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RELATIONSHIP BETWEEN SOME CLASSES
OF NONDETERMINISTIC k-NETS
OF PARALLEL CONTROLLED SHIFT-REGISTERS

Abstract. The classes NNPCRI{C. and NNPCR%I of nondeterministic parallel con-

trolled k-nets of shift-registers are introduced. These classes are generalizations of the
majority of shift-register nets that have been considered before. It is proved that the
finiteness problem for sets definable by the E-nets of some subclasses of both classes is
decidable. Then it is shown that the class of sets definable by k-nets of NNPCRII; is a

subclass of the class of sets definable by k-nets of NNPCRII;I but the converse relation is

not true. On the other hand the classes of all state sequences of the k-nets of both classes
are identical.
At the very end a few open problems are put forward.

1. Introduction

The theory of deterministic shift-registers has been intensively explored
for more than forty years. Several monographs related to this topic have
been published [1], [2], [9]. Many interesting applications of shift-registers
(automatic regulation, coding theory, cryptology, computer technology, in-
tegrated circuits, radar and many others) have been completed in [2], [15],
[18]. The majority of papers which have been published before are devoted
to maximal shift-registers (the sequences generated by them have maximal
period lengths). An algebraic method introduced by Zierler [19] has been
primarily used to the study of linear shift-registers (the sequences generated
by them are called pseudorandom ones). Mykkelweit, Siu and Tong [11] have
extended this method to study the nonlinear shift-registers. Furthermore let
us mention two dissertations [10], [20] conducted by the author which were
devoted to construction of some classes of maximal shift-registers.

An algebraic method has been adopted by Ronse [16] to study the se-
quential nets of shift-registers (see also [17]). The author has also studied the
class of sequential nets of shift-registers [3], [5] (deterministic and nondeter-
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ministic). But so far the uniform theory of sequential nets of shift-registers
has not been elaborated, many problems remain open.

The theory of parallel and parallel-sequential nets of shift-registers is in
initial stage of development. Only few papers related to separate classes of
such nets have been published [4], [6]-[8]. The class DNPCR}, of determinis-
tic k-nets of parallel controlled shift-registers which has been studied in 6]
is a subclass of the classes of nondeterministic k-nets which are considered
here.

The paper (7] is related to the class GBGj, of generalized de Bruijn graphs
of rank k. It has been proved that GBGy is connected, Hamiltonian and
Eulerian. A simple algorithm, with linear space and time complexities, for
the construction of Hamiltonian circuits has been also given in {7]. The
paper [8] deals with the class DNPCR;; of the deterministic k-nets realizing
the factors of GBG (i.e. the subgraphs whose all the connected components
form the cycles).

The problem of generation of vector pseudorandom sequences has been
explored lately by many authors, especially Niederreiter. Wider use of par-
allelized simulations methods makes the above problem an increasingly im-
portant subject. The reader is referred to [12]-[14], where a few methods
(multiple matrix-recursive method, inversive one) and references related to
this topic are presented.

The aim of this paper is to introduce two classes NNPCR% and NNPCR%I

of nondeterministic k-nets of parallel controlled shift-registers (briefly k-
nets), where k = (ky, ..., kmn) € N™. The classes NNPCR% and NNPCR%I
can be briefly characterized in such a way that for the first class the controls
are single-valued functions while the feedback functions are many-valued but
for the second one the controls are many-valued functions while the feedback
functions are single-valued.

It is shown that the class of sets definable by the k-nets of NNPCR% is

a subclass of the class of set definable by the k-nets of NNPCR%I but the
converse inclusion does not hold.

Finally it is proved that the classes of all state sequences of the k-nets
of both classes NNPCR% and NNPCRIIQI are equal to (A“)™.

For the k-nets of both classes mentioned above an essential problem FDy
is to determine whether the sets definable by them are finite. In this case
nondeterminism is inessential. It is shown that the problem F Dy is decidable
for some subclasses of NNPCR% and of NNPC’R%I .

.. The following reasons motivate introduction of the above classes of the
k-nets:
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(1) The majority of technical devices work nondeterministically and it is not
possible to eliminate nondeterminism entirely. The problem is to limit
them in such a way that devices work almost deterministically;

(2) Every class mentioned above covers over the majority of shift-registers
nets which have been considered before;

(3) In majority of applications of shift-registers in technics (especially in
production of integrated circuits) they do not occur as self-reliant devices
but rather as nets (parallel or parallel-sequential);

(4) A great use of vector pseudorandom sequences in cryptology and during
parallel simulation of real processes implies a need to define different
kinds of technical devices generating such sequences;

(5) The great interest of vector pseudorandom sequences [12], [13] substan-
tiates direction of the studies on parallel k-nets.

