

Zdenka Riečanová

ARCHIMEDEAN AND BLOCK-FINITE LATTICE EFFECT ALGEBRAS

Abstract. We show that every complete effect algebra is Archimedean. Moreover, a block-finite lattice effect algebra has the MacNeille completion which is a complete effect algebra iff it is Archimedean. We apply our results to orthomodular lattices.

1. Basic definitions

Effect algebras (introduced by Foulis D.J. and Bennett M.K. in [7], 1994) are important for modelling unsharp measurements in Hilbert space: The set of all effects is the set of all self-adjoint operators T on a Hilbert space H with $0 \leq T \leq 1$. In a general algebraic form an effect algebra is defined as follows:

DEFINITION 1.1. A structure $(E; \oplus, 0, 1)$ is called an *effect-algebra* if $0, 1$ are two distinguished elements and \oplus is a partially defined binary operation on P which satisfies the following conditions for any $a, b, c \in E$:

- (Ei) $b \oplus a = a \oplus b$ if $a \oplus b$ is defined,
- (Eii) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ if one side is defined,
- (Eiii) for every $a \in P$ there exists the unique $b \in P$ such that $a \oplus b = 1$ (we put $a' = b$),
- (Eiv) if $1 \oplus a$ is defined then $a = 0$.

We often denote the effect algebra $(E; \oplus, 0, 1)$ briefly by E . In every effect algebra E we can define the partial operation \ominus and the partial order \leq by putting

$$a \leq b \text{ and } b \ominus a = c \text{ iff } a \oplus c \text{ is defined and } a \oplus c = b.$$

Since $a \oplus c = a \oplus d$ implies $c = d$, \ominus and \leq are well defined. For more details we refer the reader to [7], [8], [13]–[17], [20]–[23] and the references given

there. We review only a few properties without proof.

LEMMA 1.2. *Elements of an effect algebra $(E; \oplus, 0, 1)$ satisfy the properties:*

- (i) $a \oplus b$ is defined iff $a \leq b'$,
- (ii) $a = (a \wedge b) \oplus (a \ominus (a \wedge b))$, if $a \wedge b$ exists,
- (iii) if $a \oplus b$ and $a \vee b$ exist then $a \wedge b$ exists, and $a \oplus b = (a \wedge b) \oplus (a \vee b)$,
- (iv) $a \oplus b \leq a \oplus c$ iff $b \leq c$ and $a \oplus c$ is defined,
- (v) $a \ominus b = 0$ iff $a = b$,
- (vi) $a \leq b \leq c$ implies that $c \ominus b \leq c \ominus a$ and $b \ominus a = (c \ominus a) \ominus (c \ominus b)$.

DEFINITION 1.3. $1 \in Q \subseteq E$ is called a *sub-effect algebra* of an effect algebra $(E; \oplus, 0, 1)$ iff for all $a, b, c \in E$ such that $a \oplus b = c$, if at least two elements are in Q then $a, b, c \in Q$.

In the sequel, for a poset P and a subset $A \subseteq P$ we will denote by $\bigvee_P A$ and $\bigwedge_P A$ the supremum and infimum of A in P if exist.

2. Lattice effect algebras of mutually compatible elements and blocks

An effect algebra $(E; \oplus, 0, 1)$ is called a *lattice effect algebra* iff $(E; \leq)$ is a lattice. If $(E; \leq)$ is a complete lattice then $(E; \oplus, 0, 1)$ is called a *complete effect algebra*. Two elements x and y of a lattice effect algebra are *compatible* (we write $x \leftrightarrow y$) iff $(x \vee y) \ominus y = x \ominus (x \wedge y)$, (see [17]). We can easily see that $x \leftrightarrow y$ iff $y \oplus (x \ominus (x \wedge y))$ exists. A maximal subset of mutually compatible elements (i.e. every two are compatible) of a lattice effect algebra E is called a *block* of E . In [23] was proved that blocks of E are sub-effect algebras of E (i.e., with inherited operations \oplus , 0, and 1, blocks are effect algebras in their own right). Moreover blocks are MV-algebras (introduced by Chang [5]), therefore as recently Kôpka and Chovanec have shown, MV-algebras in some sense are equivalent to lattice effect algebras of mutually compatible elements [16].

