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RELATIONSHIP BETWEEN SOME CLASSES 
OF NONDETERMINISTIC fc-NETS 

OF PARALLEL CONTROLLED SHIFT-REGISTERS 

Abstract. The classes NNPCR~ and NNPCRV of nondeterministic parallel con-
k k 

trolled ¿-nets of shift-registers are introduced. These classes are generalizations of the 
majority of shift-register nets that have been considered before. It is proved that the 
finiteness problem for sets definable by the fc-nets of some subclasses of both classes is 
decidable. Then it is shown that the class of sets definable by fc-nets of NNPCR~ is a 

k 
subclass of the class of sets definable by fc-nets of NNPCRj-1 but the converse relation is 

not true. On the other hand the classes of all state sequences of the fc-nets of both classes 
are identical. 

At the very end a few open problems are put forward. 

1. Introduction 
The theory of deterministic shift-registers has been intensively explored 

for more than forty years. Several monographs related to this topic have 
been published [1], [2], [9]. Many interesting applications of shift-registers 
(automatic regulation, coding theory, cryptology, computer technology, in-
tegrated circuits, radar and many others) have been completed in [2], [15], 
[18]. The majority of papers which have been published before are devoted 
to maximal shift-registers (the sequences generated by them have maximal 
period lengths). An algebraic method introduced by Zierler [19] has been 
primarily used to the study of linear shift-registers (the sequences generated 
by them are called pseudorandom ones). Mykkelweit, Siu and Tong [11] have 
extended this method to study the nonlinear shift-registers. Furthermore let 
us mention two dissertations [10], [20] conducted by the author which were 
devoted to construction of some classes of maximal shift-registers. 

An algebraic method has been adopted by Ronse [16] to study the se-
quential nets of shift-registers (see also [17]). The author has also studied the 
class of sequential nets of shift-registers [3], [5] (deterministic and nondeter-
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ministic). But so far the uniform theory of sequential nets of shift-registers 
has not been elaborated, many problems remain open. 

The theory of parallel and parallel-sequential nets of shift-registers is in 
initial stage of development. Only few papers related to separate classes of 
such nets have been published [4], [6]—[8]. The class DNPCR£ of determinis-
tic k-nets of parallel controlled shift-registers which has been studied in [6] 
is a subclass of the classes of nondeterministic fc-nets which are considered 
here. 

The paper [7] is related to the class generalized de Bruijn graphs 
of rank k. It has been proved that is connected, Hamiltonian and 
Eulerian. A simple algorithm, with linear space and time complexities, for 
the construction of Hamiltonian circuits has been also given in [7]. The 
paper [8] deals with the class DNPCR.% of the deterministic fc-nets realizing 
the factors of QBQ^ (i.e. the subgraphs whose all the connected components 
form the cycles). 

The problem of generation of vector pseudorandom sequences has been 
explored lately by many authors, especially Niederreiter. Wider use of par-
allelized simulations methods makes the above problem an increasingly im-
portant subject. The reader is referred to [12]—[14], where a few methods 
(multiple matrix-recursive method, inversive one) and references related to 
this topic are presented. 

The aim of this paper is to introduce two classes NNPCR~ and NNPCR™ 
of nondeterministic fe-nets of parallel controlled shift-registers (briefly k-
nets), where k = (ku ..., km) G Mm. The classes NNPCR[ and NNPCR™ 
can be briefly characterized in such a way that for the first class the controls 
are single-valued functions while the feedback functions are many-valued but 
for the second one the controls are many-valued functions while the feedback 
functions are single-valued. 

It is shown that the class of sets definable by the fc-nets of NNPCR~ is 
a subclass of the class of set definable by the k-nets of NNPCR" but the 
converse inclusion does not hold. 

Finally it is proved that the classes of all state sequences of the fc-nets 
of both classes NNPCR- and NNPCR™ are equal to {Aa)m. 

For the fc-nets of both classes mentioned above an essential problem FD^ 
is to determine whether the sets definable by them are finite. In this case 
nondeterminism is inessential. It is shown that the problem FD£ is decidable 
for some subclasses of NNPCRI and of NNPCR™. 

