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Zdenka Riecanová 

A R C H I M E D E A N A N D BLOCK-FINITE 
LATTICE EFFECT ALGEBRAS 

A b s t r a c t . We show tha t every complete effect algebra is Archimedean. Moreover, a 
block-finite lattice effect algebra has the MacNeille completion which is a complete effect 
algebra iff it is Archimedean. We apply our results to orthomodular lattices. 

1. Basic definitions 
Effect algebras (introduced by Foulis D.J. and Bennett M.K. in [7], 1994) 

are important for modelling unsharp measurements in Hilbert space: The 
set of all effects is the set of all self-adjoint operators T on a Hilbert space 
H with 0 < T < 1. In a general algebraic form an effect algebra is defined 
as follows: 

DEFINITION 1.1. A structure ( £ ; © , 0 , 1 ) is called an effect-algebra if 0, 1 
are two distinguished elements and © is a partially defined binary operation 
on P which satisfies the following conditions for any a, b, c £ E: 

(Ei) 6ffio = a f f i 6 i f a © 6 i s defined, 
(Eii) (a © b) © c = a © (b © c) if one side is defined, 

(Eiii) for every a € P there exists the unique b G P such that a © b = 1 (we 
put a' = b), 

(Eiv) if 1 © a is defined then a — 0. 

We often denote the effect algebra (E; ©, 0,1) briefly by E. In every effect 
algebra E we can define the partial operation © and the partial order < by 
putting 

a < b and bQ a — c iff off ic is defined and a® c = b. 
Since affic = a@d implies c = d, © and < are well defined. For more details 
we refer the reader to [7], [8], [13]—[17], [20]—[23] and the references given 
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there. We review only a few properties without proof. 

LEMMA 1.2. Elements of an effect algebra ( £ ? ; © , 0 , 1 ) satisfy the properties: 

(i) a © b is defined iff a < b', 
(ii) a = (a A b) © (a 0 (a A b)), if a A 6 exists, 

(iii) if a®b and a V b exist then a A b exists, and a ffi b = (a A b) ffi (a V b), 
(iv) a ffi 6 < a © c i f f b < c and a © c is defined, 
(v) aQb = 0 iff a = b, 

(vi) a <b < c implies that cQb < cQ a and bQ a = (c © a) © (c © b). 

DEFINITION 1.3. 1 € Q C E is called a sub-effect algebra of an effect algebra 
(E-, ©, 0,1) iff for all a,b,c € E such that a © b = c, if at least two elements 
are in Q then a,b,c € Q. 

In the sequel, for a poset P and a subset A C P we will denote by \/p A 
and f\p A the supremum and infimum of A in P if exist. 

2. Lattice effect algebras of mutually compatible elements and 
blocks 
An effect algebra (E; ©, 0,1) is called a lattice effect algebra iff (E; < ) is 

a lattice. If (E; < ) is a complete lattice then (E\ ©, 0,1) is called a complete 
effect algebra. Two elements x and y of a lattice effect algebra are compatible 
(we write x <-» y) iff (xVy)©y = xQ(xAy), (see [17]). We can easily see that 
x y iff y © (x Q (x A y)) exists. A maximal subset of mutually compatible 
elements (i.e. every two are compatible) of a lattice effect algebra E is called 
a block of E. In [23] was proved that blocks of E are sub-effect algebras of 
E (i.e., with inherited operations ©, 0, and 1, blocks are affect algebras in 
their own right). Moreover blocks are MV-algebras (introduced by Chang 
[5]), therefore as recently Kopka and Chovanec have shown, MV-algebras in 
some sense are equivalent to lattice effect algebras of mutually compatible 
elements [16]. 

For subsets U and Q of a poset (P; < ) we will write U < Q iff u < q for 
all u e U and q € Q. We write a < Q instead of { a } < Q and U <b instead 
of U < {b}. If (E; ffi, 0,1) is an effect algebra and U and Q are subsets of E 
such that U < Q then we put 

Q © U = {q © u | U G U, q € Q}. 

