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AN EXTENSION OF A RESULT OF A. D. SANDS 

Abstrac t . A. D. Sands showed that if a group of type (22, 22) is a direct product of 
its subsets of order 4, then at least one of these subsets must be periodic. In this paper 
we prove a result about groups of type (2^,2^) that generalizes Sands' theorem. 

1. Introduction 
In this paper we will use multiplicative notation in connection with finite 

abelian groups. If A and B are subsets of a finite abelian group G such that 
the product AB is direct and is equal to G we say that AB is a factorization 
of G. We also say that the equation G = AB is a factorization of G. In 
other words the product AB is a factorization of G if each element g in G is 
uniquely expressible in the form g = ab, where a G A and b € B. In the most 
commonly encountered situation A and B are subgroups of G. However, in 
this paper we do not assume that A and B are subgroups of G. A subset A 
of a finite abelian group G is called periodic if there is an element g G G \{e} 
such that A = gA. (Here e stands for the identity element of G.) Sometimes 
we express this fact saying that g is a period of A or A is periodic with 
period g. A subset A of G is called normed if the identity element e of G is 
contained by A. We call the factorization G = AB normed if the factors A 
and B are normed. 

By the fundemental theorem of finite abelian groups each finite abelian 
group is a direct product of cyclic groups. If G is a direct product of 
cyclic groups of orders qi,... ,qs respectively, then we say that G is of type 
(qi,..., q3). We would like to point out that a group might be expressed as 
a direct product of cyclic groups in essentially different ways and so a given 
group might have different types. This is not going to cause any problem for 
us since for a given group type there belong to a uniquely determined (up 
to isomorphism) group and we use group types only to identify groups. 
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For a subset A of G the smallest subgroup of G containing A that is, the 
span of A in G, will be denoted by {A). 

A. D. Sands (Theorem 8 of [3]) proved that if G is a group of type (2 2 ,2 2) 
and G = AB is a normed factorization of G such that = \B\ = 4, then 
A or B is periodic. 

The main result of this paper is the following. 
If G is a group of type ( 2 \ 2 a) , A > 2 and G = AB is a normed factor-

ization of G with \A\ = 4, (A) = G, then B is periodic. 
In the next lines we will verify that this result implies Sands' theorem 

and with this Sands' theorem is placed into a wider context. 
Let G be of type (22, 22) and let G = AB be a normed factorization 

of G with \A\ = \B\ = 4. Set H = (A). As A C H and H C G, it follows 
that 4 < |il| < 16. We distinguish three cases depending on \H\ = 4 or 
\H\ = 8 or \H\ = 16. In the \H\ = 4 case A = H and so A is clearly 
periodic. If \H\ = 8, then restricting the factorization G = AB to H gives 
the H — G n H = A(B n H) normed factorization of H. Prom \H\ = 8 and 
|A| = 4, it follows that \B D H\ = 2. Let B n H = {e, b}. The factorization 
H = A{e, b} is equivalent to that A and Ab form a partition of H. Note that 
Abf] Ab2 — 0 and so Ab and Ab2 also form a partition of H. Comparing the 
two partitions gives A = Ab2. If b2 / e, then A is periodic. If b2 = e, then B 
has an element of order 2. Now Lemma 1 of [3] is applicable to factorization 
G = AB and gives that A or B is periodic. In the \H\ = 16 case (A) — G 
and our main result is applicable with the A = 2 choice. This gives that B 
is periodic. 

2. Preliminaries 
If .A is a subset and x is a character of the finite abelian group G, then 

the notation x ( ^ ) stands for the sum YhaeA x(a)- I n the = 0 case we 
say that x annihilates A. The set of all characters of G that annihilate A 
we call the annihilator set of A or simply the annihilator of A and we will 
denote it by Ann(^l). 

Let G = AB be a factorization and let % be a character of G. Applying 
the character to the factorization we get x(G) = = x(^)x(-®)- If X 
is not the principal character of G, then x(G) = 0 and from 0 = x(^)x(-B) 
it follows that either x(A) = 0 or x ( B ) = 0. 