The following reasons motivate introduction of the above classes of the 
k-nets: 
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(1) The majority of technical devices work nondeterministically and it is not 
possible to eliminate nondeterminism entirely. The problem is to limit 
them in such a way that devices work almost deterministically; 

(2) Every class mentioned above covers over the majority of shift-registers 
nets which have been considered before; 

(3) In majority of applications of shift-registers in technics (especially in 
production of integrated circuits) they do not occur as self-reliant devices 
but rather as nets (parallel or parallel-sequential); 

(4) A great use of vector pseudorandom sequences in cryptology and during 
parallel simulation of real processes implies a need to define different 
kinds of technical devices generating such sequences; 

(5) The great interest of vector pseudorandom sequences [12], [13] substan-
tiates direction of the studies on parallel fc-nets. 

2. The class NNPCR% of nondeterministic A;-nets of parallel con-
trolled shift-registers 

For an alphabet A (|A| > 2) and positive integers ki,..., km (not neces-
sarily different) let V — Akl x ... x Akrn and k = (k\,..., km). V" denotes 
the set of all infinite sequences over V. 

Every nondeterministic k-net Nj; of parallel controlled shift-registers of 
NNPCR~ (briefly k-net) is defined as a tuple (A, $kl x • • • x , where 
every , ( j — 1 ,2 , . . . , m) is a set of total functions of Ak> into 2A \ {0} 
and ^ is a total function of V x M into $ = 1 x . . . x ^ {M is the set 

k • 
of all positive integers). Every element of ( j — 1, 2 , . . . ,m) is called a 
feedback function and ^ - the control of N^. k • u 

If every feedback function of ( j = 1 ,2 , . . . , m) is a mapping of A ] 

into A then the above fc-net is said to be deterministic, otherwise a 
strictly nondeterministic one. For brevity strictly nondeterministic fc-nets 
will be called nondeterministic. 

Every vector x G V is said to be a state of 
For arbitrary states x,y e V, x = (x1,..., xm), y = (y 1 , . . . , ym), y is 

said to be an immediate successor of x of Nĵ  iff yJ [ 1, kj — 1] = xJ [2, kj] for 
all j < m with kj > 1, and there exist i > 1 as well as (</?i,..., (pm) £ $ 
such that (ipi,..., (pm) = i) and yi[kj, kj] — z for some z E <Pj(xJ); if 
kj = 1 then we put yi = z G ¡pJ(x:'). 1 

For arbitrary states x, y G V, y is said to be a successor of x of N^ iff 

1 For every t = t\ .. .ifc € Ak and 1 < j < k, t[i,j] denotes a restricted sequence 
t{.. ,tj. 
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there exists a sequence x \ , . . . , xn, n > 1, of states such that x\ = x, xn = y 
and Xi+i is an immediate successor of X{ of for 1 < i < n. 

An infinite sequence x = xi,x2, • •. G V w is said to be a state sequence 
of a k-net N^ iff every Xi+i, i > 1, is an immediate successor of Xi of N^. 

The set of all state sequences of Ng is called its definable set and denoted 
b y D(NZ). 

Let NNPCRl'1 and NNPCRl'2 be the subclasses of NNPCR- of all £-nets 
such that their controls are total functions of V and of hi into respectively. 

Hence the k-nets of NNPCRi'1 are constructed in such a way that the 
immediate successors of their all states are only determined by these states 
and are independent of the time moments. The consequence of this fact is 
that for the identical states occurring in different moments their immediate 
successors are identical if the vectors of feedback functions assigned to these 
states by the controls contain only single-valued functions or possible differ-
ent immediate successors if at least one feedback function is many-valued. T 2 

But for the class NNPCRi' the situation is quite different. In every 
time-moment a control of a fc-net assigns unique feedback functions vector 
which will be used to compute the immediate successor of all actual states. 
The consequence of this fact is that the sets of immediate successors of 
identical states occurring at the same moment are equal. 

