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Zdenka Riecanova

ARCHIMEDEAN AND BLOCK-FINITE
LATTICE EFFECT ALGEBRAS

Abstract. We show that every complete effect algebra is Archimedean. Moreover, a
block-finite lattice effect algebra has the MacNeille completion which is a complete effect
algebra iff it is Archimedean. We apply our results to orthomodular lattices.

1. Basic definitions

Effect algebras (introduced by Foulis D.J. and Bennett M.K. in [7], 1994)
are important for modelling unsharp measurements in Hilbert space: The
set of all effects is the set of all self-adjoint operators T on a Hilbert space
H with 0 < T < 1. In a general algebraic form an effect algebra is defined
as follows:

DEFINITION 1.1. A structure (E;®,0,1) is called an effect-algebra if 0, 1
are two distinguished elements and & is a partially defined binary operation
on P which satisfies the following conditions for any a,b,c € E:

(Ei) b®a=a®bif a ® b is defined,
(Eil) (a®b)®c=ad® (b c) if one side is defined,
(Eiii) for every a € P there exists the unique b € P such that a®b =1 (we
put o’ =b),
(Eiv) if 1 ® a is defined then a = 0.

We often denote the effect algebra (F; &, 0,1) briefly by E. In every effect
algebra E we can define the partial operation © and the partial order < by
putting

a<band bSa=ciffa®cis defined and a®c=5.

Since a® ¢ = a®d implies ¢ = d, © and < are well defined. For more details
we refer the reader to [7], [8], [13]-[17], [20]-[23] and the references given
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there. We review only a few properties without proof.

LEMMA 1.2. Elements of an effect algebra (E;®,0,1) satisfy the properties:

(i) a®b is defined iff a < ¥V,

(i) a=(aAb)® (a0 (aAb)), if a A b exists,

(i) if a®b and a Vb exist then a Ab ezists, and adb = (aAb) ® (a V),
(iv) a®b<a®ciff b <c and a ® c is defined,

(v) aeb=0iffa=0b,

(vi) a <b < c implies that cOb<cOa andbba=(cOa)o (cOD).

DEFINITION 1.3. 1 € Q C F is called a sub-effect algebra of an effect algebra
(E;,0,1) iff for all a,b,c € E such that a @ b = ¢, if at least two elements
are in @ then a,b,c € Q.

In the sequel, for a poset P and a subset A C P we will denote by \/, A
and Ap A the supremum and infimum of A in P if exist.

2. Lattice effect algebras of mutually compatible elements and
blocks

An effect algebra (E;®,0,1) is called a lattice effect algebra iff (E; <) is
a lattice. If (E; <) is a complete lattice then (F;®,0,1) is called a complete
effect algebra. Two elements = and y of a lattice effect algebra are compatible
(we write z « y) iff (zVy)Oy = 26 (xzAy), (see [17]). We can easily see that
z e yiff y® (z O (z Ay)) exists. A maximal subset of mutually compatible
elements (i.e. every two are compatible) of a lattice effect algebra FE is called
a block of E. In [23] was proved that blocks of E are sub-effect algebras of
E (i.e., with inherited operations @, 0, and 1, blocks are affect algebras in
their own right). Moreover blocks are MV-algebras (introduced by Chang
[5]), therefore as recently Koépka and Chovanec have shown, MV-algebras in
some sense are equivalent to lattice effect algebras of mutually compatible
elements [16].

For subsets U and @ of a poset (P; <) we will write U < Q iff u < q for
all u € U and q € Q. We write a < @ instead of {a} < @ and U < b instead
of U < {b}. If (E;®,0,1) is an effect algebra and U and Q are subsets of E
such that U < @) then we put

ReU={qou|ueclqgeQ}.