For subsets U and Q of a poset $(P; \leq)$ we will write $U \leq Q$ iff $u \leq q$ for all $u \in U$ and $q \in Q$. We write $a \leq Q$ instead of $\{a\} \leq Q$ and $U \leq b$ instead of $U \leq \{b\}$. If $(E; \oplus, 0, 1)$ is an effect algebra and U and Q are subsets of E such that $U \leq Q$ then we put

$$Q \ominus U = \{q \ominus u \mid u \in U, q \in Q\}.$$

THEOREM 2.1. *Let $(E; \oplus, 0, 1)$ be a lattice effect algebra of mutually compatible elements. Let $U, Q \subseteq E$ such that $U \leq Q$ then*

$$\bigwedge_E (Q \ominus U) = 0 \text{ implies } \{a \in E \mid a \leq Q\} \leq \{b \in E \mid U \leq b\}.$$

Proof. Assume that $U \leq Q$ and $\bigwedge_E(Q \ominus U) = 0$. Let $a \leq Q$ and $U \leq b$. In view of the compatibility of elements of E we have for all $u \in U$ and $q \in Q$ that

$$a \vee u = u \oplus (a \ominus (a \wedge u)) \leq a \vee q = q = u \oplus (q \ominus u)$$

which implies that $a \ominus (a \wedge b) \leq a \ominus (a \wedge u) \leq q \ominus u$. It follows that $a \ominus (a \wedge b) = 0$ and hence $a = a \wedge b$ and $a \leq b$.

It is well known that every poset has the MacNeille completion (i.e., a completion by cuts; see [2]). By J. Schmidt [25] the *MacNeille completion* $MC(P)$ of a poset P is (up to isomorphism) any complete lattice into which P can be supremum-densely and infimum-densely embedded (i.e., for every element $x \in MC(P)$ there exist $M, Q \subseteq P$ such that $x = \bigvee \varphi(M) = \bigwedge \varphi(Q)$, where $\varphi : P \rightarrow MC(P)$ is the embedding). We usually identify P with $\varphi(P)$. In this sense $MC(P)$ preserves all infima and suprema existing in P .

From now on, by (\widehat{P}, \leq) (or \widehat{P} for brevity) we will denote the MacNeille completion of a poset $(P; \leq)$. It is easy to see that if $U, Q \subseteq P$ such that $U \leq Q$ then $\bigvee_{\widehat{P}} U = \bigwedge_{\widehat{P}} Q$ iff $\{a \in P \mid a \leq Q\} \leq \{b \in P \mid U \leq b\}$.

Since every effect algebra $(E; \oplus, 0, 1)$ is a poset (under the partial order defined by $a \leq b$ iff there is $c \in E$ such that $a \oplus c = b$) there exists the MacNeille completion $MC(E)$ of the poset $(E; \leq)$.

DEFINITION 2.2. ([23]) We say that the *MacNeille completion of an effect algebra* $(E; \oplus_E, 0_E, 1_E)$ is a complete effect algebra $(\widehat{E}; \oplus_{\widehat{E}}, 0_{\widehat{E}}, 1_{\widehat{E}})$ iff $\widehat{E} = MC(E)$ and the embedding φ of the poset $(E; \leq)$ into a complete lattice \widehat{E} is such that $\varphi(a) \oplus_{\widehat{E}} \varphi(b)$ exists for $a, b \in E$ iff $a \leq b$, and then $\varphi(a) \oplus_{\widehat{E}} \varphi(b) = \varphi(a \oplus_E b)$.

LEMMA 2.3. *For elements of a lattice effect algebra $(E; \oplus, 0, 1)$:*

- (i) *If $x \leftrightarrow y$ and $x \leftrightarrow z$ then $x \leftrightarrow y \vee z$,*
- (ii) *If $x \leftrightarrow a$ for all $a \in A \subseteq E$ and $\bigvee_E A$ exists then $x \leftrightarrow \bigvee_E A$.*

Proof. (i) This is proved in [24], Theorem 2.1.

(ii) Let $u_{\alpha} = \bigvee \alpha$ for every finite subset $\alpha \subseteq A \subseteq E$. By (i) we have $x \leftrightarrow u_{\alpha}$ for every finite $\alpha \subseteq A$ and by [24] Lemma 4.2 we obtain that $x \leftrightarrow \bigvee_E A = \bigvee_E \{u_{\alpha} \mid \alpha \subseteq A, \alpha \text{ is finite}\}$.