REMARK 2.1. One can associate to every fc-net = (̂ 4, x • • • x , \I>) 
of NNPCRi'1 a digraph G^ with labelled edges, called the labelled transition 

graph of N^, as follows: 
(1) The nodes of G% are all elements of V; 
(2) If x and y are arbitrary nodes (not necessarily different) then there 

exists an edge in going from x to y and labelled (¿ i , . . . , im) iff 
= (iph,...,ipim) a n d y} = xj[2,kj]zj if k j > 1, o r yj = zj if 

kj = 1, for all 1 < j < m and some G f i j 
If we remove the labels from G^ then we obtain the transition graph 

of N~k. 
For an illustration of the previous definition let us see two examples. 

Example 2.2. Let us define nondeterministic (2,2)-net N(2,2) = ({0,1}, 
{< ,̂<¿>2} x {7ri,7r2},^) G NNPCR^2) as follows: 

t M t ) <P2(t) 7n(i) 7r2(i) 

00 {0} {1} {0} {1} 
01 {1} {0,1} {0} {1} 
10 {0} {1} {0} {1} 
11 {0} {1} {0} {1} 
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' (vi i ^1) if the last elements of all sequences of x are equal to 0 
^r(x) = (<¿>2,712) if the last elements of all sequences of x are equal to 1 

( f i , 712) for the remaining cases. 
The labelled transition digraph G(2,2) of N(2,2) has the form presented 

in Figure 2.1. 
(01,00) 

(1.2) 

(01,10) ( 1 , 2 ) . (11,01) 

(10,00) 

(1,1) 

(00,10) (1,1) 

(2,2) 

(01.U, - ^ ( 1 1 , 1 1 ) J W L 

(00,00) 

o 
(1,1) 

(1,1) (10,10) 

(01,01) 

(00,01) • ^ ( 0 0 , 1 1 ) . (1 '2) (10,01) • (1-2) (11,00) 

u 
(1,2) 

(1,2) 

(11,10) 
Fig. 2.1. The labelled transition graph G(2,2) of -^(2,2) • 

Looking at the graph G(2,2) one can see that all states, excluding (01,11) 
and (01,01), have unique immediate successors. But the successors of (01,11) 
and of (01,01) form the cycles with cycle lengths equal to 1. The conclusion is 
that all state sequences of Np,2) are almost periodic2 and |D(Ar(2i2))| < Hq. 

A sequence xj , 12, • • • € Vu is said to be almost periodic iff there Eire j and p of 
A/- such that X{ = x^+j for all i > p. If p = 1 then above sequence is said to be periodic 
and x\,... ,Xj, with minimal j, is said to be its period. A sequence y € Vu is said to be 
aperiodic iff it is not almost periodic. 
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THEOREM 2.3. For arbitrary k-net Nr of NNPCR1-.'1 we are able to decide K k 
(effectively) if |£>(iVfc)| < No, o r n°t-

P r o o f . Let = be an arbitrary k-net of NNPCR1-'1. Let W 

be a subset of V of all states x — (re1, • • •, xm) of N^ with the property: 
if ^(¡E) = {(f\,..., ipm) for some (¡pi,..., (pm) € $ then there exists at 
least one function <p%, 1 < i < m, such that \<pi(xl)\ > 1. If E = 0 then 
obviously we have |Z?(7Vfc)| < No- Let us suppose that E ^ 0 and x G E. To 
decide if \D(Nk)\ < No we have to verify if every immediate successor of x 

has a successor being a node of any cycle C whose every node has unique 
immediate successor. As V and E are finite then the above verification is 
effective. • 

EXAMPLE 2.4. Let us define nondeterministic (2,2)-net 2j = ( {0 ,1 } , 

{<¿>1, </?2} x {TTX, 7T2}, ^ I ) of NNPCR*£2), as follows: 

Vn> TTm n = 1,2, are the same as in Example 2.2 and 

$ (t) = / if ¿is odd; 
1 \ (V2,7i"2) if i is even, 

for all i > 1. 