THEOREM 2.1. Let (E; ffi, 0,1) be a lattice effect algebra of mutually compat-
ible elements. Let U,Q Q E such that U < Q then 

/\(Q QU) = 0 implies {a € E \ a < Q} < {b e E \ U < b}. 
E 
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P r o o f . Assume that U < Q and f\E(Q © U) = 0. Let a < Q and U < b. In 
view of the compatibility of elements of E we have for all u G U and q G Q 
that 

a\/ u — u ® {a Q {a A u)) <a\/q = q = u®(qQu) 

which implies that aQ(aAb) < a©(aAM) < qQu. It follows that a©(aA6) = 0 
and hence a = a A b and a < b. 

It is well known that every poset has the MacNeille completion (i.e., a 
completion by cuts; see [2]). By J . Schmidt [25] the MacNeille completion 
MC(P) of a poset P is (up to isomorphism) any complete lattice into which 
P can be supremum-densely and infimum-densely embedded (i.e., for every 
element x G MC(P) there exist M,Q CP such that x = V <p{M) = A <P(Q)> 
where ip : P —> MC(P) is the embedding). We usually identify P with <p(P). 
In this sense M C ( P ) preserves all infima and suprema existing in P. 

From now on, by (P, < ) (or P for brevity) we will denote the MacNeille 
completion of a poset (P; < ) . It is easy to see that if U, Q C P such that 
U < Q then \ / = ift {a £ P \ a < Q} < {b £ P \ U < b}. 

Since every effect algebra (E; ©, 0,1) is a poset (under the partial order 
defined by a < b iff there is c G E such that a © c = b) there exists the 
MacNeille completion MC{E) of the poset [E] <). 

DEFINITION 2.2. ([23]) We say that the MacNeille completion of an effect 
algebra (E\®E,0EAE) is a complete effect algebra {E\ ffi^, 1^) iff E = 
MC(E) and the embedding (p of the poset (E; < ) into a complete lattice E is 
such that (p(a) ©~</?(&) exists for a, b G E iff a < b', and then ip{a) ©~<^(&) = 
<P(A (BE b). 

LEMMA 2.3. For elements of a lattice effect algebra {E\ ©, 0,1) : 

(i) If x <-> y and x <-> z then x «-> y V z, 
(ii) If x a for all a G A C E and \f E A exists then x <-> VE 

P r o o f , (i) This is proved in [24], Theorem 2.1. 
(ii) Let ua = \J a for every finite subset a C A C E. By (i) we have 

for every finite a C A and by [24] Lemma 4.2 we obtain that 
x <-> \JE A = \/E{ua | a C A , a is finite}. 

It was proved in [23] that for an effect algebra (i?;ffi,0,l) the partial 
operation © can be extended on E = MC(-E) such that (E\ ©, 0,1) is a 
MacNeille completion of (E; ©, 0,1) iff E is strongly D-continuous, which 
means that if {7,Q C E are such that U < Q then /\E(Q Q U) = 0 iff 
{a G E | a < Q} < {b G E | U < b}. 
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THEOREM 2.4. A lattice effect algebra (E;Q,0,1) of mutually compatible 
elements has the MacNeille completion E a complete effect algebra contain-
ing E as a sub-effect algebra (up to embedding) iff for all U,Q C E such 
that U <Q, 

{a € E \ a < Q} < {b £ E \ U < b} implies f\(Q QU) = Q. 
E 

In such case elements of E are mutually compatible. 

P r o o f. It remains to prove that elements of E are mutually compatible. Let 
x,y G E. Then there exist Ux, Uy C E such that x = Vg Ux and y = Vg Uy. 
Since u v for all u G Ux and v G Uy we obtain that x <-> y by Lemma 2.3. 

3. Archimedean effect algebras 
The well known fact is that an MV-algebra M has the MacNeille com-

pletion which is a complete MV-algebra iff M is Archimedean. Since MV-
algebras are lattice effect algebras of mutually compatible elements ([17]), 
the notion to be Archimedean makes sense also for effect algebras. 

DEFINITION 3.1. An effect algebra (£J;ffi,0,1) is called Archimedean iff for 
no nonzero element e G E, e © e © . . . © e (n-times) exists for all natural 
numbers n G N. Set ne = e © e © . . . © e (n-times). 

