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Sandor Szabd

AN EXTENSION OF A RESULT OF A. D. SANDS

Abstract. A. D. Sands showed that if a group of type (22,2?) is a direct product of
its subsets of order 4, then at least one of these subsets must be periodic. In this paper
we prove a result about groups of type (2’\, 2)‘) that generalizes Sands’ theorem.

1. Introduction

In this paper we will use multiplicative notation in connection with finite
abelian groups. If A and B are subsets of a finite abelian group G such that
the product AB is direct and is equal to G we say that AB is a factorization
of G. We also say that the equation G = AB is a factorization of G. In
other words the product AB is a factorization of G if each element g in G is
uniquely expressible in the form g = ab, where a € A and b € B. In the most
commonly encountered situation A and B are subgroups of G. However, in
this paper we do not assume that A and B are subgroups of G. A subset A
of a finite abelian group G is called periodic if there is an element g € G\ {e}
such that A = gA. (Here e stands for the identity element of G.) Sometimes
we express this fact saying that g is a period of A or A is periodic with
period g. A subset A of G is called normed if the identity element e of G is
contained by A. We call the factorization G = AB normed if the factors A
and B are normed.

By the fundemental theorem of finite abelian groups each finite abelian
group is a direct product of cyclic groups. If G is a direct product of
cyclic groups of orders qi, ..., ¢s respectively, then we say that G is of type
(q1,--.,9s). We would like to point out that a group might be expressed as
a direct product of cyclic groups in essentially different ways and so a given
group might have different types. This is not going to cause any problem for
us since for a given group type there belong to a uniquely determined (up
to isomorphism) group and we use group types only to identify groups.
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For a subset A of G the smallest subgroup of G containing A that is, the
span of A in G, will be denoted by (A).

A. D. Sands (Theorem 8 of [3]) proved that if G is a group of type (22,22)
and G = AB is a normed factorization of G such that |4| = |B} = 4, then
A or B is periodic.

The main result of this paper is the following.

If G is a group of type (2*,2%), A > 2 and G = AB is a normed factor-
ization of G with |A| = 4, (4) = G, then B is periodic.

In the next lines we will verify that this result implies Sands’ theorem
and with this Sands’ theorem is placed into a wider context.

Let G be of type (22,22) and let G = AB be a normed factorization
of G with |A| = |B| = 4. Set H = (A). As A C H and H C G, it follows
that 4 < |H| < 16. We distinguish three cases depending on |H| = 4 or
|H| = 8 or |H| = 16. In the |H| = 4 case A = H and so A is clearly
periodic. If |[H| = 8, then restricting the factorization G = AB to H gives
the H =GN H = A(B N H) normed factorization of H. From |H| = 8 and
|A| = 4, it follows that |BN H| = 2. Let BN H = {e, b}. The factorization
H = A{e, b} is equivalent to that A and Ab form a partition of H. Note that
AbN Ab? = 0 and so Ab and Ab? also form a partition of H. Comparing the
two partitions gives A = Ab?. If b +£ e, then A is periodic. If b2 = e, then B
has an element of order 2. Now Lemma 1 of [3] is applicable to factorization
G = AB and gives that A or B is periodic. In the |H| = 16 case (4) = G
and our main result is applicable with the A = 2 choice. This gives that B
is periodic.

2. Preliminaries

If A is a subset and x is a character of the finite abelian group G, then
the notation x(A) stands for the sum ., x(a). In the x(A4) = 0 case we
say that x annihilates A. The set of all characters of G that annihilate A
we call the annihilator set of A or simply the annihilator of A and we will
denote it by Ann(A).

Let G = AB be a factorization and let x be a character of G. Applying
the character to the factorization we get x(G) = x(AB) = x(A4)x(B). If x
is not the principal character of G, then x(G) = 0 and from 0 = x(A)x(B)
it follows that either x(A) = 0 or x(B) = 0.

Characters of G can be used to test if the element g of G is a period of
the subset A of G. Namely, by Theorem 1 of [4] ¢ is a period of A if and
only if Ann((g)) C Ann(A). We will use the following variant of this result
too. If A is a subset and g, h are elements of G such that

Ann({g))} N Ann((h)) C Ann(A4),
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then it follows that A can be partitioned into two parts that are periodic
with periods g and h respectively. In other words there are subsets U,V of G
for which

A=U(g)UV(h),
where the union is disjoint and the products U{g), V(h) are direct. This is
Theorem 2 of [4].

If for a subset A and for elements g,h of a finite abelian group G the
equations A = Ag, A = Ah hold, then clearly A = Agh also holds. This has
the following consequences. If g is a period of A and g* is not the identity
element of G, then g° is also a period of A. All the periods of A together
with the identity element of G form a subgroup of G. If A is periodic, then
it has a period with a prime order.