THEOREM 2.1. Let (E; ®,0,1) be a lattice effect algebra of mutually compat-
ible elements. Let U,Q C E such that U < Q then

/\(QGU)=0implies{aEElaSQ}S{b€E|USb}.
E
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Proof Assume that U < Q and Ag(QeU)=0.Leta<Qand U <b.In
view of the compatibility of elements of E we have for all w € U and q € Q

that
aVu=u®(a®(aAu))<aVg=qg=ud (qOu)

which implies that a©(anb) < a6(aAu) < gou. It follows that a©(aAb) =0
and hencea=a Aband a <b.

It is well known that every poset has the MacNeille completion (i.e., a
completion by cuts; see [2]). By J. Schmidt [25] the MacNeille completion
MC(P) of a poset P is (up to isomorphism) any complete lattice into which
P can be supremum-densely and infimum-densely embedded (i.e., for every
element z € MC(P) there exist M,Q C Psuchthatz =\ (M) = A ¢(Q),
where ¢ : P — MC(P) is the embedding). We usually identify P with ¢(P).
In this sense M C(P) preserves all infima and suprema existing in P.

From now on, by (ﬁ, <) (or P for brevity) we will denote the MacNeille
completion of a poset (P;<). It is easy to see that if U,Q C P such that
U<QthenVzU=As;Qiff {acP|la<Q}<{beP|U<b}.

Since every effect algebra (F;®,0,1) is a poset (under the partial order
defined by a < b iff there is ¢ € E such that a & ¢ = b) there exists the
MacNeille completion M C(E) of the poset (E; <).

DEFINITION 2.2. ([23]) We say that the MacNeille completion of an effect
algebra (E;®g,0g, 1) is a complete effect algebra (E, 5,05, 15) iff £ =
MC(E) and the embedding ¢ of the poset (E; <) into a complete lattice E is
such that ¢(a) @5 ¢(b) exists for a,b € E'iff a <V, and then (a)®5¢(b) =
¢(a ®p b).

LEMMA 2.3. For elements of a lattice effect algebra (E;®,0,1):

(i) Ifr > yandz — z thenz - yVz,
(i) Ifc < a foralla€ ACE and \/5 A exists then x — \/ g A.

Proof. (i) This is proved in [24], Theorem 2.1.
(i) Let uq = \/ a for every finite subset « C A C E. By (i) we have

Z < uq for every finite @ C A and by [24] Lemma 4.2 we obtain that
z o VgA=Vg{ua|aCA, ais finite}.

It was proved in [23] that for an effect algebra (E;@®,0,1) the partial
operation @ can be extended on E = MC(E) such that (E;®,0,1) is a
MacNeille completion of (E;®,0,1) iff E is strongly D-continuous, which
means that if U,Q C E are such that U < @ then Ag(Qe U) = 0 iff
{0€E|a<Q}<{beE|U<Lb}
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THEOREM 2.4. A lattice effect algebra (E;®,0,1) of mutually compatible
elements has the MacNeille completion E a complete effect algebra contain-
ing E as a sub-effect algebra (up to embedding) iff for all U,Q C E such

that U < Q,

{acEla<Q}<{beE|U<b} implies \(QoU)=0.
E

In such case elements ofE are mutually compatible.

Proof, It remains to prove that elements of E are mutually compatible. Let
z,y € E. Then there exist Uy, Uy C E'suchthat z =\ 5U; andy = V5 U,.
Since u « v for all u € U, and v € U, we obtain that z < y by Lemma 2.3.

3. Archimedean effect algebras

The well known fact is that an MV-algebra M has the MacNeille com-
pletion which is a complete MV-algebra iff M is Archimedean. Since MV-
algebras are lattice effect algebras of mutually compatible elements ([17]),
the notion to be Archimedean makes sense also for effect algebras.

DEFINITION 3.1. An effect algebra (E;®,0,1) is called Archimedean iff for
no nonzero element e € E, e ®e® ... D e (n-times) exists for all natural
numbers n € N. Set ne=e®e®...d e (n-times).