2. The class NNPCR% of nondeterministic k-nets of parallel con-
trolled shift-registers

For an alphabet A (|4| > 2) and positive integers ki, . .., km (not neces-
sarily different) let V = A" x ... x A*» and k = (ky,...,km). V¥ denotes
the set of all infinite sequences over V.

Every nondeterministic k-net Ny of parallel controlled shift-registers of

NNPCR% (briefly k-net) is defined as a tuple (A4, %1 % ... x km W), where
every @fj, (3 =1,2,...,m) is a set of total functions of A% into 24\ {#}
and ¥ is a total function of V' x A into & = & x ... x &% (N is the set

of all positive integers). Every element of <I>;-°j (j =1,2,...,m) is called a
feedback function and ¥ — the control of Ni.

If every feedback function of <I>§j (j = 1,2,...,m) is a mapping of A
into A then the above k-net N; is said to be deterministic, otherwise a
strictly nondeterministic one. For brevity strictly nondeterministic k-nets
will be called nondeterministic.

Every vector z € V is said to be a state of N¢.

For arbitrary states z,y € V, z = (z},...,2™), y = (y,...,y™), y is
said to be an immediate successor of = of Np iff y7[1,k; — 1] = 27(2, k;] for
all j < m with k; > 1, and there exist ¢ > 1 as well as (¢1,...,¢om) €
such that (¢1,...,¢m) = ¥(z,1) and y’[k;, k;} = z for some z € p;(z?); if
k; = 1 then we put y/ = z € p;(z). !

For arbitrary states z,y € V, y is said to be a successor of x of Ny iff

! Forevery t = #;...t, € A¥ and 1 < j <k, t[i, j] denotes a restricted sequence
ti... 1.
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there exists a sequence zi,...,2,, n > 1, of states such that z; = z,z, =y
and z;4; is an immediate successor of x; of Ny for 1 <7 < n.
An infinite sequence z = z1,z3,... € V¥ is said to be a state sequence

of a k-net N; iff every z;41, ¢ > 1, is an immediate successor of z; of Nt
The set of all state sequences of Ny is called its definable set and denoted
by D(Ny).
Let NNPCR" and NNPCR.” be the subclasses of NNPCRY, of all k-nets
such that their controls are totafcfunctions of V and of NV into ®, respectively.
Hence the k-nets of NNPCR%’1 are constructed in such a way that the
immediate successors of their all states are only determined by these states
and are independent of the time moments. The consequence of this fact is
that for the identical states occurring in different moments their immediate
successors are identical if the vectors of feedback functions assigned to these
states by the controls contain only single-valued functions or possible differ-
ent immediate successors if at least one feedback function is many-valued.
But for the class NNPC’R%’2 the situation is quite different. In every

time-moment a control of a k-net assigns unique feedback functions vector
which will be used to compute the immediate successor of all actual states.
The consequence of this fact is that the sets of immediate successors of
identical states occurring at the same moment are equal.

REMARK 2.1. One can associate to every k-net Nz = (4, ‘I>'1°1 XX km )
of NNPCRI! a digraph Gy with labelled edges, called the labelled transition
graph of Nz, as follows:

(1) The nodes of G are all elements of V;

(2) If z and y are arbitrary nodes (not necessarily different) then there
exists an edge in Gy going from z to y and labelled (iy,...,%m) iff
U(z) = (piy,...,0i,) and y/ = I[2,k;]27 if k; > 1, or yf = 27 if
kj =1, for all 1 < j < m and some 27 € p;,(z7).

If we remove the labels from G then we obtain the transition graph

of N e
For an illustration of the previous definition let us see two examples.

EXAMPLE 2.2. Let us define nondeterministic (2,2)-net N30y = ({0,1},
{p1,02} X {m1,m2},¥) € NNPCR{Q;) as follows:

t p1(t) | @2(t) | m() | m(t)
00 {0} {1} {0} {1}
01 {1} {0,1} {0} {1}
10 {0} {1} {0} {1}
11 {0} {1} {0} {1}
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(p1,71) if the last elements of all sequences of z are equal to 0
U(z) = { (p2,m2) if the last elements of all sequences of = are equal to 1
(p1,m2) for the remaining cases.