Observe that for a unique feedback function (p2 and a state 01 we have 
1^2(01) = {0 ,1 } (for the remaining cases the value of every function A G 
{VI> ^2) TTI, ^2} is a unique element of {0 ,1 } ) . Let us see that a functions 
(1P2, ^2) is only used in even moments but every state (x, y) 6 {0, l } 2 x {0, l } 2 

of N^2 2J can be transformed by means of (<pi, 7Ti) in odd moments into any 
state (£1,2/1) such that xi € {0, l } 2 \ { (01) } and y e {0, l } 2 . The conclusion 
is that any state (01, y), y G {0, l } 2 do not occurs in even moments when 
the function (<^2, ^2) would be applied. Hence iV*2 is equivalent to a de-
terministic (2,2)-net iV22 which is defined analogously as with such 
only difference that <£2(01) = a for some a € {0,1} . 

The conclusion is that all state sequences of N^2 are almost periodic 
with the period length less than or equal to 2q, q = ki + • • • + km and we 
have lIKiV^ ^)| < 

REMARK 2.5. The situation illustrated in Example 2.4 is the best one for 
the technical realization of the fc-nets (the nondeterminism is inessential). 
But it is possible a case that all state sequences generable by the fc-nets are 
aperiodic (or some of them). This shows the following example. 

EXAMPLE 2.6. Let us define a nondeterministic (2,2)-net 
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N{2,2) = ({°> 1}. {vi. V2>X {ttx, 7T2}, of NNPCR1-'2, where <pn,nn,n = 
1,2 are tne same as in Example 2.2, but a control is an aperiodic sequence 
(for instance (<¿>1, 7Ti), , ), (<Pi, tti), (•V2, ^2 ), (<P2, ^2), (<Pi, ), (<̂ 2, ), 
(V2, (V2, ^2) • • •) 

Then N*2 2j has surely the aperiodic sequences (possibly all). 

REMARK 2.7. For arbitrary feedback function set $ = I ^ 1 x • • • x one is 
—» r A 

able to construct an infinite set of the fc-nets of NNPCRhaving aperiodic 
state sequences. 

Obviously, the definable sets by all such fc-nets are infinite. 

Taking into account the above examples we are able to formulate a nec-
essary and sufficient condition for definable by a fc-net set to be finite. 

T H E O R E M 2 . 8 . For arbitrary k-net Nn = of NNPCR1-'2, 

|0(JVE)| < i f f the set 

(3 ) BN. = { ( x , j ) € V x N : 

(3(V i , . . . ,¥>„)€ $)(3p < j) = (<plt...,(pm)A \<pP(xp)\ > 1} 

is empty. 

Proof is obvious. • 

Let NNPCR1/ be a subclass of NNPCR1-'2 such that for all its fc-nets K k 
the following condition holds: the set BN- assigned to a fc-net N^ by means 
of (3) is finite and it is effectively computable. 

/ 2 
For the subclass NNPCRj- let us state the finiteness problem Fg as 

follows: 
Fg: For arbitrary k-net <E NNPCR-2 we have to decide if \D(N^)\ 

/ 2 
COROLLARY 2 . 9 . For the class NNPCRJ the problem FG is decidable. 

P r o o f . Let = ( A ^ , ^ ) be an arbitrary it-net of NNPCR1-'2 and let q 
be the maximal number of all j such that (x, j) € B^. {x € V). To solve 
the problem it is sufficient to construct the initial segments of all state 
sequences of JVg of the length q and verify if there is a state x G V and a 
moment j < q such that = (y>i, • • •, <pm) € $ and \ipp(xp)\ > 1 for 
any p < m. If so then D(N^) is infinite otherwise a finite one. • 

Finally let us state a few properties constituting the relations between 
the class V1- and its subclasses. k 
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COROLLARY 2.10. For every vector k G Mm and every different p, q€ {1,2} 
the following relations hold: 
(4) Vl'p C Vl, 

(5) vlA n vl'2 ± 0, 

(6) ^ ( v l ' p c v l ' " ) , 

where Vl andvl'p, p = 1,2, denote the classes of sets definable by the k-nets k k 
ofNNPCRl and of NNPCRrespectively. The sign-> denotes the negation 
connective. 