Characters of G can be used to test if the element g of G is a period of 
the subset A of G. Namely, by Theorem 1 of [4] g is a period of A if and 
only if Ann((g)) c Ann(A). We will use the following variant of this result 
too. If A is a subset and g, h are elements of G such that 

Ann((p)) fl Ann((/t)) C Ann(^l), 



Extension of a result of A. D. Sands 461 

then it follows that A can be partitioned into two parts that are periodic 
with periods g and h respectively. In other words there are subsets U, V of G 
for which 

A = U(g)uV(h), 
where the union is disjoint and the products U(g), V(h) are direct. This is 
Theorem 2 of [4], 

If for a subset A and for elements g, h of a finite abelian group G the 
equations A = Ag, A = Ah hold, then clearly A — Agh also holds. This has 
the following consequences. If g is a period of A and g% is not the identity 
element of G, then gl is also a period of A. All the periods of A together 
with the identity element of G form a subgroup of G. If A is periodic, then 
it has a period with a prime order. 

Let us consider a factorization G = AB of G and let a € A, b 6 B. 
Multiplying the factorization by g = we get the factorization G = 
Gg — (Aa~1)(Bb~1) of G. Clearly, this factorization is normed. In addition, 
if A is periodic, then so is ( A a - 1 ) and similarly if B is periodic, then so 
is (Bb - 1 ) . Thus, when we deal with periodic factorizations of G we may 
assume that the factorization is normed. 

By our definition the equation G = AB is a factorization of G if the 
product AB is direct and is equal to G. This fact can be expressed in many 
equivalent forms. We will use the following reformulations freely. Each ele-
ment g of G has a unique representation in the form g = ab, where a € A 
and b G B. The product AB is equal to G and \A\\B\ is equal to |G|. The 
product is equal to G and AA-1 fl BB_1 = {e}. Here A~1 is a short hand 
notation for the set { a - 1 : a £ A}. 

з. The result 
With the tools and terminology are available from the previous section 

we can turn to the proof of the main result of the paper. 

THEOREM 1. Let G be a group of type ( 2 A , 2 A ) , with A > 2 . If G = AB is 
a normed factorization of G and |j4| = 4, (A) = G, then B is periodic. 

P r o o f . We divide the proof into 4 steps. 
(1) We claim that there are elements x, y in A such that x, y form a basis 

for G. 
In order to prove the claim note that because of its type G has a basis 

и,v with |u| = The elements of G whose order is less than or equal 
to 2 a _ 1 span the subgroup (u2 , v2 ) of G. If A does not contain any 
element of order 2 a , then (A) c (u2 , v2 ) ^£ G which is a contradiction. 
Thus there is an element x of A with \x\ = 2 a . In the basis representation 
x = 0 < a,/3 < 2a — 1 of x at least one of a and /3 is odd. For 
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the sake of definiteness we assume that a is odd. Now (x) fl (v) = {e} and 
consequently x, v is a basis for G. If A \ (x) = 0, then (vl) C (X) ^ G. So 
A \ (x) ± 0. Let y = x^vs, 0 < 7, S < 2X - 1 be an element of A \ (x). If for 
each choice of y the exponent S is even, then (̂ 4) C (x,v2) / G. Therefore 
there is a y with odd <5. In this case (x) fl (y) = {e} and so x, y is a basis 
for G. 

(2) By step (1) A can be written in the form A = {e,x,y,xay@}, 
0 < a, ¡3 < 2X — 1, where x,y is a basis for G. We claim that if (a, (3) 
is not one of (1,1), (1, 2A - 1), (2A — 1,1), then B is periodic. 

By Theorem 1 of [4] B is periodic with period g if and only if Ann({5)) C 
Ann(B). Clearly, Ann((g)) consists of all characters x of G that is not prin-
cipal on (g). In other words, x((p)) = 0 if and only if (g) <f_ Ker%. In the 
special case when |p| is a prime g is a period of B if and only if x(q) 1 
implies x(B) = 0. We will use this condition in the form that x(-B) 0 
implies xig) = 1- F° r the principal character this obviously holds. If x is not 
the principal character of G, then from the factorization G = AB it follows 
that 0 = X(G) = X(AB) = x(A)x(B) and so if X(B) ± 0, then X(A) = 0. 
Thus if x(A) = 0 implies x{9) = 1> then B is periodic with period g. Or 
equivalently, if x{9) 1 implies x{A) 0, then B is periodic with period g. 