The labelled transition digraph G(z2) of N33 has the form presented
in Figure 2.1.

(01,00) (10,00)
(1,2) (1,1)
01,100 — 22 L (11,01) 0010) —=2+ (00,00) ~2_ (10,10)
(2,2) U
(1.1)
(01,11) ———— (2 2) (11 11) (2.2) +———(01,01)
(2,2) (2 2) (2,2)
(10,11)
(1,2)

{00,01) —(—lﬁ>(00,11)<-9’2—)—(10,01) -—9—-21— (11,00)

O

(12) (11,10)

Fig. 2.1. The labelled transition graph G (3 2) of N3 2).

Looking at the graph G(3,2) one can see that all states, excluding (01, 11)
and (01,01), have unique immediate successors. But the successors of (01, 11)
and of (01, 01) form the cycles with cycle lengths equal to 1. The conclusion is
that all state sequences of N(3,2) are almost periodic® and |D(N(2,2))| < Ro.

ZA sequence I;,r2,... € V* is said to be almost periodic iff there are j and p of
N such that z; = z;4; for all i > p. If p = 1 then above sequence is said to be periodic
and zi,...,r;, with minimal j, is said to be its period. A sequence y € V* is said to be
aperiodic iff it is not almost periodic.
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THEOREM 2.3. For arbitrary k-net N; of NNPCRI{CJ1 we are able to decide
(effectively) if |[D(Nk)| < RNo, or not.

Proof. Let Ny = (A,®,¥) be an arbitrary k-net of NNPCR%I. Let W

be a subset of V' of all states = (z',---,2™) of N with the property:
if ¥(z) = (p1,...,%m) for some (p1,...,0m) € ® then there exists at
least one function ¢;, 1 < i < m, such that |p;(z*)] > 1. If E = { then
obviously we have |[D(Ny)| < Ro. Let us suppose that £ # @ and z € E. To
decide if |D(Ng)| < Ro we have to verify if every immediate successor of z
has a successor being a node of any cycle C' whose every node has unique
immediate successor. As V' and FE are finite then the above verification is
effective. O

EXAMPLE 2.4. Let us define nondeterministic (2,2)-net N (2 2) = = ({0,1},
{p1,p2} x {m1, 72}, ¥1) of NNPCR{222), as follows:
©n,Tn, = 1,2, are the same as in Example 2.2 and

~ _ | (p1,m) if¢is odd;
(i) = { (p2,m2) if ¢ is even,

for all i > 1.

Observe that for a unique feedback function @2 and a state 01 we have
©2(01) = {0,1} (for the remaining cases the value of every function X €
{1, p2, ™1, T2} is a unique element of {0,1}). Let us see that a functions
(2, 7r2) is only used in even moments but every state (z,y) € {0,1}2x{0, 1}?
of N(2 2) can be transformed by means of (¢1,71) in odd moments into any
state (z1,y1) such that z, € {0,1}2\{(01)} and y € {0, 1}2. The conclusion
is that any state (01,y), ¥y € {0,1}? do not occurs in even moments when
the function (2, m2) would be applied. Hence N(l2 2) is equivalent to a de-
terministic (2, 2)-net N2 (2,2) Which is defined analogously as N(2 z) With such
only difference that ¢2(01) = a for some a € {0,1}.

The conclusion is that all state sequences of N, (12,2 are almost periodic
with the period length less than or equal to 29, ¢ = k1 + --- + k, and we
have |D(N(12,2))| < Rp.

REMARK 2.5. The situation illustrated in Example 2.4 is the best one for
the technical realization of the k-nets (the nondeterminism is inessential).

But it is possible a case that all state sequences generable by the k-nets are
aperiodic (or some of them). This shows the following example.

EXAMPLE 2.6. Let us define a nondeterministic (2, 2)-net
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N(22,2{1= ({0, 1}, {1, 2} x{m1, 2}, ¥2) of NNPQR,I;’2, where pn, Tn,n =
1, 2 are the same as in Example 2.2, but a control ¥; is an aperiodic sequence
(for instance (p1,71),(w2,72), (p1,m1), (02,72}, (P2, m2), (1, m1), (2, 72),
(2, m2), (p2,m2) .. .)