3. The class NNPCR1- of nondeterministic fc-nets of parallel con-
trolled shift-registers 

71 
A new class NNPCR- of k -nets for which the controls are many-

valued functions while the feedback functions are single-valued ones will be 
introduced. The subclassses NNPCR1/'n (n = 1,2) of NNPCRI1 can be k k 
analogously defined as for NNPCRl. 

Let us introduce the basic definitions. 
Every element N^ of NNPCR1- , which will be also called a nondetermin-

istic k-net of parallel controlled shift-registers (or shortly a k-net), is defined 
as a tuple (A, x • • • x i ) , where every , ( j = 1,2,..., m), is a 
set of total functions of Ak* into A (the feedback functions of N^) and the 

control ip is a total function of V x M into 2* \ {0}, respectively. 
For arbitrary states x,y G V, x = (x1,... ,xm ) , y = (y1,... ,ym), y is 

said to be an immediate successor of x of N^ iff kj — 1] = x^ [2, kj] for 
all j < m with kj > 1, and there exist i > 1 as well as (ipi,..., <pm) G $ 
such that (<Pi,- • • ,<pm) G ^(x , i ) and y*[kj,kj] = <^j(xJ); if kj = 1 then we 
put yi = <Pj(xj). 

For arbitrary states x, y G V, y is said to be a successor of x of N^ iff 
there exists a sequence xi, • • •, x„, n > 1, of states such that x\ = x, xn = y 
and Xi+i is an immediate successor of x, of for every 1 < i < n. 

An infinite sequence x = X\,X2,... G Vw is said to be a state sequence 
of iff every x i + i , i > 1, is an immediate successor of x* of N^. 

The set of all state sequences of a k-net of NNPCRI1 is called its 
definable set and denoted by D(N%). 

A fc-net JVjg = {A, 4>, "J) of NNPCRl1 is said to be deterministic iff 
= 1 for every x G V and every i G N, otherwise if — 

{(y>i>..., iplm): 1 < i < r } for some y = (y1,..., ym) G V and some j G N 
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then we have 

<Pp(yp) = <Pp(yp) for every 1 < m < n < r and every 1 < p < m. 

Let NNPCRl1'1 and NNPCRl1'2 denote the subclasses of NNPCR1/ of fc k k 
all the &-nets whose the controls are the total functions of V and of N into 
2* \ {</>}, respectively ( $ denotes as previously i j 1 x • • • x 

For an illustration of the previous definitions let us see a few examples. 

EXAMPLE 3.1. Let us define two nondeterministic (2,3)-nets 

N(2,3) = ({°. !}> $ 2 * n3' of NNPCR(2,i) and N(2,3) = ({°> !}> X 

n 3 , ^ 2 ) Of NNPCR"'^ as follows 

= { ^ 1 , ^ 2 , ^ 3 } and II3 = { ^ , ^ 2 , ^ 3 } , where 

t <pl(t) <p2{t) <P3(t) u 7Ti(u) 7T2(U) 7T3(U) 

00 0 1 1 000 0 1 1 
01 0 1 1 001 0 1 1 
10 0 1 0 010 0 1 0 
11 0 1 0 Oil 0 1 1 

100 0 1 0 
101 0 1 0 
110 0 1 1 
111 0 1 0 

and 

vj> C l̂ _ / {(Vi)71"!)) (y?2>7r2)} if all sequences of x are constant 
\ { (¥ '3> 7 r 3) } for the remaining cases 

$ _ J {(Vi.Ti),(¥>2,ir2)} if i is odd 
2 I { ( v 3 , ^ 3 ) } if i is even 

for every x e V = {0, l } 2 x {0, l } 3 and every i € N. 
The transition graph £2,3 of 3j is illustrated in Figure 3.1. 
Looking on G(2,3) one can see that the state sequences of JV*2 3j are 

almost periodic as well as aperiodic ones. As for the states x = (00,000) 
and y = (11, 111) the same states are their immediate successors so long as 
we only wish (if we use the functions (ipi, 7Ti) to x and (<^2, ^2) to y) therefore 
we have: |D(JV*2 = Ho- But for the situation is quite different. As 