THEOREM 3.2. For an effect algebra (E;®,0,1) the following conditions are
equivalent:

(i) E is Archimedean,
(i) If U,Q C E are such that U < Q then {a € E | a < Q} <
{b€ E|U < b} implies that Az(Qe U) =0.

Proof. (i)=(ii): Assume that U,Q C E are such that U < @ and a < b for
ala < Qand U <b.Let e€ Ebesuchthat e < Qo U. Thene < g0 u
for all u € U and ¢ €  which implies that u < ¢& e and e ® u < q. Thus
U <geeand edu < Q which impliese®u < g6e and henceePedu < ¢
for all u € U and q € Q. It follows that ede®u < ) and since U < qSe we
obtain e@e@u < ¢S e which implies that e@ePePu < g for all u € U and
g € Q. By induction we obtain that ne is defined for every natural number
n € N and hence e = 0. Thus Ag(QeU)=0.

(ii)=(i): Let e € E be such that ne exists for every natural number
n€N. Lt Q={16ne|n € N}and U = {a € E | a £ Q}. Then
Ag(Q@ ©U) = 0. Moreover, for all a € U and n,m € N we have a <
16 (m+n)e = (1 6ne) ©me. It follows that me < (1 © ne) © a, which
implies me < @ © U. We obtain that me = 0 and hence e = 0. This proves
that E is Archimedean.
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Combining Theorem 3.2 and the necessary and sufficient condition for
effect algebras to have MacNeille completion — the strongly D-continuity
— we obtain the following assertion:

THEOREM 3.3. Every complete effect algebra is Archimedean.

For lattice effect algebras we obtain the following consequence of Theo-
rems 2.4 and 3.2:

THEOREM 3.4. For a lattice effect algebra (E; ®,0, 1) of mutually compatible
elements, the following conditions are equivalent:

(i) E is Archimedean,

(i1) The MacNeille completion E of E is a complete effect algebra con-
taining E as a sub-effect algebra. In such case elements of E are mutually
compatible.

Now, using mentioned above result’ by Kopka-Chovanec [17] we obtain
the following well known fact for MV-algebras:

COROLLARY 3.5. For an MV-algebra M the following conditions are equiv-
alent:

(1) M is Archimedean,
(ii) the MacNeille completion of M is a complete MV-algebra.

4. Block-finite effect algebras
DEFINITION 4.1. A lattice effect algebra (E;®,0,1) is called block-finite iff

there is a finite set { My, Ms, ..., M,} of blocks of E such that E = |J Mj.
k=1

LEMMA 4.2. Let (E;®,0,1) be a block-finite lattice effect algebra and E =

\U Mg, where My, are blocks of E. Then for every net (z4)ace of elements
k=1

of E (€ is a directed set) there exist ko € {1,2,...,n} and a cofinal subset
&1 C € such that xo € My, for all a € &;.

Proof. Assume that for every k € {1,2,...,n} there is ar € £ such that
o &€ My for all @ > ag. Then for v € £ such that v > «p for every
ke {1,2,...,n} and all @ > v we have z,, & M, for every k € {1,2,...,n},
a contradiction. It follows that there exists kg € {1,2,...,n} such that for
every S € £ thereisa € &,a> P and z, € My,. Hence £ = {a € £ |z, €
M, } is cofinal in £.

THEOREM 4.3. Let a complete effect algebra (E, ®,0,1) be a MacNeille com-
pletion of a block-finite lattice effect algebra (E;®,0,1). Then E= U Mk,
k=1
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where M\k are blocks of E such that there are blocks M, of E, My C ]\/Zk

and E = |J M.
k=1

Proof. Let E = |J M. Since M, C E is a set of mutually compatible
k=1

elements there is a block ]\//fk - E such that M C M\k, for k=1,2,...,n
Let z € E. Then there exists f C E such that z = \/U. Assume that
the set £ = {&¢ C U | « is finite } is directed by set inclusion. We put
ue = Vaforall a € £ Then \/{u, | @ € £} = z. By Lemma 4.2 there exist
ko € {1,2,...,n} and a cofinal subset & C & such that u, € M}, for all

a € &;. Evidently, z = \/{ua | @ € &1}, Since by [24] Theorem 4.3 My, is

To-closed we obtain = € Mko We conclude that E = U Mk
k=1

THEOREM 4.4. Let (E;®,0,1) be a block-finite effect algebra and let (E, <)
be the MacNeille completion of the poset (E;<). Let for every block M of