Let us consider a factorization G = AB of G and let a € A, b € B.
Multiplying the factorization by g = a~'b~! we get the factorization G =
Gg = (Aa~1)(Bb™!) of G. Clearly, this factorization is normed. In addition,
if A is periodic, then so is (Aa~!) and similarly if B is periodic, then so
is (Bb~!). Thus, when we deal with periodic factorizations of G we may
assume that the factorization is normed.

By our definition the equation G = AB is a factorization of G if the
product AB is direct and is equal to G. This fact can be expressed in many
equivalent forms. We will use the following reformulations freely. Each ele-
ment g of G has a unique representation in the form g = ab, where a € A
and b € B. The product AB is equal to G and |A||B| is equal to |G|. The
product is equal to G and AA~1 N BB~! = {e}. Here A~! is a short hand
notation for the set {a=!:a € A}.

3. The result
With the tools and terminology are available from the previous section
we can turn to the proof of the main result of the paper.

THEOREM 1. Let G be a group of type (2*,2*), with A > 2. If G = AB s
a normed factorization of G and |A| =4, (A) = G, then B is periodic.

Proof. We divide the proof into 4 steps.

(1) We claim that there are elements z,y in A such that z,y form a basis
for G.

In order to prove the claim note that because of its type G has a basis
u,v with |u| = |v| = 2*. The elements of G whose order is less than or equal
to 2>~ span the subgroup (u2' *,v2 ) of G. If A does not contain any
element of order 2*, then (A4) C (u®~",v2" ') # G which is a contradiction.
Thus there is an element z of A with |z| = 2*. In the basis representation
r =u? 0 < a B < 2*—1 of z at least one of @ and 8 is odd. For
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the sake of definiteness we assume that « is odd. Now (z) N (v) = {e} and
consequently z,v is a basis for G. If A\ (z)} = 0, then (4) C (z) # G. So
A\ (z) #0. Let y = 27v%, 0 < 7,6 < 2* — 1 be an element of A\ (z). If for
each choice of y the exponent § is even, then (A) C (z,v?) # G. Therefore
there is a y with odd 4. In this case (z) N (y) = {e} and so z,y is a basis
for G.

(2) By step (1) A can be written in the form A = {e,z,y,z%y"},
0 < a,8 < 2* — 1, where z,y is a basis for G. We claim that if (a,3)
is not one of (1,1), (1,2* — 1), (2* — 1,1), then B is periodic.

By Theorem 1 of [4] B is periodic with period g if and only if Ann({g)) C
Ann(B). Clearly, Ann((g)) consists of all characters x of G that is not prin-
cipal on (g). In other words, x((g)) = 0 if and only if (g) ¢ Kery. In the
special case when |g| is a prime g is a period of B if and only if x(g) # 1
implies x(B) = 0. We will use this condition in the form that x(B) # 0
implies x(g) = 1. For the principal character this obviously holds. If x is not
the principal character of G, then from the factorization G = AB it follows
that 0 = x(G) = x(AB) = x(A)x(B) and so if x(B) # 0, then x(4) = 0.
Thus if x(A) = 0 implies x(g) = 1, then B is periodic with period g. Or
equivalently, if x(g) # 1 implies x(A) # 0, then B is periodic with period g.

If B is periodic with period g, then we may assume that |g| = 2. The

. . A—-1 A—1 A—1 oA—1
possible choices for g are 2, y* | 22 y* .

Inthe g =22 case x(g) # 1 holds for characters x of G with x(z) = p,
x(y) = p™, where p is a primitive (2*)th root of unity and m is an integer
0 <m < 2* — 1. Now x(A) = 0 must hold for some such character x of G
otherwise B is periodic with period g. This puts some restriction on the
possible values of (a, 8). Namely, (a, 3) must belong to @1 U Q2, where

Qr={(,B):a=2""1+2*"141 (mod2'), 0<a,B<2* -1},
Q={(,B):a=2"1-1)F+2*! (mod?2*), 0<a,f<2* -1}
To prove this claim note that from
0=x(A) = p°+p" +p™ + p**™P
it follows that 0,1, m, & +mf is a rearrangement of 0, 1,2*~1,2*~! 4 1. This
leads to the following two possibilities

m=2""1 (mod?2"), and a+mB=2""1+1 (mod?2")
or
m=2"141 (mod?2*), and a+mB=2""' (mod?2")
which are equivalent to
a=22"184+22"141 (mod2)) or a=(2*1-1)8+2*"! (mod 2})

respectively.
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In the g = 3% case x(g) # 1 holds for characters x of G with x(z) =
p™, x(y) = p, where p is a primitive (2*)th root of unity and m is an integer
0 <m < 2* — 1. Now x(A4) = 0 must hold for some such character x of G
otherwise B is periodic with period g. This places some restriction on the
possible values of (a, 3). Namely, (a, 8) must belong to Q3 U Q4, where

Qs ={(0,8):8=22"Ta+2>1+1 (mod?2), 0<aq,B<2* -1},
Qi={(a,8):a=(2*"1-1)8+2*! (mod?2), 0<a,B<2*-1}
To prove this assertion note that from
0 =x(4)=p°+p™ +p" + "
it follows that 0, m, 1, ma+ £ is a rearrangement of 0, 1,2*~1,2*~1 4+ 1, This
leads to the following two possibilities
m=2*1 (mod?2"), and ma+B=2""14+1 (mod2*)
or
m=2"14+1 (mod?2*), and ma+B=2""! (mod2")
which are equivalent to
f=22"ta+2"141 (mod2*) or a=(2*1-1)8+2"1 (mod 2"

respectively.