If B is periodic with period g, then we may assume that |g| = 2. The 
possible choices for g are x2 , y2 , x2 y2 

In the g = x2 case x(q) 1 holds for characters x of G with x(^) = 
x(y) = pm, where p is a primitive (2A)th root of unity and m is an integer 
0 < m < 2X — 1. Now x(A) = 0 must hold for some such character % of G 
otherwise B is periodic with period g. This puts some restriction on the 
possible values of (a, (3). Namely, (a, (3) must belong to Q\ U Q2, where 

Qi — {(a,P) : a = 2x_1p + 2 A _ 1 + 1 (mod 2A), 0 < a , f3 < 2X - 1}, 

Qi = {(a,(3) : a = (2A~1 - l)/3 + 2A~X (mod 2A), 0 < a,(3 < 2X - 1}. 

To prove this claim note that from 

0 = X(A) = p° + p1 + pm + pa+m? 
it follows that 0, l , m , a + m/3 is a rearrangement of 0,1, 2 A _ 1 , 2 A _ 1 + 1 . This 
leads to the following two possibilities 

m = 2X~1 (mod 2A), and a + mp = 2 A _ 1 + 1 (mod 2A) 
or 

m = 2 A _ 1 + 1 (mod 2A), and a + mP = 2 A _ 1 (mod 2A) 
which are equivalent to 

a = 2X~1(3 + 2 a _ 1 + 1 (mod 2A) or a = (2A _ 1 - 1)0 + 2 A _ 1 (mod 2A) 

respectively. 
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In the g = y2* 1 case x(q) 1 holds for characters x of G with x(x) = 

pm, x(y) = P, where p is a primitive (2A)th root of unity and m is an integer 
0 < m < 2A - 1. Now x(A) = 0 must hold for some such character x of G 
otherwise B is periodic with period g. This places some restriction on the 
possible values of (a, ¡3). Namely, (a, ¡3) must belong to Qs U Q4, where 

Qz = { (a , (3 ) \ ¡3 = 2x~1a + 2 A _ 1 + 1 (mod 2A), 0 < a , 0 < 2X - 1}, 

Qi = {(a,P) :a = (2X~1-1)(3 + 2X~1 (mod 2A), 0 < a,(3 < 2X - 1}. 
To prove this assertion note that from 

0 = X(A) = p° + pm + p1 + 

it follows that 0, m, 1, ma + (3 is a rearrangement of 0,1,2A _ 1 ,2A _ 1 + 1. This 
leads to the following two possibilities 

m = 2 a _ 1 (mod 2A), and ma + (3~ 2A_1 + 1 (mod 2A) 

or 
m = 2 a _ 1 + 1 (mod 2A), and ma + ¡3 = 2A_1 (mod 2A) 

which axe equivalent to 

j3 = 2A _ 1a + 2 a _ 1 + 1 (mod 2A) or a = (2A~1 - l)/3 + 2A _ 1 (mod 2A) 

respectively. 
In the g = x2 y2 case x(q) 1 holds for characters % of G with 

x(x) = pm, x(xv) = Pi where p is a primitive (2A)th root of unity and m is 
an integer 0 < m < 2A — 1. Obviously, x{y) = P1~m- Now x(A) — 0 must 
hold for some such character x of G otherwise B is periodic with period g. 
This restricts the possible values of (a, ¡3). Namely, (a , /3 ) must belong to 
Q5 U Q6, where 

Q5 = {(a, P) : P = 2A _ 1a + 2A_1 + 1 (mod 2A), 0 < a , (3 < 2A - 1}, 
Q6 = { ( a , P ) : a = 2x-1/3 + 2x~1 + l ( m o d 2 A ) , 0 < a , ( 3 < 2X - 1} . 

