, 
if x* G D(A*), then x* G X® and we have 

{x* G X® : lim sup \\\C* (i)x® - x® || < 00} 
t-»o t 

= {xG G X® : limsup-|||C®(i)x® ~ x@\\ < 00} - Fav{CQ(t)). 
t—>00 i 

Prom this we get 

THEOREM 9 ([6;Th.3.2.3]). If we identify the space X with its image jX in 
XQ*, then 

(19) Fav(C(t)) = D(Ae*) n X. 

COROLLARY 2. If X is O -reflexive, then Fav(C(t)) = D(AG*) and if X is 
reflexive, then 

(20) Fav{C(t)) = D(A). 

Let A be a closed linear operator on a Banach space X with non-empty 
resolvent set p(A), satisfying (8). Restriction Ao := A\x0 where XQ := D(A), 
generates the cosine family (Co(i); t € R}. We denote by 

(21) X® = (X 0 ) G := K G X* : lim ||C 0 W - ® 1 = 0} 

where Cq (i) denotes the adjoint of Co(t). 
The {CQ (t); t € R} is the cosine family on X® generated by A® on X®. 

Moreover C$(t) = Q(i)|x©. 
In the sequel it will be important to have a representation of the Favard 

class of the cosine family {C_i(t);£ G R} on X_ i . 
In this purpose we define 

(22) X® x := {x®* G X®* : R(A, Ae*)xQ* G jX} 

(cf.[6;sec.3.2]). 
The subspace X® x is a closed C®*(t) invariant of X®*. 
If the operator A satisfies the inequality (8) and is not densely defined 

we define 

(23) X®* : = ( X 0 ) ® \ 

We have the following 

THEOREM 10 ([6, Th.3.2.6;4.3.6 and 4.3.7]). If the operator A satisfies the 
inequality (8), then 

(i) Fav(C-i(t)) is isomorphic to X ® x , 
(ii) X C X® x and this inclusion is continuous. 
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PROPOSITION 3 ([6;Prop.4.3.1]). If A is the generator of the cosine family 
{C(t)]t G R} on the space X, then 
(24) X = {x© x G X ° x : lim ||C° x ( i )x° x - z 0 x || = 0}. 

i-»0 

6. The linear problem corresponding to (1) 
In this section we study the following linear Cauchy problem correspond-

ing to (1) 

(25) i dt 
du=Au + f for t G (0, T], 
u(0) = u<>,#(0) = ui. 

We prove the following 

LEMMA 1. I f : 

1° A : X ^y X is a linear operator satisfying the inequality (8), 
2° / : [0, T] —> X is continuous, 

then s —> C-\{t — s)f(s) is Bochner integrable in and the mapping 
t 

(26) [0,T] Bt-*v{t) :=\C-i(t-s)f(s)ds 
o 

is a norm-continuous Xo-valued function such that 

where X0 := D(A) and M := sup{||C0(i)|| : t G [0 ,T}} . 

P r o o f . Since the operator A satisfies the inequality (8), then the operator 
Aq A\x0 is the generator of the cosine family {Co{t)\t G R} on the 
Banach space XQ. By the asumption 2° and the continuity inclusion X C 
X-i it follows that / : [0,T] —> is continuous and so s —> C~i(t — s)f(s) 
is Bochner integrable in X-i. On the other hand, since the inclusion X C 
XQ X is continuous (see Theorem 10), we can regard / as a continuous map 
/ : [0,T] —> X®x. 

Because C_i( i ) | x © x = C® x ( i ) , in order to show that v(t) G Xo, by 
Proposition 3 it is enough to check that 

(27) lmio||Co0x(rMi)-v(t)||Xo0x = 0 . 

We have (cf.[l]) 
t t 

CQX (r) J C0®x (t - s)f(s) ds - J C 0 X (t - s)f(s) ds 
o o 

= i <?0G*(r)C0©x (i - s)f(s)ds - i CoX (t - s)f(s) ds 
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1 t t 

= « S^o® X (i + r - s ) + C°*(t-r-s)]f(s) ds - \ C°»(t - s)f(s) ds 
o o 

= \[\C$x(t + r - s)f(s) ds - J C0® x (i - s)f(s) ds 
0 0 

+ i CoX>(t - r - S)f(s) ds - 5 CO0X (t - s)f(s) ds . 
0 0 

After some rearrangements we obtain 
(28) 2[C°»(r)v(t)-v(t)} 

= S C°»(T)[f(t-T + r)-f(t-T)]dT 
0 

+ \c?*T)[f(t-T-r)-f(t-T)]dT 
0 
t+r t 

+ J CQX (r)f(t + r — r)dr — \ (r)f(t - r - r ) dr 
t-r 

0 
-\C°*(T)f(t + r-T)dr+ \ CQX (r)f(t — r — r)dr. 

0 —r 

The norms of the first two terms of the right hand of (28) are less than 

Mtsup{||/(t + r ) - / ( t ) | | x 0 * : t e [0,T]} 

and the norms of the last four terms are less than 

Mr sup{||/(i)||x©x : t £ [0,T]}. 

The latter inequalities imply (27). 
Since ||C_i(i)|| = ||C^x(i)|| = ||C0(i)|| < M, the estimate of v(t) is 

trivial. 
To show the contimity of the mapping (26) we notice that for t, t + h G 

[0,T] 
t+h t 

v(t + h)-v(t)= J C-i(t + h — s)f(s) ds — ^ C-i(t — s)f(s) ds 
o o 

t t+h 

= J C _ i ( r ) [ / ( i + h - r ) - f ( t - r ) ] dr + \ C-i(r)f(t + h-T)dT. 
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Prom the above it follows that 

||u(i + /i) - w(i)|| 
< M{Tsup \\f(t + h) - f(t)|| : t G [0,T] + \h\sup | | /(i) | | : t G [0,T]} 

and this implies the norm-continuity of the mapping (26). 