(i) = {{<Pi, 7Ti), (</?2, ^ 2 ) } for every odd moments and ipi(x) <p2(x), 
7ri(y) 7T2(y) for every x € {0, l } 2 and y G {0, l } 3 then one can choose 
an aperiodic or almost periodic sequence of feedback functions as a control 
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(000,00) 
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(£.E)| 

(110,11) 

(£.E)| 
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(£.£)j 

• (011,00) 

(E.£)| 
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(E.E)J 

(010,11) 

(£,£)j 

(001,01) 

Fig. 3.1. The transiton graph G o f N ^ 3) 

sequence. The consequence of this fact is that the state sequences of 
can be almost periodic or aperiodic ones, what implies that \D(N*2 3))l = No-

T H E O R E M 3 .2 . For arbitrary k-net of NNPCR1-1'1 we are able to decide 
(effectively) if\D(Nk)\ < No, or not. 
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Proof is similar to the proof of Theorem 2.3 and therefore will be omitted. 

One can easily cheek that for a class V1-1 of definable sets by the fc-nets 

of NNPCR-1 and its subclasses VIJ'P, p G { 1 , 2 } , the following results are 
valid. 

COROLLARY 3 . 3 . For every k G A f m and every p,q € { 1 , 2 } , p ± q, the 
following relations hold: 

( 1 ) 

(2) 

c p i ' , fc — fc 

fc fc 

(3) i v il,p Ç v l r ' q ) t 

4. Relationship between the classes T>i and Vj-1 and their subclasses 

It will be shown that Vl (resp. T>1'1 for i = 1,2) is a subclass of V1-1 

(resp.of v l 1 ' * ) but the converse inclusion does not hold, fc 
Before we formulate the respective theorems let us consider at the be-

ginning two examples. 
EXAMPLE 4.1. Let us reconsider the nondeterministic (2,2)-net iV(2,2) 
NNPCRof Example 2.2. Let us construct a (2,2)-net 

^(2,2) - ( { 0 ,1 },{¥>;,¥>2,¥>2} x M , ^ } , ^ ) e NNPCR{^2) 

by means of N(2y2) as follows: 

t ri ( 0 (t) f ' m 7rj(t) Ait) 

00 0 1 1 0 1 
01 1 0 1 0 1 
10 0 1 1 0 1 
11 0 1 1 0 1 

r { ( v i ) ^ i ) } if the last elements of all 
sequences of x are equal 
to 0 

^ 2 ( 2 ) = {(<¿>2^'2)1 (<̂ 2> A ) } if ^ e last elements of all 
sequences of x are equal 
to 1 

k {(v'ii ^2 ) } for the remaining cases, 
for every x G V. Let us observe that Y\{x) = {(p[(x)}, TTI(X) = { ^ ( z ) } , 
7T2(X) = {TT^(X)} and <p2(x) = { V ^ 1 ) » Vii1)} F°R every x G {0, l } 2 . 
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One can easily verify that the transition graph of ^ is the same as 
in Example 2.2. 

E x a m p l e 4.2. Let us define a (2,2)-net iV(22 2 ) = ({0, l } , ^ , ^ , ^ ' } x 

{v[y2}, of NNPCR[¿J, as follows: 
<p'2, ip2, ̂ i , a r e the same as in Example 4.1, and 

if ¿ i s odd, 
I {(^2'7 r2). (V72»7r2)} i f * i s e v e n » 

for all i > 1. 
It is easy to observe that (2,2)-nets of Examples 2.4 and 4.2 are equiva-

lent. • 

EXAMPLE 4.3. Let us reconsider the (2,3)-nets JV*2 and N ^ 3 j of Example 
3.1. We would like to construct (2,3)-nets N(32 3 ) = ( { 0 , 1 } , $ ? x ft?, $3) € 
NNPCR[^3) and Nf23) = ( { 0 , 1 } , $ ? x fi?,^) e NNPCR[}Z) which would 
be equivalent to N^2 and to N^2 , respectively. 