In the g = 22 '42"7" case x{g) # 1 holds for characters x of G with
x(z) = p™, x(zy) = p, where p is a primitive (2*)th root of unity and m is
an integer 0 < m < 2* — 1. Obviously, x(y) = p!™™. Now x(4) = 0 must
hold for some such character x of G otherwise B is periodic with period g.
This restricts the possible values of (e, ). Namely, («, 3) must belong to

Qs U Qs, where
Qs={(a,B):f=2*""ta+22 1 +1 (mod2}), 0<a,B <2 -1},
Qs={(0,8):a=2""18+2" 141 (mod2), 0<a,B<2* -1}
To verify this claim note that from
0=x(A) =p°+ p™ + p' ™ + prt A

it follows that there is an integer ! such that 0,m,1 — m,ma + (1 — m)g
is a rearrangement of 0,2*~1 1,1+ 2*~! + 1. We face to the following three
possibilities

m=2""1 (mod2"), and 1-m+2*"'=ma+(1-m)8 (mod?2")
or

m—1=2""1 (mod 2}), and m+2*"'=ma+(1-m)3 (mod?2")
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or
ma+(1-m)B=2""1 (mod2*), and m+2*!1=1-m (mod2*).

The last congruence leads to 2m +2*~1 =1 (mod 2*) then to the contra-
diction 0 =1 (mod 2). This sorts out the third case. The first two cases
are equivalent to

B=22"ta+2*"1 41 (mod?2*) or a=2*18+2*141 (mod?2)

respectively.
Summing up our argument we can say that B has a chance not to be
periodic only if (o, 8) is an element of

(Q1UQ2) N (Q3UQ4)N(Qs U Qs).
We will show that this set is equal to {(1,1),(1,2* —1),(2* = 1,1)}. To do
this note that Q4 = Q2, Qs = @3, Qs = Q1 and (Q1 U Q2) N (Q3U Q) =
(@1NQ3)UQ: = {(1,1)}UQR2 as Q1 N Q3 = {(1,1)}. The rest follows from
that Q2 N Q1 = {(1,2* — 1)} and Q2 N Qs = {(2* - 1,1)}.

(3) Let A = {e, z,y,z%y"}, where z,y is a basis for G and (a, §) is one
of (1,1), (1,2* — 1), (2* — 1,1). We claim that the normed factorization
G = AB implies that either B is periodic or (B) # G.

In the (o, 8) = (1,1) case A = {e,z}{e,y} and from the normed factor-
ization G = B{e,z}{e,y} by Lemma 4 of [1} it follows that B C (z2,y) or
B C (z,y?). Therefore (B) # G.

The (o, 8) = (1,2* — 1) and (o, 8) = (2* — 1,1) cases can be settled in
a similar manner. So for the sake of definiteness we deal with the (a,3) =
(1,2* — 1) case. Now A = {e,z,y,zy~1}. Note that y and zy~! span G and
their product is z. This reduces the problem to the previous case.

This completes the proof.

4. Open problems

We close with five open problems. Does Theorem 1 holds in a more
general setting? Namely, does Theorem 1 hold for groups that are direct
products of two cyclic groups but the orders of the groups are not necessarily
equal? We spell out this question more formally.

Problem 1. Let G be a group of type (2*,2#) and let G = AB be a normed
factorization with |A| = 4, (A) = G. Does it follow that B is periodic?

In the next problem we ask if the condition that |A| = 4 is essential?

Problem 2. Let G be a group of type (2*,2#) and let G = AB be a
normed factorization of G. Does it follow that either A or B does not span
the whole G7
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Is it true in more general replacing 2 by a prime p?

Problem 3. Let G be a group of type (p*,p*) and let G = AB be a
normed factorization of G. Does it follow that either A or B does not span
the whole G7

In Sands’ theorem both of the two factors have four elements. Can we
extend Sands’ theorem for more than two factors?

Problem 4. Let G be a finite abelian 2-group and let G = A; --- 4, be a
normed factorization of G such that each |A;| is either 2 or 4. Does it follow
that at least one of the factors is periodic?

In Sands’ theorem the group is a direct product of two cyclic groups
of order four. Can we extend Sands’ theorem for groups that are direct
products of more than two cyclic groups of order four?

Problem 5. Let G be a group of type (2*1,...,2%), where 1< Aq,..., A,
< 2 and let G = A;---A, be a normed factorization of G, where each
|A;] = 4 or |A;| = 2. Does it follow that at least one of the factors is
periodic?
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