Then N(22’2) has surely the aperiodic sequences (possibly all).

REMARK 2.7. For arbitrary feedback function set ® = &% x ... x ®*m one is

able to construct an infinite set of the k-nets of NNPC'R%’2 having aperiodic
state sequences.
Obviously, the definable sets by all such k-nets are infinite.

Taking into account the above examples we are able to formulate a nec-
essary and sufficient condition for definable by a k-net set to be finite.

THEOREM 2.8. For arbitrary k-net N = (4,9,7) of NNPCRé'z,
ID(Ng)| < No iff the set
(3) Bn,={(z,j)eV xN:

(3(p1s- .-, n) € 2)Bp < M)[¥(2,7) = (p1- .-, ¥m) Alp(2P)| > 1}
is empty.
Proof is obvious. OJ

Let NNPCR;" be a subclass of NNPCRL? such that for all its K-nets

the following condition holds: the set By, assigned to a k-net N, - by means
of (3) is finite and it is effectively computable.

For the subclass NNPCR,{-’2 let us state the finiteness problem Fj as
follows: I

F;: For arbitrary k-net N; € NNPCR;" we have to decide if [D(N)|
< Np.

COROLLARY 2.9. For the class NNPCR,{;'2 the problem F}, is decidable.

Proof. Let Ny = (4,®,7¥) be an arbitrary k-net of NNPCR;C.’2 and let ¢
be the maximal number of all j such that (z,j) € By (z € V). To solve
the problem Fj it is sufficient to construct the initial segments of all state
sequences of Ny of the length q and verify if there is a state z € V and a
moment j < ¢ such that ¥(z,5) = (¢1,...,9m) € ® and |pp(zP)| > 1 for
any p < m. If so then D(Ny) is infinite otherwise a finite one. (]

Finally let us state a few properties constituting the relations between
the class D,{. and its subclasses.
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COROLLARY 2.10. For every vector keN™ and every different p,q € {1, 2}
the following relations hold:

I,p I
(5) D' NDL? £,

I.p I.q
(6) _‘(D,'c' C DE ),

where ’D’{. and Dé’p , P = 1,2, denote the classes of sets definable by the E-nets

of NNPCR% and of NNPCRi."’ , respectively. The sign— denotes the negation
connective.

3. The class NNPCR’{'I of nondeterministic k-nets of parallel con-
trolled shift-registers

A new class NNPCR%I of k-nets for which the controls are many-
valued functions while the feedback functions are single-valued ones will be
introduced. The subclassses NNPCR;I’" (n = 1,2) of NNPCR%I can be
analogously defined as for NNPCR,!;.

Let us introduce the basic definitions.

Every element Nj; of NNPCR{-I , which will be also called a nondetermin-
istic k-net of parallel controlled shift-registers (or shortly a k- net), is defined
as a tuple (A,<I>;"l X -+« X ®Fm W), where every @?’, (j=12,...,m),is a
set of total functions of A% into A (the feedback functions of Ni) and the
control ¥ is a total function of V x A into 2% \ {0}, respectively.

For arbitrary states z,y € V, z = (z!,...,2™), vy = (¥%,...,y™), y is
said to be an immediate successor of = of N iff y7[1,kj — 1] = 27(2, k;] for
all j < m with k; > 1, and there exist ¢ > 1 as well as (¢1,...,0m) € &
such that (¢1,...,¢m) € ¥(z,1) and y[k;, k;] = ¢;(2?); if k; = 1 then we
put i = p;(27).

For arbitrary states z,y € V, y is said to be a successor of z of Ny, iff
there exists a sequence 1, -+, Z,, n > 1, of statessuch that z; =z, 2, = y
and z;4; is an immediate successor of z; of N for every 1 <i < n.

An infinite sequence r = z,z3,... € V¥ is said to be a state sequence
of N, iff every ;41,4 > 1, is an immediate successor of z; of Ny.

The set of all state sequences of a E-net N; of NNPCR%I is called its
definable set and denoted by D(Ng).

A K-net Ny = (A,9,9) of NNPCR%I is said to be deterministic iff
|¥(z,2)] = 1 for every £ € V and every i € N, otherwise if ¥(y,j) =
{(#8,...,9%): 1 <i<r}for somey = (y,...,4™) € V and some j € N
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then we have

05 (¥°) = pp(y*) foreveryl<m<n<randevery 1<p<m.