E,M\z{xeﬁ|m=V§UforsomeU§M}. Then

(i) Misa complete sublattice of E,
(ii) M s the MacNeille completion of the block M.

Moreover, if E=|J;_, My, where My are blocks of E then E=J;_, Mo,
where My, is the MacNeille completion of My fork=1,2,...,n

Proof. (i) Evidently for every block M of E, M C M and for allz € M
wehavez =\ z{ue M|u<z}=Vg5{ue M|u<z}

Assume that D C M. Then

(@) VaD = Va(VaU¥ [z € D, U¥ = (ue M | u < o)} =
\/E(U{Uy | z € D}) € M. It follows that VgD =VgD.

(b) In view of the part (a) of the proof we have \/z{a € M|a<D}=
\/ﬁ{ael/\/l\|a§D}=/\A7D.Weobtain/\A7D:\/§{aeJ/\4\|as
D}. <Vgla€ E|la <D} = AgzD. Since A; D is a lower bound of
D in E we have also Ag D < A D. Thus Ag D= Ay D.

(i) Let z € M. Let us denote UM = {u € M | u < z} and QM =

{ge M |forallu € M : u < qiffu < z}. By definition of M we have
z=Vz UM = Vi UM, Further, by part (i) N QM exists and by definition

of M and QM we obtain
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Ng@ =Vgloe Mia<Ql}
=\/ﬁ{u€M|aEJ\/4\andu§a§QIzM}
:\/ﬁ{ueMIUSQQ/I}=\/]Q{U€M|US$}:$-

We conclude that M is the MacNeille completion of M by Schmidt [25].

Finally let z € E. Then there is U C E with VEU = z. Let £ =
{a C U | a is finite} be directed by set inclusion. For every a € £ we put
uq = o Evidently VU = V{ua | a € £}. By Lemma 4.2 there exist
k1 € {1,2,...,n} and a cofinal subset £&; C & such that u, € My, for all
a €& Moreover VE{Ua |la €&} = VE{UO‘ |a € 5} VzU = z, which

implies that = € Mkl This proves that E= Ur= 1Mk

THEOREM 4.5. A block-finite lattice effect algebra (E;®,0,1) has a Mac-
Neille completion which is a complete effect algebra (E;®,0,1) containing
E as a sub-effect algebra iff E is Archimedean.

Proof. Let E = |J M} where M} are blocks of E.
k=1

(1) Assume that the MacNeille completion Eisa complete effect algebra.

~ no == == ~
Then by Theorem 4.3 E = |J M}, where M, are blocks of E, hence complete
k=1

MYV -algebras. Moreover, M), C Mk for k =1, 2 ,n. We conclude that E
is Archimedean, since e € FE implies e € M C Mk for some k € {1,...,n}

and My are Archimedean.