It was proved in [23] that for an effect algebra $(E; \oplus, 0, 1)$ the partial operation \oplus can be extended on $\widehat{E} = MC(E)$ such that $(\widehat{E}; \oplus, 0, 1)$ is a MacNeille completion of $(E; \oplus, 0, 1)$ iff E is *strongly D-continuous*, which means that if $U, Q \subseteq E$ are such that $U \leq Q$ then $\bigwedge_E(Q \ominus U) = 0$ iff $\{a \in E \mid a \leq Q\} \leq \{b \in E \mid U \leq b\}$.

THEOREM 2.4. *A lattice effect algebra $(E; \oplus, 0, 1)$ of mutually compatible elements has the MacNeille completion \widehat{E} a complete effect algebra containing E as a sub-effect algebra (up to embedding) iff for all $U, Q \subseteq E$ such that $U \leq Q$,*

$$\{a \in E \mid a \leq Q\} \leq \{b \in E \mid U \leq b\} \text{ implies } \bigwedge_E (Q \ominus U) = 0.$$

In such case elements of \widehat{E} are mutually compatible.

P r o o f. It remains to prove that elements of \widehat{E} are mutually compatible. Let $x, y \in \widehat{E}$. Then there exist $U_x, U_y \subseteq E$ such that $x = \bigvee_{\widehat{E}} U_x$ and $y = \bigvee_{\widehat{E}} U_y$. Since $u \leftrightarrow v$ for all $u \in U_x$ and $v \in U_y$ we obtain that $x \leftrightarrow y$ by Lemma 2.3.

3. Archimedean effect algebras

The well known fact is that an MV-algebra M has the MacNeille completion which is a complete MV-algebra iff M is Archimedean. Since MV-algebras are lattice effect algebras of mutually compatible elements ([17]), the notion to be Archimedean makes sense also for effect algebras.

DEFINITION 3.1. An effect algebra $(E; \oplus, 0, 1)$ is called *Archimedean* iff for no nonzero element $e \in E$, $e \oplus e \oplus \dots \oplus e$ (n -times) exists for all natural numbers $n \in N$. Set $ne = e \oplus e \oplus \dots \oplus e$ (n -times).

THEOREM 3.2. *For an effect algebra $(E; \oplus, 0, 1)$ the following conditions are equivalent:*

- (i) E is Archimedean,
- (ii) If $U, Q \subseteq E$ are such that $U \leq Q$ then $\{a \in E \mid a \leq Q\} \leq \{b \in E \mid U \leq b\}$ implies that $\bigwedge_E (Q \ominus U) = 0$.

P r o o f. (i) \Rightarrow (ii): Assume that $U, Q \subseteq E$ are such that $U \leq Q$ and $a \leq b$ for all $a \leq Q$ and $U \leq b$. Let $e \in E$ be such that $e \leq Q \ominus U$. Then $e \leq q \ominus u$ for all $u \in U$ and $q \in Q$ which implies that $u \leq q \ominus e$ and $e \oplus u \leq q$. Thus $U \leq q \ominus e$ and $e \oplus u \leq Q$ which implies $e \oplus u \leq q \ominus e$ and hence $e \oplus e \oplus u \leq q$ for all $u \in U$ and $q \in Q$. It follows that $e \oplus e \oplus u \leq Q$ and since $U \leq q \ominus e$ we obtain $e \oplus e \oplus u \leq q \ominus e$ which implies that $e \oplus e \oplus e \oplus u \leq q$ for all $u \in U$ and $q \in Q$. By induction we obtain that ne is defined for every natural number $n \in N$ and hence $e = 0$. Thus $\bigwedge_E (Q \ominus U) = 0$.

(ii) \Rightarrow (i): Let $e \in E$ be such that ne exists for every natural number $n \in N$. Let $Q = \{1 \ominus ne \mid n \in N\}$ and $U = \{a \in E \mid a \leq Q\}$. Then $\bigwedge_E (Q \ominus U) = 0$. Moreover, for all $a \in U$ and $n, m \in N$ we have $a \leq 1 \ominus (m+n)e = (1 \ominus ne) \ominus me$. It follows that $me \leq (1 \ominus ne) \ominus a$, which implies $me \leq Q \ominus U$. We obtain that $me = 0$ and hence $e = 0$. This proves that E is Archimedean.