THEOREM 3.2. For an effect algebra (£7; ©,0,1) the following conditions are 
equivalent: 

(i) E is Archimedean, 
(ii) If U,Q C E are such that U < Q then {a G E \ a < Q} < 

{b £ E \ U < b} implies that f\E{Q QU) = 0. 

P r o o f . (i)=>(ii): Assume that U, Q C E are such that U < Q and a < b for 
all a < Q and U < b. Let e G E be such that e < Q QU. Then e < qQu 
for all u G U and q G Q which implies that u < q © e and e © u < q. Thus 
U < qG e and e © u < Q which implies e © u < qQe and hence e©e © u < q 
for all u G U and q G Q. It follows that effie©u < Q and since U < qQe we 
obtain effieffiu < qQe which implies that e©e©e©u < q for all u G U and 
q G Q. By induction we obtain that ne is defined for every natural number 
n G N and hence e = 0. Thus f\E{Q QU) = 0. 

(ii)=>(i): Let e G E be such that ne exists for every natural number 
n G N. Let Q = {1 © ne | n G N} and U = {a G E \ a < Q}. Then 
AE(Q Q U) = 0. Moreover, for all a G U and n,m G N we have a < 
1 © (m + n)e = (1 © ne) Q me. It follows that me < (1 © ne) Q a, which 
implies me < Q QU. We obtain that me = 0 and hence e = 0. This proves 
that E is Archimedean. 
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Combining Theorem 3.2 and the necessary and sufficient condition for 
effect algebras to have MacNeille completion — the strongly D-continuity 
— we obtain the following assertion: 

THEOREM 3.3. Every complete effect algebra is Archimedean. 

For lattice effect algebras we obtain the following consequence of Theo-
rems 2.4 and 3.2: 

THEOREM 3.4. For a lattice effect algebra (E; ©, 0,1) of mutually compatible 
elements, the following conditions are equivalent: 

(i) E is Archimedean, 
(ii) The MacNeille completion E of E is a complete effect algebra con-

taining E as a sub-effect algebra. In such case elements of E are mutually 
compatible. 

Now, using mentioned above result by Kopka-Chovanec [17] we obtain 
the following well known fact for MV-algebras: 

COROLLARY 3.5. For an MV-algebra M the following conditions are equiv-
alent: 

(i) M is Archimedean, 

(ii) the MacNeille completion of M is a complete MV-algebra. 

4. Block-finite effect algebras DEFINITION 4.1. A lattice effect algebra (¿2;©, 0,1) is called block-finite iff 
n 

there is a finite set {Mi , M 2 , . . . , Mn} of blocks of E such that E = (J Mk-
k=1 

LEMMA 4.2. Let (E] ©, 0,1) be a block-finite lattice effect algebra and E = 
n 

u Mk, where Mk are blocks of E. Then for every net (xa)a^£ of elements 
k=1 
of E (£ is a directed set) there exist ko G { 1 , 2 , . . . , n} and a cofinal subset 
£i C £ such that xa G Mk0 for all a G £\. 
P r o o f . Assume that for every k G {1, 2 , . . . , n} there is ak G £ such that 
xa £ Mk for all a > ak- Then for 7 £ £ such that 7 > a^ for every 
A; € { 1 , 2 , . . . , n} and all a > 7 we have xa 0 Mk for every k G { 1 , 2 , . . . , n}, 
a contradiction. It follows that there exists ko 6 {1, 2 , . . . ,n } such that for 
every /3 G £ there is a € £, a > (3 and xa £ Mk0. Hence £[ = {a G £ \ xa G 
Mfc0} is cofinal in £. 