(2) Conversely, assume that E is Archimedean. Then every block M C E
is Archimedean. If U,Q C E are such that U < @ then for every finite
aCUUQsuchthat aNU # Pand anNQ # 0 we put uq = \VganU
and ¢ = Aa N Q. By Lemma 4.2 there exist k3 € {1,2,...,n} and a
cofinal subset £ C € = {a CUUQ | anNU # B # aNQ, « finite}, such that
Uq € My,, for all @ € &;. Similarly there exist k2 € {1,2,...,n} and a cofinal
subset &, C &; such that g, € My,, for all a € €. Let Uy = {uq | @ € &2},
@1 ={¢a | @ € &} Then U1 < Q1 and VUi = VU, A5Q@1 = N\5Q.
Moreover, U; U (1 is a set of mutually compatible elements. It follows that
there is a block M C E such that U; UQ; C M. Since M is Archimedean,
by Corollary 3.5 the MacNeille completion M of M is a complete effect
algebra. It follows by [23] that M is strongly D-continuous. Since U; < @
and Uy, Q1 © M we have A\, (Q10U1) = 0iff \/ﬁ U = /\1\’/} Q1. Moreover,
force B, c<gOuforallu e Uandq € Qiff c < g, Ou, for all o € €. Thus
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Ae(@QoU)=0iff Ag(Q:0U1) =0. It follows that A 5(Q©&U) = 0 implies
A (Q16U1) = 0, which implies A - Q1 = V/;; U1 and hence A5 Q = V3 U.
By Theorem 3.2, also conversely, )x Q V3 U implies Az(Qo U) = 0.
We conclude that F i is strongly D- contlnuous Wthh by [23] implies that &
can be extended on E such that E becomes a complete effect algebra.

REMARK 4.6. All results of this section may be formulated also for D-
lattices (introduced by Képka-Chovanec [16]). It is because blocks of a lattice
effect algebra (F; ®,0, 1) (or derived D-lattice (E; <,6,0,1)) have the prop-
erty: If from elements a,b,c € E with a @b = ¢ (b = ¢S a) defined in E
at least two are in a block M then a,b,c € M. Moreover, 1 € M. Thus
M is simultaneously a sub-effect algebra and a sub-D-lattice in E. More-
over, if F is a MacNeille completion of a poset (F; <) then the embedding
¢ : E — E has the property p(a®gb) = ¢(a) ©pp(b) foralla,b € E,a <V
iff p(dSEc)=¢(d) Oz ¢(c) forallc,de B, c < d.

5. Block-finite orthomodular lattices

It is well known that a lattice effect algebra (F; @, 0, 1) in which eAe’ =0
for all e € E (equivalently, e V ¢’ = 1) is an orthomodular lattice, which
means that a <b=b=aV (a’ Ab) for all a,b € E. In such case blocks of
E become Boolean algebras. It is because an MV-algebra M is a Boolean
algebra iff e A e’ = 0 for all e € M. Conversely, in every orthomodular
lattice (L; V, A, 0,1) the partial binary operation @ defined by a®b =a Vb
iff a < V' satisfies effect algebra axioms. In fact (L;®,0,1) becomes an
Archimedean lattice effect algebra ([12], [16]). In such case, compatibilities
of two elements a,b € L considered in the orthomodular lattice L and in
the effect algebra L coincide. This is because a « b implies that a < b’ and
by Jenca-Rietanovd [11],a = a A (bV V) = (a Ab) V (a AD') which implies
that aVb=bV (aAb) =bD (aAb) =bd (a ©(aAb)). Moreover, in
[23] it has been shown that the MacNeille completion L of an orthomodular
lattice L is orthomodular iff L is a complete effect algebra containing L as
a sub-effect algebra (under which orthomodular lattices L and L and effect
algebras L and L are mutually corresponding as stated above). We may now
apply Theorems of Section 4 to orthomodular lattices.

THEOREM 5.1. Let (L;V, A, ,0,1) be a block-finite orthomodular lattice and
let (L, <) be the MacNeille completion of the poset (L; <). Then

(i) L is orthomodular,
(ii) For every block B of L the set B = {z € LIUCB, z= V; U} is
the MacNeille completion of B.
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(iif) If L = \Jr_, Bk, where By, are blocks of L then L = J;_, Bk, where

Ek is the MacNeille completion of By fork=1,2,...,n.

(iv) L is a block-finite orthomodular lattice

(2]
(3]
4

(5]

(7]
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