Combining Theorem 3.2 and the necessary and sufficient condition for effect algebras to have MacNeille completion — the strongly D-continuity — we obtain the following assertion:

THEOREM 3.3. *Every complete effect algebra is Archimedean.*

For lattice effect algebras we obtain the following consequence of Theorems 2.4 and 3.2:

THEOREM 3.4. *For a lattice effect algebra $(E; \oplus, 0, 1)$ of mutually compatible elements, the following conditions are equivalent:*

- (i) E is Archimedean,
- (ii) The MacNeille completion \widehat{E} of E is a complete effect algebra containing E as a sub-effect algebra. In such case elements of \widehat{E} are mutually compatible.

Now, using mentioned above result by Kôpka-Chovanec [17] we obtain the following well known fact for MV-algebras:

COROLLARY 3.5. *For an MV-algebra M the following conditions are equivalent:*

- (i) M is Archimedean,
- (ii) the MacNeille completion of M is a complete MV-algebra.

4. Block-finite effect algebras

DEFINITION 4.1. A lattice effect algebra $(E; \oplus, 0, 1)$ is called *block-finite* iff there is a finite set $\{M_1, M_2, \dots, M_n\}$ of blocks of E such that $E = \bigcup_{k=1}^n M_k$.

LEMMA 4.2. *Let $(E; \oplus, 0, 1)$ be a block-finite lattice effect algebra and $E = \bigcup_{k=1}^n M_k$, where M_k are blocks of E . Then for every net $(x_\alpha)_{\alpha \in \mathcal{E}}$ of elements of E (\mathcal{E} is a directed set) there exist $k_0 \in \{1, 2, \dots, n\}$ and a cofinal subset $\mathcal{E}_1 \subseteq \mathcal{E}$ such that $x_\alpha \in M_{k_0}$ for all $\alpha \in \mathcal{E}_1$.*

Proof. Assume that for every $k \in \{1, 2, \dots, n\}$ there is $\alpha_k \in \mathcal{E}$ such that $x_\alpha \notin M_k$ for all $\alpha \geq \alpha_k$. Then for $\gamma \in \mathcal{E}$ such that $\gamma \geq \alpha_k$ for every $k \in \{1, 2, \dots, n\}$ and all $\alpha \geq \gamma$ we have $x_\alpha \notin M_k$ for every $k \in \{1, 2, \dots, n\}$, a contradiction. It follows that there exists $k_0 \in \{1, 2, \dots, n\}$ such that for every $\beta \in \mathcal{E}$ there is $\alpha \in \mathcal{E}$, $\alpha \geq \beta$ and $x_\alpha \in M_{k_0}$. Hence $\mathcal{E}'_1 = \{\alpha \in \mathcal{E} \mid x_\alpha \in M_{k_0}\}$ is cofinal in \mathcal{E} .

THEOREM 4.3. *Let a complete effect algebra $(\widehat{E}; \oplus, 0, 1)$ be a MacNeille completion of a block-finite lattice effect algebra $(E; \oplus, 0, 1)$. Then $\widehat{E} = \bigcup_{k=1}^n \widehat{M}_k$,*

where \widehat{M}_k are blocks of \widehat{E} such that there are blocks M_k of E , $M_k \subseteq \widehat{M}_k$ and $E = \bigcup_{k=1}^n M_k$.

Proof. Let $E = \bigcup_{k=1}^n M_k$. Since $M_k \subseteq \widehat{E}$ is a set of mutually compatible elements there is a block $\widehat{M}_k \subseteq \widehat{E}$ such that $M_k \subseteq \widehat{M}_k$, for $k = 1, 2, \dots, n$. Let $x \in \widehat{E}$. Then there exists $\mathcal{U} \subseteq E$ such that $x = \bigvee \mathcal{U}$. Assume that the set $\mathcal{E} = \{\alpha \subseteq \mathcal{U} \mid \alpha \text{ is finite}\}$ is directed by set inclusion. We put $u_\alpha = \bigvee \alpha$ for all $\alpha \in \mathcal{E}$. Then $\bigvee \{u_\alpha \mid \alpha \in \mathcal{E}\} = x$. By Lemma 4.2 there exist $k_0 \in \{1, 2, \dots, n\}$ and a cofinal subset $\mathcal{E}_1 \subseteq \mathcal{E}$ such that $u_\alpha \in M_{k_0}$ for all $\alpha \in \mathcal{E}_1$. Evidently, $x = \bigvee \{u_\alpha \mid \alpha \in \mathcal{E}_1\}$. Since by [24] Theorem 4.3 \widehat{M}_{k_0} is τ_o -closed we obtain $x \in \widehat{M}_{k_0}$. We conclude that $\widehat{E} = \bigcup_{k=1}^n \widehat{M}_k$.