Looking at the controls and of N ^ ^ and of N*2 ^ we conclude 
that and flf would have the following form 

= M V 2 } > A? = M , ^ } , where 

t >p'i(t) u ir'2{u) 

00 {0 ,1 } 1 000 {0 ,1 } 1 
01 a 1 001 b 1 
10 a 0 010 b 0 
11 { 0 , 1 } 0 Oil b 1 

100 b 0 
101 b 0 
110 b 1 
111 {0 ,1 } 0 

for some a,b € A. 
The controls should be defined as follows: 

K ^ a . ' a 

(i) = 

if all sequences of x are constant 
for the remaining cases, 

(<Pi,'ffi) if i is o d d 

(f'2,^2) if i is even. 

Let us see that every state x € V of N*2 3 j as well as of N^ ^ has at 
most two immediate successors. But a state y consisting of only constant 
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sequences has axactly 25 immediate successors of 3j. Analogously every 
state z occurring in odd moments has exactly 25 immediate successors of 
NA 

(2 ,3 ) ' 

The conclusion is such that we are not able to construct the (2,3)-nets 
of NNPCR1-'1, i = 1,2, which would be equivalent to and to N*23y 

THEOREM 4 . 4 . For every vector k G Mm and every number i € { 1 , 2 } the 

following inclusions hold 

( 1 ) V1-'1 C v l h \ 
k k 

The converse inclusions do not hold. 

P r o o f . Let us consider the arbitrary /c-nets Nl = (A, ^ i ) of NNPCRi'1 

and JV| = (A, of NNPCR1-'2, where A = {ai, • • •, a„} and S*1 x • • • x 
. For any function ip : Ak> —• 2A \ {0} of (j = 1,2 • • • m) let us define 

a set 

- {£ : £ : Akj A and £(x) G tp(x) for all x G A}. 

Elements of Cv are called components of <p. For every 1 < j < m let 

Let us define two fc-nets AT| = [A, x • • • x , of NNPCRÎ yll, 1 rivi ui 

and Ni = (A, x • • • x , of NNPCR1/'2 as follows: 
K * « ^ * m ' K 

For every x G V, i G AT and every (<¿>1, • • •, <pm) G i ^ 1 x • • • x if 
* i ( s ) = (yi.---.Vm) (resp. if = (Vi.-'-.Vm)) then we put = 
C^j x • • • x CVm (resp. ^4(1) = C(fil x . . . x CVm). The above construction 
implies that D(Nl) = D(N$) and D(N%) = D(Ni), hence the inclusion (1) . . T K K K K 
holds. 

The relations 

( 2 ) ^(Vl1* Q V 1 / ) f o r i = 1 , 2 , k k 

are still to be proved. 
For this purpose let us define two fc-nets = (A, ^5) of NNPCR1-1'1 

and Nl = (A, of NNPCR1-1'2 as follows: $ = Q*1 x • • • x #*»• and 

= 1} for 1 < i < m, where <p)(t) = a,-, v>n+i(0 = °p 
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for every t £ Aki, every 1 < j < n, and some ap € A, 

{(Vi. Vi, • • • V?), • • •, (v i . • • • H>n )} i f a11 sequences of x 
^5(2:) = are constant 

. {(^n+i. • • • > f n + i ) } f o r the remaining cases, 

* / {(Vi.^i , . . . , ¥>? ) , . . . (<PI...,<PZ)} if* is odd 
6 { ) ~ if z is even 

We would like to construct two fc-nets Nl = {A, II, $7) of NNPCR1-'1 

and N~ = (A, II, of NNPCR1-'2 which would be equivalent to iV| and 
N~, respectively. 

Looking at and at we conclude that II = II^1 x • • • x n ^ 1 , where 
nt

fe< = for 1 < i < m, 7Tj(i) = { a : , . . . , a „ } , tt*(i) - for 
every t G Aki, every 1 < i < m, and the controls ^7 and have the form: 

vf / \ _ f (tt}, . . . 7r™) if every sequence of x is constant 
7 1 ( ^ i • • • >7121) fof the remaining cases 

= / ( 7 r i ' - - - ' 7 r r ) if i is odd 
I (T2.---.T2') if i is even 

for every x £ Akl x • • • x Akm and every i € N. 