THEOREM 11. I f : 

1° / : [0,T] -» X is of class C1, 
2° u0 G D(A0) and ui G E0, 

then the problem (25) has exactly one solution u of class C2 in [0,T], given 
by formula 

t 
(29) u{t) = C0(t)u0 + S0(t)Ul + j5_i(i - s)f(s)ds,t G [0, T], 

o 
where 

EQ := {x € Xo : Co(t)x is once continuously differentiate in t}. 

P r o o f . The basic idea of this proof comes from [6;Ch.4], In [6;Ch.4] author 
considers the Cauchy problem of the first order. For given problem (25) in 
which the operator A is non densely defined we first consider the following 
problem 

d2u 
(30) dt2-A-lU + f , t G (0, T], 

U ( 0 ) = no , # ( 0 ) = ui dt 
in the space Solutions of the problem (30), which lie in Xo, are likely 
to be also solutions to the problem (25)(cf[6.Ch.4]). 

Since j4_i is a generator of cosine family {C_i( i) ; t G R} on _X"_i and 
the function / : [0, T] —• X which is of class C 1 is also C 1 class as / ; [0,T] —> 

then some standard arguments of cosine theory (see[8]) show that the 
function u : [0,T] —> X_\ given by formula 

t 
(31) u(t) = C-1(t)u0 + S-1(t)ui + \S-1(t-s)f(s)ds, t G [0,T] 

o 
is twice continuously differentiate in [0,T] and satisfies (30). 

We shall show that u given by (31) is a classical solution of (25) i.e. u 
satisfies the conditions: 

(i) u(t) eD(A) f o r t e [0,T], 
(ii) u : [0, T] -» X is of class C 2 , 

(iii) u satisfies the problem (25). 
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It is obvious that if UO € D(AQ) and U\ G EQ then 

(32) w(t) : = C_i( i )«o + 5 _ i ( t ) « i = C0(t)u0 + S0(t)ui 

a n d so w : [ 0 , T ] - > X0 is o f c lass C2,w(t) G D(A) for t G [ 0 , T ] a n d w 
satisfies the homogeneous problem (25). 

Let 
t 

(33) v(t):=\S.1(t-s)f{s)ds, i G [ 0 , T ] . 
o 

By Lemma 1 it follows that <S_i(i)|xox G Xo for t G R and so v(t) G Xo 
for each t G [0,T]. 

On the other hand 
t 

- s)f(s) = J c _ i ( t - s)f{s)dr, 0 < s < t, 

and from this we get 
11 

« e ; 
0 s 

Changing the order of integration we have 
t s 

ds. 
o ~o 

Since by Lemma 1 the mapping 

!(t) = \\C-1{r-s)f(s)drds. 

I s 

(34) «(É) = 5 [ 5 C _ i ( a - r ) / ( r ) d r 

[ 0 , T ] 3 a - $ C _ i ( « - T ) / ( r ) d T 
o 

is norm-continuous Xo-valued function, then the function d defined by (33) 
is of class C1 with respect to the norm of Xo and 

d 1 

( 3 5 ) -£ = \C-1(t-s)f(s)ds for t€[0,T]. 
o 

By the assumption 1° we have 

f(s) = f(0) + \f'(r)dr for s € [0,T\. 
o 

This implies that 
, t t 3 

= 5 C _ i ( i - s)f(0) ds + 5 5 C _ i ( i - s ) / ' ( t ) d r d s . 
00 
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Changing the order integration in the last integral we obtain 

(36) ^ = 5_x(i)/(0) + ¡ S _ i ( t - s)f'(s)ds. 

Because the /' is a continuous function in [0, T], analogously as in above, 
from (36) we conclude that the function v is of class C2 in [0, T] and 

,2 t 
(37) = C_i ( i )/(0) + J C-i(t - s)f'(s) ds, t G [0,T], 

o 
On the other hand, since v(t) G Xo = D(A-i) for each t G [0,T], we get 

t t s 

A-iv(t) = A-i [ ^ (t - s)f(0) ds + J j <S_i(t - s ) / ' ( r ) dr ds . 
0 00 

Changing the order of integration in the laast integral and using Proposi-
tion 1, p.(1.7) we obtain 

t 
A^v{t) = [C_i(t) - /]/(0) + J[C_i(i - s) - I ] f { s ) ds 

o 
t 

- C _ i ( i ) / ( 0 ) + S C _ i ( i - s)f'(s)ds - f(t). 
0 

From this and (37) follows that 

d2v 

A-iv(t) = T r ( i ) - f(t) G X for each t € [0,71. 

Since A is the part of A-i in X, then it follows that v(t) € D(A) for te [o,r]. 
As we have seen above (cf.(31) and (32)) 

u(t) = w(t) + v(t), t G [0, T], 

where w(t) G D(A) and w is of class C 2 in [0,T]. This implies that u is a 
classical solution of (25). 

To show the uniqueness it is sufficient to notice that if / : [0,T] —> 
is continuous, u : [0,T] —> is twice continuously differentiate in 

(0,T],tt(i) G D(A_i) for t G [0,T] and u satisfies (30) then u is given by 
(31)(cf.[8;Prop.2.4]). This completes the proof of Theorem 11. 
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