THEOREM 4.4. *Let $(E; \oplus, 0, 1)$ be a block-finite effect algebra and let $(\widehat{E}; \leq)$ be the MacNeille completion of the poset $(E; \leq)$. Let for every block M of E , $\widehat{M} = \{x \in \widehat{E} \mid x = \bigvee_{\widehat{E}} U \text{ for some } U \subseteq M\}$. Then*

- (i) \widehat{M} is a complete sublattice of \widehat{E} ,
- (ii) \widehat{M} is the MacNeille completion of the block M .

Moreover, if $E = \bigcup_{k=1}^n M_k$, where M_k are blocks of E then $\widehat{E} = \bigcup_{k=1}^n \widehat{M}_k$, where \widehat{M}_k is the MacNeille completion of M_k for $k = 1, 2, \dots, n$.

Proof. (i) Evidently for every block M of E , $M \subseteq \widehat{M}$ and for all $x \in \widehat{M}$ we have $x = \bigvee_{\widehat{E}} \{u \in M \mid u \leq x\} = \bigvee_{\widehat{M}} \{u \in M \mid u \leq x\}$.

Assume that $D \subseteq \widehat{M}$. Then

- (a) $\bigvee_{\widehat{E}} D = \bigvee_{\widehat{E}} \{\bigvee_{\widehat{E}} U_x^M \mid x \in D, U_x^M = \{u \in M \mid u \leq x\}\} = \bigvee_{\widehat{E}} (\bigcup \{U_x^M \mid x \in D\}) \in \widehat{M}$. It follows that $\bigvee_{\widehat{E}} D = \bigvee_{\widehat{M}} D$.

- (b) In view of the part (a) of the proof we have $\bigvee_{\widehat{E}} \{a \in \widehat{M} \mid a \leq D\} = \bigvee_{\widehat{M}} \{a \in \widehat{M} \mid a \leq D\} = \bigwedge_{\widehat{M}} D$. We obtain $\bigwedge_{\widehat{M}} D = \bigvee_{\widehat{E}} \{a \in \widehat{M} \mid a \leq D\} \leq \bigvee_{\widehat{E}} \{a \in \widehat{E} \mid a \leq D\} = \bigwedge_{\widehat{E}} D$. Since $\bigwedge_{\widehat{M}} D$ is a lower bound of D in E we have also $\bigwedge_{\widehat{E}} D \leq \bigwedge_{\widehat{M}} D$. Thus $\bigwedge_{\widehat{E}} D = \bigwedge_{\widehat{M}} D$.

- (ii) Let $x \in \widehat{M}$. Let us denote $U_x^M = \{u \in M \mid u \leq x\}$ and $Q_x^M = \{q \in M \mid \text{for all } u \in M : u \leq q \text{ iff } u \leq x\}$. By definition of \widehat{M} we have $x = \bigvee_{\widehat{E}} U_x^M = \bigvee_{\widehat{M}} U_x^M$. Further, by part (i) $\bigwedge_{\widehat{M}} Q_x^M$ exists and by definition of \widehat{M} and Q_x^M we obtain

$$\begin{aligned}
\bigwedge_{\widehat{M}} Q_x^M &= \bigvee_{\widehat{M}} \{a \in \widehat{M} \mid a \leq Q_x^M\} \\
&= \bigvee_{\widehat{M}} \{u \in M \mid a \in \widehat{M} \text{ and } u \leq a \leq Q_x^M\} \\
&= \bigvee_{\widehat{M}} \{u \in M \mid u \leq Q_x^M\} = \bigvee_{\widehat{M}} \{u \in M \mid u \leq x\} = x.
\end{aligned}$$

We conclude that \widehat{M} is the MacNeille completion of M by Schmidt [25].