THEOREM 4.3. Let a complete effect algebra (E\ ffi, 0,1) be a MacNeille com-

pletion of a block-finite lattice effect algebra (E; ©,0,1). Then E = (J Mk, 
k=1 
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where Mk are blocks of E such that there are blocks Mk of E, Mk C Mk 
n 

and E = |J Mk. 
k=1 

n ^ 
Proof . Let E — |J Mk- Since Mk C E is a set of mutually compatible 

k=1 
elements there is a block Mk C E such that Mk C Mk, for k = 1 , 2 , . . . , n. 
Let x G E. Then there exists U C E such that x = \JU. Assume that 
the set £ = {a C U | a is finite } is directed by set inclusion. We put 
ua = \J a for all a € £. Then \/{ua \ a G £} = x. By Lemma 4.2 there exist 
ko G {1 ,2 , . . . ,n} and a cofinal subset £\ C £ such that ua G Mk0 for all 

a G £\. Evidently, x — \J{ua \ a G £\). Since by [24] Theorem 4.3 Mk0 is 

T0-closed we obtain x G Mk0. We conclude that E = ( J Mk • 
fc=i 

THEOREM 4 . 4 . Let (E; © , 0 , 1 ) be a block-finite e f f e c t algebra and let (E; <) 
be the MacNeille completion of the poset (E\ <). Let for every block M of 
E, M = {x G E \x = \J%U for some U CM}. Then 

(i) M is a complete sublattice of E, 

(ii) M is the MacNeille completion of the block M. 

Moreover, if E = Mk, where Mk are blocks of E then -E = Ufc=i Mk, 
where Mk is the MacNeille completion of Mk for k = 1,2,... ,n. 

Proof , (i) Evidently for every block M of E, M C M and for all x G M 
we have x - G M \ u < x} = G M \ u < a;}. 

Assume that D C M. Then 

(a) \J~D = V g i V ^ f \x_€D,U? = {u€M\u< *}} = 

Vg(LKU™ | x G D}) G M. It follows that \J~D = \J~D. 

(b) In view of the part (a) of the proof we have \f-g{a G M | a < D} = 

\JQ{a G M | a J D} = D. We obtain AgD = \/~{a G M | a < 

D} < E E \ a < D} = /\^D. Since ¡ \ q D is a lower bound of 
D in E we have also /\~D < D. Thus = A~D. 

(ii) Let x G M. Let us denote U™ = {u G M | u < x} and Q™ = 
{q G M | for all u G M : u < q iff u < x}. By definition of M we have 
x = V g U? = VM ^ • ^ t h e r , by part (i) A ^ Qx exists and by definition 
of M and Qwe obtain 
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= \J~{u € M \ a £ M and u < a < Q f } 

= YG{U €M\U<Q™} = \F~IU E M \ u < x } = x. 

We conclude that M is the MacNeille completion of M by Schmidt [25]. 
Finally let x G Ê. Then there is U Ç E with M = x. Let £ = 

{ a Ç U | a is finite} be directed by set inclusion. For every a € £ we put 
UA — OL. Evidently \ J = \/{UA | a G £}. By Lemma 4.2 there exist 
k\ G {1,2,... ,n} and a cofinal subset £\ Ç £ such that ua G Mkl for all 
a G £\. Moreover, \/~{ua \ a G £{\ = \J~{ua \ a G £} = = xi which 
implies that x G Mkl. This proves that E = (J^=1Mk. 

T H E O R E M 4 . 5 . A block-finite lattice effect algebra (E; © , 0 , 1 ) has a Mac-
Neille completion which is a complete effect algebra (E\ ©, 0,1) containing 
E as a sub-effect algebra iff E is Archimedean. 

n 
Proof . Let E = \J Mk where Mk are blocks of E. 

k=1 

(1) Assume that the MacNeille completion E is a complete effect algebra. 

Then by Theorem 4.3 E = [J Mk where Mk are blocks of E, hence complete 
fc=i 

MF-algebras. Moreover, Mk Ç Mk for k = 1, 2 , . . . , n. We conclude that E 
is Archimedean, since e G E implies e G Mk Ç Mk for some k G { 1 , . . . , n) 

and Mk are Archimedean. 
(2) Conversely, assume that E is Archimedean. Then every block M Ç E 

