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ON THE EXISTENCE OF AFFINE CONNECTIONS 
WITH RECURRENT PROJECTIVE CURVATURE 

Abstract. We find new examples of locally equiaffine connections with parallel or 
recurrent projective curvature tensor. Certain applications in the theory of totally geodesic 
affine immersions are also discussed. 

1. Preliminaries 
Let M be an n-dimensional differentiable manifold endowed with an 

affine connection V with no torsion. Denote by R, Ric the Riemann-
Christoffel curvature tensor and the Ricci curvature tensor of V. We adopt 
the following convention for the definitions of these objects 

R(X,Y) = \yx,VY]-V[x,Y], 
Ric(X, Y) = Trace { Z H R(Z, X)Y } 

for any X,Y 6 X(M), X(M) being the Lie algebra of vector fields on M. 
The Weyl projective curvature tensor P of V is defined by (see [1], [7] 

or [10]) 
P(X, Y)Z = R(X, Y)Z - (L(X, Y) - L(Y, X))Z 4- L{Y, Z)X - L{X, Z)Y 

for any X,Y,Z€ X(M), where L is the (0,2)-tensor field given by 
L(X,Y) = -(n2 - lJ-VfltciX.y) + Ric(Y, X)). 

It is classical that P is an invariant with respect to projective transforma-
tions of affine connections. P vanishes identically when dim M = 2; and in 
the case when dim M > 3, P = 0 if and only if V is locally projectively flat. 

An affine connection V is said to be with parallel projective curvature if 
V P = 0. And it is called with recurrent projective curvature if P is non-zero 
and there is a 1-form tp (called the recurrence form of P) such that 
(1) V P = ip®P. 
In the above definition, "P is non-zero" means that there is a point on the 
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manifold at which P does not vanish. However, it should be added that any 
tensor field T satisfying the condition VT = ip ® T, for a certain 1-form ip, 
must vanish either everywhere or nowhere on M ([11], [12]). Thus, for an 
affine connection with recurrent projective curvature, tensor P is non-zero 
at each point of the manifold and dim M > 3. 

Any locally projectively flat affine connection as well as any affine locally 
symmetric (Vi? = 0) has parallel projective curvature. And similarly, any 
affine connection with recurrent curvature (Vi2 = tp (g> R, R ^ 0) and of 
dimension > 3 is locally projectively flat (see [13] for affine connections 
of this kind) or of recurrent projective curvature. It was shown in [4] that 
(a) there are affine connections with parallel projective curvature which 
are neither locally projectively flat nor locally symmetric; and (b) there 
axe affine connections with recurrent projective curvature which are neither 
of recurrent curvature nor of parallel projective curvature. Both the above 
assertions (a) and (b) do not hold in the class of Levi-Civita connections 
related to (pseudo-)Riemannian metrics (see [3], [2], [5], [4]). 

An affine connection V is said to be locally equiaffine if around each point 
x € M there is a parallel volume element, that is, a nonvanishing n-form u> 
such that Vu> = 0. An affine connection with no torsion is locally equiaffine 
if and only if its Ricci tensor is symmetric (see [6]). In the case when V is 
a locally equiaffine connection, the Weyl projective curvature tensor P can 
be expressed in the following way 

P(X, Y)Z = R(X, Y)Z - (n - l) - 1(i?ic(F, Z)X - Ric(X, Z)Y) 

for any X,Y,Z € X(M). 
Our purpose is to find new examples of locally equiaffine connections 

with parallel or recurrent projective curvature. 

2. The connection 
Throughout the rest of this paper, we always assume that n > 3 and 

Latin indices take on values 1,2, . . . ,n, while Greek indices vary on range 
2,3, . . . , n . 

Let (x1, x2,..., xn) be the Cartesian coordinates in the space R n . Con-
sider an open, connected subset U of Rn and a non-zero vector field E on U, 

A 

E = Zsf°ds, where da = —. 