Let NNPCR%I’1 and NNPCR?’Z denote the subclasses of NNPCRi-I of

all the k-nets whose the controls are the total functions of V and of N into
2%\ {¢}, respectively (& denotes as previously ®** x ... x ®km).
For an illustration of the previous definitions let us see a few examples.

ExAMPLE 3.1. Let us define two nondeterministic (2, 3)-nets
Nj 5 = ({0,1}, 8% x I, 1) of NNPCR{;’5 and NJ, o = ({0,1}, 8% x
I13, ;) of NNPCRIL2 as follows

2,3
2 = {¢, cpg,cp;} ;,nd 13 = {m, 72,73}, where
t | eult) | pa(t) | wslt) u | m(u) | m2(u) | ma(u)
00 0 1 1 000 0 1 1
01 0 1 1 001 0 1 1
10 0 1 0 010 0 1 0
11 0 1 0 011 0 1 1
100 0 1 0
101 0 1 0
110 0 1 1
111 0 1 0
and _
¥y (z) = { {(¢1,71), (w2, m2)} if all sequences of z are constant
{(ps,73)} for the remaining cases

~ _ J{(p1,m1), (p2,m2)} ifiis odd
Uo(i) = {{((p3,7(;)} n if ¢ is even

for every z € V = {0,1}? x {0,1}® and every i € N.

The transition graph Gs 3 of N(lz,s) is illustrated in Figure 3.1.

Looking on G(2,3) one can see that the state sequences of N(lz’s) are
almost periodic as well as aperiodic ones. As for the states = = (00,000)
and y = (11,111) the same states are their immediate successors so long as
we only wish (if we use the functions (1, 71) to z and (2, 72) to y) therefore
we have: |[D(N{, 3))| = Ro. But for N(22,3) the situation is quite different. As
Ua(i) = {(p1,m1),(p2,m2)} for every odd moments and p;1(z) # p2(z),
m{y) # m2(y) for every z € {0,1}% and y € {0,1}® then one can choose
an aperiodic or almost periodic sequence of feedback functions as a control
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(001 ,L1)

Fig. 3.1. The transiton graph Gg 3 of N(12‘3)

sequence. The consequence of this fact is that the state sequences of N(22’3)
can be almost periodic or aperiodic ones, what implies that | D(N, (22’3))[ = Ng.

THEOREM 3.2. For arbitrary k-net N; of NNPC’R?’1 we are able to decide
(effectively) if |D(Ni)! < Ro, or not.
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Proof is similar to the proof of Theorem 2.3 and therefore will be omitted.

One can easily cheek that for a class Dé’ of definable sets by the k-nets
of NNPCR;—I and its subclasses Dlél’p , p € {1,2}, the following results are
valid.

COROLLARY 3.3. For every k € N™ and every p,q € {1,2}, p # q, the
following relations hold:

II,p II
(2) D ND? £ 0,
(3) ~(Dg"?P € DI,

4. Relationship between the classes 'D,% and ’D’{.I and their subclasses
It will be shown that Df (resp. ’Di.’i for i = 1,2) is a subclass of DI/

(resp.of Dy’i) but the converse inclusion does not hold.
Before we formulate the respective theorems let us consider at the be-
ginning two examples.

EXAMPLE 4.1. Let us reconsider the nondeterministic (2,2)-net N9y of
NNPC’R{2 o) of Example 2.2. Let us construct a (2, 2)-net

N(2»2) ({0,1}, {‘Pl"Pz, }X {r], 75}, ¥1) € NNPCR(I2121)

by means of N, ;) as follows:

t | P18 | wa(t) | w2(t) | m(t) | m(2)
00 0 1 1 0 1
01 1 0 1 0 1
10 0 1 1 0 1
11 0 1 1 0 1
( {(ph, )} if the last elements of all
sequences of z are equal
to 0
Uoz) = < {(ph,75), (w5, m5)} if the last elements of all
sequences of z are equal
to1l
{1, 73)} for the remaining cases,