Finally let $x \in \widehat{E}$. Then there is $U \subseteq E$ with $\bigvee_{\widehat{E}} U = x$. Let $\mathcal{E} = \{\alpha \subseteq U \mid \alpha \text{ is finite}\}$ be directed by set inclusion. For every $\alpha \in \mathcal{E}$ we put $u_\alpha = \bigvee \alpha$. Evidently $\bigvee_{\widehat{E}} U = \bigvee \{u_\alpha \mid \alpha \in \mathcal{E}\}$. By Lemma 4.2 there exist $k_1 \in \{1, 2, \dots, n\}$ and a cofinal subset $\mathcal{E}_1 \subseteq \mathcal{E}$ such that $u_\alpha \in M_{k_1}$ for all $\alpha \in \mathcal{E}_1$. Moreover, $\bigvee_{\widehat{E}} \{u_\alpha \mid \alpha \in \mathcal{E}_1\} = \bigvee_{\widehat{E}} \{u_\alpha \mid \alpha \in \mathcal{E}\} = \bigvee_{\widehat{E}} U = x$, which implies that $x \in \widehat{M}_{k_1}$. This proves that $\widehat{E} = \bigcup_{k=1}^n \widehat{M}_k$.

THEOREM 4.5. *A block-finite lattice effect algebra $(E; \oplus, 0, 1)$ has a MacNeille completion which is a complete effect algebra $(\widehat{E}; \oplus, 0, 1)$ containing E as a sub-effect algebra iff E is Archimedean.*

Proof. Let $E = \bigcup_{k=1}^n M_k$ where M_k are blocks of E .

(1) Assume that the MacNeille completion \widehat{E} is a complete effect algebra. Then by Theorem 4.3 $\widehat{E} = \bigcup_{k=1}^n \widehat{M}_k$ where \widehat{M}_k are blocks of \widehat{E} , hence complete MV -algebras. Moreover, $M_k \subseteq \widehat{M}_k$ for $k = 1, 2, \dots, n$. We conclude that E is Archimedean, since $e \in E$ implies $e \in M_k \subseteq \widehat{M}_k$ for some $k \in \{1, \dots, n\}$ and \widehat{M}_k are Archimedean.

(2) Conversely, assume that E is Archimedean. Then every block $M \subseteq E$ is Archimedean. If $U, Q \subseteq E$ are such that $U \leq Q$ then for every finite $\alpha \subseteq U \cup Q$ such that $\alpha \cap U \neq \emptyset$ and $\alpha \cap Q \neq \emptyset$ we put $u_\alpha = \bigvee_E \alpha \cap U$ and $q_\alpha = \bigwedge \alpha \cap Q$. By Lemma 4.2 there exist $k_1 \in \{1, 2, \dots, n\}$ and a cofinal subset $\mathcal{E}_1 \subseteq \mathcal{E} = \{\alpha \subseteq U \cup Q \mid \alpha \cap U \neq \emptyset \neq \alpha \cap Q, \alpha \text{ finite}\}$, such that $u_\alpha \in M_{k_1}$, for all $\alpha \in \mathcal{E}_1$. Similarly there exist $k_2 \in \{1, 2, \dots, n\}$ and a cofinal subset $\mathcal{E}_2 \subseteq \mathcal{E}_1$ such that $q_\alpha \in M_{k_2}$, for all $\alpha \in \mathcal{E}_2$. Let $U_1 = \{u_\alpha \mid \alpha \in \mathcal{E}_2\}$, $Q_1 = \{q_\alpha \mid \alpha \in \mathcal{E}_2\}$. Then $U_1 \leq Q_1$ and $\bigvee_{\widehat{E}} U_1 = \bigvee_{\widehat{E}} U$, $\bigwedge_{\widehat{E}} Q_1 = \bigwedge_{\widehat{E}} Q$. Moreover, $U_1 \cup Q_1$ is a set of mutually compatible elements. It follows that there is a block $M \subseteq E$ such that $U_1 \cup Q_1 \subseteq M$. Since M is Archimedean, by Corollary 3.5 the MacNeille completion \widehat{M} of M is a complete effect algebra. It follows by [23] that M is strongly D -continuous. Since $U_1 \leq Q_1$ and $U_1, Q_1 \subseteq M$ we have $\bigwedge_M (Q_1 \ominus U_1) = 0$ iff $\bigvee_{\widehat{M}} U_1 = \bigwedge_{\widehat{M}} Q_1$. Moreover, for $c \in E$, $c \leq q \ominus u$ for all $u \in U$ and $q \in Q$ iff $c \leq q_\alpha \ominus u_\alpha$ for all $\alpha \in \mathcal{E}$. Thus