We endow U with an affine connection V by assuming 

V9l<9i = £, Vg1da = 0, V 9 a di = 0, V6ad0 = 0. 

Denoting by r f the components of the connection V with respect to the 
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natural basis, we write 

I y = f'sjs]. 
The components of the curvature tensor R and the Ricci tensor Ric of V 
are as follows 

Rhak = (dhfk)6W - (dif^SiSl 

Rij = - (dif1)^-
Hence we see that the Ricci tensor is symmetric, if and only if d a f l = 0. 

In the sequel, we suppose that V is equiaffine, so that d a f l = 0 is 
fulfilled. Thus, the possible non-zero components of the curvature tensor, 
the Ricci tensor and the Weyl projective tensor of V are the following 

(2) Ra 11* = d a f , 

(3) Ru = £ A ( 0 A / A ) , 
(4) Pa 11* = d a f - (n - l y ' Z x i d x f ^ C 
Consequently, the only non-zero components of the covariant derivatives of 
the curvature tensor, the Ricci tensor and the Weyl projective tensor are 
the following 

(5) V ^ n * = didaffi - 2 f 1 6 } d a f , 

(6) V ^ n = di (EA(^A/A)) - 2f15}Zx(dxfXl 

(7) V i P . u * = di {daft* - (n - l ) " 1 ^ {dxfX) ¿2) 

- 2fH\ {daf - (N - D ^ E A (dxfX) 6Q . 

THEOREM. Suppose V is a locally equiaffine connection defined by 

(8) V 9 l d i = E, V9lda = 0, \/da81 = 0, Vaetd0 = 0. 

on an open, connected subset U C Rn, where E = arbitrary 
functions f2,..., fn and a function f1 satisfying additionally the condition 

(9) d a f 1 = 0. 

(i) Let U be additionally simply connected. If V is of recurrent projective 
curvature, then there exist a non-zero, trace-free (n — 1) x (n — 1 )-matrix of 
real constants [Cf] and functions g, h : U —> R such that h > 0 everywhere 
on U and 

(10) d a f = g5P + hCe. 

(ii) The converse to (i) holds good without the additional assumption 
that U is simply connected. 

(in) In (i) as well as in (ii), the recurrence form, tp of P is given by 

(11) i>i = di\ogh-2f15}. 



174 Z. Olszak, K. Sluka 

(iv) In (i) as well as in (ti), the connection V is of recurrent curvature 
if and only if g = Dh, where D is a constant. 

Proof . At first, we note that in view of (1), (4) and (7), connection V has 
recurrent projective curvature tensor P if and only if 

(12) d i F ^ - 2 f 1 S l F ^ = ipiF^ 

for a certain 1-form ip, where we have assumed 

(13) Ft = d a f - (n - l r ^ B x f W . 

(i) Suppose that U is simply connected and V is of recurrent projective 
curvature. Because P is non-zero at every point of U, by (4), the matrix of 
functions [F@] is a non-zero matrix at every point of U. Denoting 

(14) A = A + 2 f'sj, 

we rewrite system (12) in the following way 

(15) diF* = &F*. 

As an integrability condition of (15), we derive 

(16) - di$j = 0. 

Indeed, by (15), we have 

0 = djdiFi - didjF? = (d^i - diù)F0. 

Condition (16) means that form ip = ^aifiadx3 is closed. By the famous 
Poincaré theorem (U is here simply connected), there exists a function 
hU :—• M such that 

(17) ^ = dih. 

Consequently, the only solutions of the system (15) are of the form 

(18) F t = h C l 

where h = eh > 0 and the real constants Cf form a non-zero matrix. The 
matrix [C£] is trace-free since J 2 \ F \ = 0 (cf- (I3))- Using (18) and (13), we 
obtain immediately (10) with 

9 = (n-l)-1Zx(dxfX). 