for every z € V. Let us observe that v;(z) = {¢}(z)}, m(z) = {r1(z)},
m2(z) = {m3(2)} and @2(z) = {p3(x), p3(z)} for every z € {0,1}".
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One can easily verify that the transition graph of N} 2,2) is the same as
in Example 2.2.
EXAMPLE 4.2. Let us define a (2,2)-net N§, = ({0,1},{¢}, 3, ¢35} x
{r1,m5}, ¥1) of NNPCR{;’3), as follows:
¢, ¥k, P4, T, w5 are the same as in Example 4.1, and
~ _ f (Ph,m) if ¢ is odd,
010 = { {575 (ot gy 4 30 cv
for all i > 1.
It is easy to observe that (2, 2)-nets of Examples 2.4 and 4.2 are equiva-
lent. (0
EXAMPLE 4.3. Let us reconsider the (2, 3)-nets N(2 3) and N? 22 of Example
3.1. We would like to construct (2,3)-nets N, 5 = ({0,1}, ®] x I3, ;) €
1,2 =
NNPCR(2 3) and N(2 3) = ({o, 1} ®? x I3, ¥y) € NNPC’R(2 3) which would
be equivalent to N(2 3) and to N, (2 3)> respectively.
Looking at the controls ¥, and ¥, of N(2 3) and of N, (2 3) We conclude
that &2 and 113 would have the following form
Q1 = {‘p,l"pé}, H? = {7",1’7'.&}1 where

t e1(t) | ¥h(t) u m(u) | m(u)
00 | {0,1} 1 000 | {0,1} 1
01 a 1 001 b 1
10 a 0 010 b 0
1 | {01} 0 011 b 1

100 b 0
101 b 0
110 b 1
11 | {0,1} 0

for some a,b € A.
The controls should be defined as follows:

v (o1, 1) if all sequences of z are constant
@)=, -
(o5, m5) for the remaining cases,

(o, m) ifiis odd
Uy(i) =
(ph,my) if i is even.

Let us see that every state ¢ € V of N(2 3) a8 well as of N y has at
most two immediate successors. But a state y consisting of only consta.nt



Classes of nondeterministic E-nets 207

sequences has axactly 2% immediate successors of N (32,3). Analogously every

state z occurring in odd moments has exactly 2° immediate successors of

Ny 3y

The conclusion is such that we are not able to construct the (2, 3)-nets
of NNPCRI{C.", i = 1,2, which would be equivalent to N(32’3) and to N(42,3).

THEOREM 4.4. For every vector k € N™ and every number i € {1,2} the
following inclusions hold

Li I1,i
(1) DLi ¢ DI,
The converse inclusions do not hold.

Proof. Let us consider the arbitrary k-nets N,.} = (A,®,¥,) of NNPCRi-’1
and N2 = (A, ®,¥;) of NNPCR.?, where A = {a1,"--,a,} and &} x -+ x
®km . For any function ¢ : A% — 24\ {} of <I>;-°j ( =1,2---m) let us define
a set

Co={6:£: A% — A and ¢(z) € p(z) for all z € A}.

Elements of C, are called components of ¢. For every 1 < j < m let

Cy ={Cp: pc @},

Let us define two k-nets Ng = (A4, Cptr X -+ X Cgrm, ¥3) of NNPC’R%I’1
1 m
and NI‘;1 = (A, C@:lc1 X oo X Céf.."" \114) of NNPC’RI{;I‘2 as follows:
For every z € V, ¢ € N and every (1, -, ¢om) € <I>'1“ X «oo X Pkm if

m
U1(z) = (p1," -+, m) (resp. if Ua(i) = (p1,...,¢m)) then we put ¥3(z) =
Cp, X -+ X Cy,,. (resp. ¥4(i) = Cy, X ... x C,,.). The above construction
implies that D(N3) = D(N2) and D(NZ) = D(N?), hence the inclusion (1)
holds.

The relations
(2) ﬂ(Dél "t C ng") fori=1,2,

are still to be proved.

For this purpose let us define two k-nets NE=(4, ®, ;) of NNPCRII;I’1
and N¢ = (4,8, %) of NNPCR;"*? as follows: & = &} x --- x ¥~ and
OF = {p},..., ¢k, 04,1} for 1 < i < m, where @5(t) = aj, Phari(t) = ap
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for every t € A% every 1 < j < n, and some ap € A,

{(e1, 03, ... 07), ..., (@, ...0™)} if all sequences of x

Us(z) = are constant
{(eLir,-- o)} for the remaining cases,
¢ {(9071;+1’ LR ‘P:;n.g.l)} if’i is even

We would like to construct two k-nets NE = (A,II,¥7) of NNPC’R%’l
and N,-?. = (A, I, ¥g) of NNPCR%’2 which would be equivalent to NI-? and
N I'?’ respectively.