To verify this claim note that from 

0 = X(A) = p° + pm + p1-™ + p"»o+(i-H/J 

it follows that there is an integer I such that 0,m, 1 — m,ma + (1 — m)(3 
is a rearrangement of 0,2A_1,1,1 + 2A_1 + 1. We face to the following three 
possibilities 

m = 2 a _ 1 (mod 2a), and 1 - m + 2A_1 = ma + (1 - m)/3 (mod 2A) 

or 

m — 1 = 2 a _ 1 (mod 2a), and m + 2X~1 = ma + (1 - m)(3 (mod 2A) 
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or 

ma + (1 -m)P = 2x~l (mod 2A), and m + 2 A _ 1 = l - m (mod 2A). 

The last congruence leads to 2m + 2 A _ 1 = 1 (mod 2A) then to the contra-
diction 0 = 1 (mod 2). This sorts out the third case. The first two cases 
are equivalent to 

0 = 2x~1a + 2x~1 + 1 (mod 2A) or a = 2A~1/3 + 2 A _ 1 + 1 (mod 2A) 

respectively. 
Summing up our argument we can say that B has a chance not to be 

periodic only if (a, f3) is an element of 

(QI u Q2) n (Q3 u q 4 ) n (Q5 u Q6). 

We will show that this set is equal to {(1,1) , (1, 2A - 1), (2A - 1,1)} . To do 
this note that Q4 = Q2, Q5 = Q3, QE = QI and (Q1 U Q2) n (Q3 U Q2) = 
(QI n Q3) U Q2 = { (1 ,1 ) } U Q2 as QiDQ3 = { (1 ,1) } . The rest follows from 
that Q2 n Qi = {(1, 2 a - 1)} and Q2 n Q3 = {(2A - 1,1)} . 

(3) Let A = {e,x,y,xay13}, where x, y is a basis for G and (a,/3) is one 
of (1,1), (1,2A — 1), (2a — 1,1). We claim that the normed factorization 
G — AB implies that either B is periodic or (B) G. 

In the (a,/3) = (1,1) case A — {e, x}{e,y} and from the normed factor-
ization G = B{e,x}{e,y} by Lemma 4 of [1] it follows that B C (x 2 , y ) or 
B C (x,y 2 ) . Therefore (B) ± G. 

The (a, (3) = (1, 2 a - 1) and (a,f3) = (2A - 1,1) cases can be settled in 
a similar manner. So for the sake of definiteness we deal with the (a, ¡3) = 
(1, 2A — 1) case. Now A = {e, x, y, xy-1}. Note that y and xy~1 span G and 
their product is x. This reduces the problem to the previous case. 

This completes the proof. 

4. Open problems 
We close with five open problems. Does Theorem 1 holds in a more 

general setting? Namely, does Theorem 1 hold for groups that are direct 
products of two cyclic groups but the orders of the groups are not necessarily 
equal? We spell out this question more formally. 

Problem 1. Let G be a group of type (2A, 2M) and let G = AB be a normed 
factorization with = 4, (A) = G. Does it follow that B is periodic? 

In the next problem we ask if the condition that |A| = 4 is essential? 

Problem 2. Let G be a group of type (2A ,2' i) and let G = AB be a 
normed factorization of G. Does it follow that either A or B does not span 
the whole G? 
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Is it true in more general replacing 2 by a prime p? 
Problem 3. Let G be a group of type ( p x , p > J ' ) and let G = AB be a 
normed factorization of G. Does it follow that either A or B does not span 
the whole G? 

In Sands' theorem both of the two factors have four elements. Can we 
extend Sands' theorem for more than two factors? 
Problem 4. Let G be a finite abelian 2-group and let G = A\ • • • An be a 
normed factorization of G such that each \Ai\ is either 2 or 4. Does it follow 
that at least one of the factors is periodic? 

In Sands' theorem the group is a direct product of two cyclic groups 
of order four. Can we extend Sands' theorem for groups that are direct 
products of more than two cyclic groups of order four? 
Problem 5. Let G be a group of type (2 A l , . . . , 2As), where 1 < Ai , . . . , As 
< 2 and let G = Ai • • • An be a normed factorization of G, where each 
\Ai\ = 4 or \Ai\ = 2. Does it follow that at least one of the factors is 
periodic? 
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