(ii) It is a straightforward verification, that (10) always implies (12), 
which is the recurrence of P, 

(Hi) By (14) and (17), the components of the recurrence form are given 
by (11). 
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(iv) In view of (2) and (5), the curvature tensor R of V is recurrent if 
and only if there exists a 1-form <p such that 

(19 ) diidaf*) - 2 i x 8 \ { d a ^ ) = <Pi(daf). 

But by (10), condition (19) holds if and only if 

( d M + (dih)C? = (2 f H \ + i f i W i + hCi), 

which is clearly equivalent to 

dig = { 2 f x 8 \ + <pi)g a n d dth = ( 2 f 1 S j + Vi)h. 

The last condition is fulfilled with a certain 1-form ip if and only if there is 
a constant D such that g = Dh. This completes the proof. 

In view of the above theorem, we see that to construct examples of locally 
equiaffine connections with recurrent projective curvature it is suffcient to 
seek solutions of the system of partial differential equations (10) and (9). 
We consider the following cases: 

CASE 1. Let U = (a,b ) x V, where (a, b) is an open interval, —oo < a < b < 
-l-oo, V is an open, connected subset of R n _ 1 and the functions g, h depend 
on the variable x1 G (a, b) only. It is obvious that in this case, functions 
satisfy (10) if and only if they are of the form 

( 2 0 ) f f i ( x \ x \ . . . , x n ) = <7(x V + M ^ E + fe/V)> 

where k0 : (a, b) -> R. 
It can be easily verified that Mikesh's examples stated in [4] are just of 

the type desribed in the above case with suitable specified functions g, h 
and Jfc". 

CASE 2 . Let n > 4. Suppose that U = Rn and at every point I £ P not 
each of dah(x) vanishes. Then functions f13 satisfy (10) if and only if they 
are of the form 

(21) / < V , z2 , . . . , x n ) = p(xl)x* + u (x1, ^ + fc'V)-

where aa, bp are constants with not each of aa and vanishing, u is a 
function of two variables xx,y, for which is positive everywhere, and p, 

are functions of one variable. Functions h,g are given here by 

( 2 2 ) hix1 , x 2 , . . . , x n ) = ^ ( x \ X > A X a ) , 

(23) gix1, x2,... ,xn) = qhfa1,!2,..., xn) + p ( i x ) , q = const. 

P r o o f . Let f13 be functions fulfilling (10). Then 

we have 

d , d a f = (d7g)Sg + (d7h)C£, 



176 Z. Olszak , K. S l u k a 

and therefore 

(24) (07s)5£ - (dag)S$ + (d7h)Cg - (dah)C? = 0. 

Since [Cf ] is trace-free, contracting (24) with respect to a and ¡3, we obtain 

( n - 2 ) ( a r f f ) = Z x ( d x h ) C } . 

Transvecting (24) with dph and using the last relation, we find 

(n - 3) ((dag)(d0h) - (dah)(d0g)) = 0. 

Hence, since n > 4, we obtain 

(25) dag = qdah 
for a certain function q. By virtue of (25), relation (24) can be rewritten in 
the following form 

{d^iqSi + Ci) - (dah)(q6P + C?) = 0, 

whence it follows that there are functions k13 such that 

(26) q5i + C i = {dah)kV. 

Note that every point o f i G K " , not each of k@(x) vanishes. Indeed, other-
wise we would have q(x)d£ + Cf = 0, which should be an obvious cotradic-
tion. Differentiating (26) partially, we have 

(27) {diq)8i = 0didah)kP + {dah){dikP). 

Note that under any fixed index i, the algebraic rank (with respect to a, (3) 
of the right hand side of (27) does not exceed 2. Therefore, (27) obviously 
implies diq = 0 and <9, ((dah)k^) — 0, i.e., q and (dah)k& are constants. 
Choose constants aa and such that (<9a/i)/c/3 = aab@. Thus, (26) takes the 
form 

(28) q5i + C<3
a = aati3. 