$\bigwedge_E(Q \ominus U) = 0$ iff $\bigwedge_E(Q_1 \ominus U_1) = 0$. It follows that $\bigwedge_E(Q \ominus U) = 0$ implies $\bigwedge_M(Q_1 \ominus U_1) = 0$, which implies $\bigwedge_{\widehat{M}} Q_1 = \bigvee_{\widehat{M}} U_1$ and hence $\bigwedge_{\widehat{E}} Q = \bigvee_{\widehat{E}} U$. By Theorem 3.2, also conversely, $\bigwedge_{\widehat{E}} Q = \bigvee_{\widehat{E}} U$ implies $\bigwedge_E(Q \ominus U) = 0$. We conclude that E is strongly D-continuous, which by [23] implies that \oplus can be extended on \widehat{E} such that \widehat{E} becomes a complete effect algebra.

REMARK 4.6. All results of this section may be formulated also for D -lattices (introduced by Kôpka-Chovanec [16]). It is because blocks of a lattice effect algebra $(E; \oplus, 0, 1)$ (or derived D -lattice $(E; \leq, \ominus, 0, 1)$) have the property: If from elements $a, b, c \in E$ with $a \oplus b = c$ ($b = c \ominus a$) defined in E at least two are in a block M then $a, b, c \in M$. Moreover, $1 \in M$. Thus M is simultaneously a sub-effect algebra and a sub- D -lattice in E . Moreover, if \widehat{E} is a MacNeille completion of a poset $(E; \leq)$ then the embedding $\varphi : E \rightarrow \widehat{E}$ has the property $\varphi(a \oplus_E b) = \varphi(a) \oplus_{\widehat{E}} \varphi(b)$ for all $a, b \in E$, $a \leq b'$ iff $\varphi(d \ominus_E c) = \varphi(d) \ominus_{\widehat{E}} \varphi(c)$ for all $c, d \in E$, $c \leq d$.

5. Block-finite orthomodular lattices

It is well known that a lattice effect algebra $(E; \oplus, 0, 1)$ in which $e \wedge e' = 0$ for all $e \in E$ (equivalently, $e \vee e' = 1$) is an orthomodular lattice, which means that $a \leq b \Rightarrow b = a \vee (a' \wedge b)$ for all $a, b \in E$. In such case blocks of E become Boolean algebras. It is because an MV-algebra M is a Boolean algebra iff $e \wedge e' = 0$ for all $e \in M$. Conversely, in every orthomodular lattice $(L; \vee, \wedge, ', 0, 1)$ the partial binary operation \oplus defined by $a \oplus b = a \vee b$ iff $a \leq b'$ satisfies effect algebra axioms. In fact $(L; \oplus, 0, 1)$ becomes an Archimedean lattice effect algebra ([12], [16]). In such case, compatibilities of two elements $a, b \in L$ considered in the orthomodular lattice L and in the effect algebra L coincide. This is because $a \leftrightarrow b$ implies that $a \leftrightarrow b'$ and by Jenča-Riečanová [11], $a = a \wedge (b \vee b') = (a \wedge b) \vee (a \wedge b')$ which implies that $a \vee b = b \vee (a \wedge b') = b \oplus (a \wedge b') = b \oplus (a \ominus (a \wedge b))$. Moreover, in [23] it has been shown that the MacNeille completion \widehat{L} of an orthomodular lattice L is orthomodular iff \widehat{L} is a complete effect algebra containing L as a sub-effect algebra (under which orthomodular lattices L and \widehat{L} and effect algebras L and \widehat{L} are mutually corresponding as stated above). We may now apply Theorems of Section 4 to orthomodular lattices.

THEOREM 5.1. *Let $(L; \vee, \wedge, ', 0, 1)$ be a block-finite orthomodular lattice and let (\widehat{L}, \leq) be the MacNeille completion of the poset $(L; \leq)$. Then*

- (i) \widehat{L} is orthomodular,
- (ii) For every block B of L the set $\widehat{B} = \{x \in \widehat{L} \mid U \subseteq B, x = \bigvee_{\widehat{L}} U\}$ is the MacNeille completion of B .