Lookin_g at ¥y and at ¥g we conclude that II = H’f‘ X oo X an"‘, where
nF = {n, 7} for 1 < i < m, 7i(t) = {an,...,an}, T5(t) = @i 1(t) for
every t € A%, every 1 < ¢ < m, and the controls U7 and ¥s have the form:

Uq(z) = (mi,...w) if every sequence of z is constant
(n,...,m7*) for the remaining cases

Tg(s) = (ml,...,77) ifis odd
Y7V (xd, ..., ) ifiis even
for every z € A% x --. x A*» and every i € N.

Let use see that every state x € V consisting of only constant sequences
has exactly n immediate successors of N, 5 whereas the same state  has n™

immediate ones of N ,-Z. Analogously every state y occurring in odd moments
has exactly n immediate successors of N, E while n™ immediate ones of N. 5.

The conclusion is such that the k-nets of NNPCRé’l, 1 = 1, 2, which would
be equivalent to N. ,% and to N g do not exist. O

THEOREM 4.5. For every vector k€ N™ the following inclusion holds:
I Ir

The converse inclusion does not hold.
Proof is analogous to the proof of Theorem 4.4. and therefore will be
omitted.

5. Properties of the classes of state sequences of the k-nets

Let SI{. (resp. Sé’i fori=1,2) and S,%I (resp. SkI.I’i for 1 = 1,2) denote the
classes of the state sequences of all k-nets of NNPCR% (resp. of NNPCRé’i)
and of NNPCR%I (resp. of NNPCR%“), respectively.
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If the above symbols are preceeded by the letter D then new symbols de-
note the classes of the state sequences of all deterministic k-nets of respective
classes.

The following lemmas constitute the relations between the mentional
above classes.

LEMMA 5.1. For every vector ke N™ , m > 1, the following relations hold:

(1) Dsi.”' = Dsg"", fori=1,2,
(2) DSL = DSY,
11 1,2
3) DSy Cc DS,
(4) DS c DS

Proof. The equalities (1) and (2) immediately follow from the definitions of
respective classes of deterministic k-nets. The strong inclusions (3) and (4)
follow from the facts that DS é’l and DS%I’1 consist of only almost periodic

sequences whereas DSL? and DSI? the larger classes of almost periodic
sequences and additionally aperio&ic ones. O

LEMMA 5.2. For every vector k = (k1...km) € N™ the following relations
hold:

(5) sgvi =V¥ for0e {I,II} andi=1,2,
I _ QI _ yyw
(6) Sl=sl =y
Proof. To prove (5) for 0 = I let us define two k-nets Nicl' = (A, ®,¥,;) of
NNP(JRIQ1 and N2 = (4,9, ¥3) of NNPCR%I’Z as follows:

® = {p1} x -+ x {m} where p;(z) = A for i = 1,2,...m, ¥;(z) =
(1, -+, 90m) and ¥2(i) = (p1,- -, 9m) for every z € A*¥ and every i € N.

It is obvious that D(Nk.l.) = D(N}) =V~.

Proof of (6) can be similarly conducted with a slight modification. O

6. Final remarks

This paper provides only a mathematical background on two classes
NNPCR% and NNPCR%I of nondeterministic parallel controlled k-nets of
shift-registers and constitutes the relationship between them. Further stud-
ies should be continued in a few directions. Let us list some of them:
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(1)

Z. Grodzki

It would be interesting to distinguish the subclasses NNPOR,C and
NNPCE; (resp. NNPCR;" and NNPCR; ", i = 1,2) of NNPCRL and

of NNPCR{" ( resp. of NNPCRé * and of NNPCR%’ *) with the property:
For every k-net N; of NNPCRg (resp. of NNPCRy", i = 1,2), 0 €

{I,II}, there exists an equivalent deterministic k-net Ny, of NNPCR% (resp.
of NNPCRY');

(2)
(3)

(1]

2l
(3}
[4]

(5]
(6]
(7
(8]
(9
[10]

(1)

There is a need to consider different aspect of nondeterministicity of the

considered above E—nets;
There is a need to consider different kinds of complexity problems of

the k-nets of both classes as well as of their state sequences;

There is a need to study the pseudorandomness of the state sequences
of deterministic E—nets;

One can also consider the probabilistic E—nets;

One can introduce a new class NNPCR; of the k-nets such that their
controls and the feedback functions can be many-valued.
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