Moreover, we have dah — maQ for a certain function m. Consequently, there 
is a function u of two variables x1 and say y such that u > 0 everywhere 
and 

(29) h(xl,x2, ...,xn) = u (x1, £ A a A x A ) • 

Since q is constant, by (25), the function g takes the form (23), where p is 
a function of x1 only. In this situation, with the help of (23) and (28), we 
modify (10) to the following form 

d a f = g80
a + hCl = (qh + p)5i + hCi 

= p8i + h{q&Z + Ci) = pS? + hanti3, 
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or precisely, using also (29), 

d a f ( x \ x 2 , . . . , x n ) = p{xl)8i + u ( x \ £ A a A x A ) a ^ . 

This system has solutions of the form mentioned in (21), where u is a func-
tion of two variables x1, y such that = u. Finally, by (29), the function 
h satisfies (22). The converse is also true. Thus, the proof is complete. 

In the above case, we have assumed for simplicity that U = W1. One 
can remark that this is not necessary. However, without this assumption, 
functions realizing (10) can be described by (21) only locally. 

C A S E 3. Consider the case n = 3 and assume that U = (a, b) x V, where 
(a, b) is an open interval, —oo < a < b < +oo, and V is an open, connected 
and simply connected subset of M2. In this case, system (10) has solutions if 
and only if the function h fulfils the following second order partial differential 
equation 

( 3 0 ) C\d\h + ( C f - Cl)d2dzh - Cldlh = 0 

and the function g fulfils the following system of first order partial differential 
equations 

(a) d2g = C i d 3 h - C i d 2 h , 

(b) d3g = Cld2h-Cld3h. 

Then the procedure of finding solution of (10) steps in following way: take 
a function h > 0 realizing (30); next find a function g realizing (31); and 
finally solve the system (10) finding / 2 and / 3 . 

P r o o f . At first, rewrite (10) as follows 

(32 ) d 2 f = g + hCl d 3 f = hCi, 

(33 ) d 2 f = hCl d 3 f 3 — g + hCl-

The system (32) of two equations with one unknown function f 2 has solution 
if and only if the following integrability condition 
( 3 4 ) d3(g + hC2) - d2(hCi) = 0 

is satisfied on V. Similarly, the system (33) of two equations with one un-
known function / 3 has solution if and only if the following integrability 
condition 

( 3 5 ) d3(hCl) - d2(g + hCi) = 0 

is satisfied on V. Conditions (34), (35) are just the same as (31)(a), (31)(fe), 
respectively. (30) is now a sufficient and necessary condition for (31) to have 
solution with respect to g with given h. The rest of the assertion is obvious, 
which completes the proof. 
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3. Certain applications 
One of the authors has proven the following theorem (see [8]): Let (M, V ) 

i—> (M, V ) be a totally geodesic affine immersion and (M, V) be an affine 
manifold of recurrent curvature, say VR = lp®R. Then (M, V ) is (a) locally 
flat; or (b) of recurrent curvature, precisely Vi2 = tp® R, <p being the pull-
back of the recurrence form Jp. Examples connected with this result have 
been also given in [8]. 

Moreover, it is proved (see [9]): Let (M, V ) •—> (M, V ) be a totally 
geodesic affine immersion and (M, V ) be an affine manifold of recurrent 
projective curvature, say V P = Tp®P. Then (M, V ) is (a) locally projectively 
flat; or (b) of recurrent projective curvature, precisely V P = <p ® P, (p being 
the pull-back of the recurrence form Jp. 

Additional examples illustrating both of the above cited theorems can 
be constructed in the following way. 

Namely, we take the set U and the connection defined in (8) as the 
ambient affine manifold (M, V). Next we consider its affine submanifold 
defined by the equation x1 = const, with £ = d/dx1 as the transversal 
vector field. By (8), it is obvious that the submanifold has vanishing second 
fundamental form (i.e., it is totally geodesic) and the induced connection is 
flat. Using our Theorem and functions described in Cases 1-3, the ambient 
connection can be specified to be of recurrent curvature or of recurrent 
projective curvature. This gives the desired examples. 
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