- (iii) If $L = \bigcup_{k=1}^n B_k$, where B_k are blocks of L then $\widehat{L} = \bigcup_{k=1}^n \widehat{B}_k$, where \widehat{B}_k is the MacNeille completion of B_k for $k = 1, 2, \dots, n$.
- (iv) \widehat{L} is a block-finite orthomodular lattice

References

- [1] L. P. Belluce, *Semi-simple and complete MV-algebras*, Algebra Univ. 29 (1992), 1–9.
- [2] G. Birkhoff, *Lattice Theory*, Providence, Rhode Island, 1967.
- [3] G. Bruns, *Block-finite orthomodular lattices*, Canad. J. Math. 30 (1978), 315–320.
- [4] G. Bruns and R. Greechie, *Orthomodular lattices which can be covered by finitely many blocks*, Canad. J. Math. 34 (1982), 696–699.
- [5] C. C. Chang, *Algebraic analysis of many-valued logics*, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- [6] C. C. Chang, *A new proof of the completeness of the Lukasiewicz axioms*, Trans. Amer. Math. Soc. 89 (1959), 74–80.
- [7] D. J. Foulis, M. K. Bennett, *Effect algebras and unsharp quantum logics*, Found. Phys. 24 (1994), 1331–1352.
- [8] R. Giuntini, H. Greuling, *Toward a formal language for unsharp properties*, Found. Phys. 20 (1989), 931–945.
- [9] R. J. Greechie, D. Foulis, S. Pulmannová, *The center of an effect algebra*, Order 12 (1995), 91–106.
- [10] J. Jakubík, *On complete MV-algebras*, Czech. Math. J. 45 (120) (1995), 473–480.
- [11] G. Jenča, Z. Riečanová, *On sharp elements in lattice ordered effect algebras*, BUSEFAL 80 (1999), 24–29.
- [12] G. Kalmbach, *Orthomodular Lattices*, Academic Press, London, 1983.
- [13] G. Kalmbach, Z. Riečanová, *An axiomatization for abelian relative inverses*, Demonstratio Math. 27 (1994), 769–780.
- [14] F. Kôpka, *D-posets of fuzzy sets*, Tatra Mt. Math. Publ. 1 (1992), 83–87.
- [15] F. Kôpka, *On compatibility in D-posets*, Inter. J. Theor. Physics 8 (1995), 1525–1531.
- [16] F. Kôpka, F. Chovanec, *D-posets*, Math. Slovaca 44 (1994), 21–34.
- [17] F. Kôpka, F. Chovanec, *Boolean D-posets*, Tatra Mt. Math. Publ. 10 (1997), 183–197.
- [18] D. Mundici, *Interpretation of AFC*-algebras in Lukasiewicz sentential calculus*, J. Funct. Anal. 65 (1986), 15–65.
- [19] S. Pulmannová, Z. Riečanová, *Block-finite atomic orthomodular lattices*, J. Pure Appl. Algebra 89 (1993), 295–304.
- [20] Z. Riečanová, *Compatibility and central elements in effect algebras*, Tatra Mt. Math. Publ. 16 (1999), 1–8.
- [21] Z. Riečanová, *On proper orthoalgebras, difference posets and abelian relative inverse semigroups*, Tatra Mt. Math. Publ. 10 (1997), 119–128.
- [22] Z. Riečanová, *Subalgebras, intervals and central elements of generalized effect algebras*, Int. J. Theor. Phys. 38 (1999), 3209–3220.
- [23] Z. Riečanová, *MacNeille completions of D-posets and effect algebras*, Int. J. Theor. Phys. 39 (2000), 855–865.

- [24] Z. Riečanová, *Generalization of blocks for D-lattices and lattice ordered effect algebras*, Int. J. Theor. Phys. 39 (2000), 231–237.
- [25] J. Schmidt, *Zur Kennzeichnung der Dedekind-Mac Neilleschen Hulle einer Geordneten Menge*, Arch. Math. 7 (1956), 241–249.

DEPARTMENT OF MATHEMATICS
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY
SLOVAK UNIVERSITY OF TECHNOLOGY
Ilkovičova 3
812 19 BRATISLAVA 1, SLOVAK REPUBLIC
E-mail: zriecan@elf.stuba.sk

Received July 26, 1999.