Let use see that every state x € V consisting of only constant sequences 
has exactly n immediate successors of AT| whereas the same state x has nn 

immediate ones of Nl Analogously every state y occurring in odd moments 
has exactly n immediate successors of N~ while nn immediate ones of iV|. 
The conclusion is such that the fc-nets of NNPCR1-'1, i — 1,2, which would 
be equivalent to JV| and to N~ do not exist. • 

THEOREM 4.5. For every vector k € Mm the following inclusion holds: 

(3) VI C VjJ. 

The converse inclusion does not hold. 
Proof is analogous to the proof of Theorem 4.4. and therefore will be 

omitted. 

5. Properties of the classes of state sequences of the k-nets 

Let Si (resp. S1/ for i = 1,2) and S1-1 (resp. S1/'1 for i = 1,2) denote the 
K K K K 

classes of the state sequences of all fc-nets of NNPCR- (resp. of NNPCRI'1) 
and of NNPCR1;-1 (resp. of NNPCR1-1'), respectively. K K 
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If the above symbols are preceeded by the letter V then new symbols de-
note the classes of the state sequences of all deterministic fc-nets of respective 
classes. 

The following lemmas constitute the relations between the mentional 
above classes. 

LEMMA 5.1. For every vector k G Nm , m > 1, the following relations hold: 

(1) VS^ = VS"'\ fori = 1,2, 

(2) VSl = VS'J, 

(3) V S b 1 C V S b 2 , 

(4) VS1/'1 C VSl1'2 . 
\ / u u 

P r o o f . The equalities (1) and (2) immediately follow from the definitions of 
respective classes of deterministic fc-nets. The strong inclusions (3) and (4) 
follow from the facts that US •and D<S- consist of only almost periodic 

I 2 II 2 
sequences whereas "D<S-' and D.S- ' the larger classes of almost periodic 
sequences and additionally aperiodic ones. • 
LEMMA 5.2 . For every vector k = (fci . . . km) G Nm the following relations 
hold: 

(5) = V" for 0 G {1,11} and i = 1 ,2, 

(6) Si = Si1 = 

P r o o f . To prove (5) for 0 = I let us define two fc-nets Ni = (A, ^ i ) of 

NNPCRl'1 and JV| = (A, of NNPCRl7'2 as follows: 

^ = { V i } x ••• x {ifim} where <Pi(x) = A for i = 1, 2 , . . . to, ^ 1 ( 1 ) = 
(Vi) • • • > Vm) and ^2(1) = (Vi) • • •»i>m) for every x £ Ak and every z G JV. 

It is obvious that D{Nl) = D{N%) = V w . 

Proof of (6) can be similarly conducted with a slight modification. • 

6. Final remarks 
This paper provides only a mathematical background on two classes 

NNPCRl and NNPCR™ of nondeterministic parallel controlled fc-nets of 
shift-registers and constitutes the relationship between them. Further stud-
ies should be continued in a few directions. Let us list some of them: 
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(1) It would be interesting to distinguish the subclasses NNPCR?% and 
NNPCR" (resp. NNPCRg* and NNPCR"i = 1 ,2) of NNPCR± and 

of NNPCR1/ (resp. of NNPCR1/ and of NNPCR1/') with the property: 
R k k 

For every fc-net Ng of NNPCRg (resp. of NNPCR0/, i = 1,2), 0 E 

{I, II}, there exists an equivalent deterministic fc-net Nk of NNPCR£ (resp. 
of NNPCR0/)-, 

(2) There is a need to consider different aspect of nondeterministicity of the 
considered above fc-nets; 

(3) There is a need to consider different kinds of complexity problems of 
the fc-nets of both classes as well as of their state sequences; 

(4) There is a need to study the pseudorandomness of the state sequences 
of deterministic fc-nets; 

(5) One can also consider the probabilistic fc-nets; 
(6) One can introduce a new class NNPCRg of the fc-nets such that their 

controls and the feedback functions can be many-valued. 
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