is Archimedean. If U, Q Ç E are such that U < Q then for every finite 
a Ç U U Q such that a n U / 0 and a n Q ± 0 we put ua = \/E a fl U 
and qa = /\a(lQ. By Lemma 4.2 there exist k\ G {1,2, . . . , n } and a 
cofinal subset £\ Ç £ = { a Ç.UUQ \ a H ¡7 0 ^ af]Q,a finite}, such that 
ua G Mkl, for all a G £\. Similarly there exist G {1, 2 , . . . , n} and a cofinal 
subset £2 Ç £1 such that qa G Mk2, for all a G £2- Let U\ = {ua | a G £2}, 
Qi = {qa I a G £2}. Then Ux < Qi and V ^ i = AgQi = A£<2-
Moreover, U\ U Q\ is a set of mutually compatible elements. It follows that 
there is a block M Ç E such that U Qi Ç M. Since M is Archimedean, 
by Corollary 3.5 the MacNeille completion M of M is a complete effect 
algebra. It follows by [23] that M is strongly ^-continuous. Since JJ\ < Q\ 
and UI, QI Ç M we have /\M{QI 0 J7i) = 0 iff G UX = /\G QI. Moreover, 
for c G E, c < qQu for all u G U and q G Q iff c < qaQua for all a G £• Thus 
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/\E(QEU) = 0 iff A £ ( Q I © ^ I ) = 0. It follows that /\E(QQU) = 0 implies 
A m ( Q i & U i ) = 0, which implies A ^ Q i = Vj&^i and hence A g Q = 
By Theorem 3.2, also conversely, — V g U implies f\E(Q 0 U) = 0. 
We conclude that E is strongly D-continuous, which by [23] implies that © 
can be extended on E such that E becomes a complete effect algebra. 

REMARK 4.6. All results of this section may be formulated also for D-
lattices (introduced by Kopka-Chovanec [16]). It is because blocks of a lattice 
effect algebra (E\ ffi, 0,1) (or derived D-lattice (E\ <, 9 ,0 ,1 ) ) have the prop-
erty: If from elements a,b,c G E with a®b = c(b = cQa) defined in E 
at least two are in a block M then a,,b, c G M. Moreover, 1 £ M. Thus 
M is simultaneously a sub-effect algebra and a sub-D-lattice in E. More-
over, if ¿J is a MacNeille completion of a poset (E\ <) then the embedding 
ip : E —» E has the property tp(a®sb) = (p(a)®-gip(b) for all a,b G E, a < b' 
iff ip(d Qe C) = ip(d) ip{c) for all c,d G E, c < d. 

5. Block-finite orthomodular latt ices 
It is well known that a lattice effect algebra (E; ffi, 0,1) in which e Ae' = 0 

for all e G E (equivalently, e V e' = 1) is an orthomodular lattice, which 
means that a < b =>• b = a V (a' A b) for all a, b £ E. In such case blocks of 
E become Boolean algebras. It is because an MV-algebra M is a Boolean 
algebra iff e A e' = 0 for all e G M. Conversely, in every orthomodular 
lattice (L; V, A,', 0,1) the partial binary operation © defined by a(S)b = a\/b 
iff a < b' satisfies effect algebra axioms. In fact (L;©,0,1) becomes an 
Archimedean lattice effect algebra ([12], [16]). In such case, compatibilities 
of two elements a,b G L considered in the orthomodular lattice L and in 
the effect algebra L coincide. This is because a <-> b implies that a b' and 
by Jenca-Riecanova [11], a = a A (b V b') = (a A b) V (a A b') which implies 
that a V b — b V (a A b') = b © (a A b') = b ffi (a © (a A b)). Moreover, in 
[23] it has been shown that the MacNeille completion L of an orthomodular 
lattice L is orthomodular iff L is a complete effect algebra containing L as 
a sub-effect algebra (under which orthomodular lattices L and L and effect 
algebras L and L are mutually corresponding as stated above). We may now 
apply Theorems of Section 4 to orthomodular lattices. 

THEOREM 5.1. Let (L; V, A/ , 0 , 1 ) be a block-finite orthomodular lattice and 
let (L, <) be the MacNeille completion of the poset (L; <). Then 

(i) L is orthomodular, 
(ii) For every block B of L the set B = {x G L \ U C B, x = V^^} ^s 

the MacNeille completion of B. 
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(iii) If L = U L i Bk> where Bk are blocks of L then L = |Jfc=i where 
Bk is the MacNeille completion of Bk for k = 1, 2 , . . . , n . 

(iv) L is a block-finite orthomodular lattice 
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