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Ekrem Sava§ 

ON SEQUENCE SPACES AND 5-CONVERGENCE 

Abstract. The purpose of this paper is to introduce some sequence spaces and also 
give some inclusion relations between sequence spaces and 5-convergence. 

1. Introduction 
Let ZQO be the set of all real or complex sequences x = (xjt) with the 

norm |||x||| = sup|ifc| < oo. A linear functional L on Zoo is said to be a 
Banach limit (see, [1]) if it has the properties, 

(i) L(x) > 0 if x > 0 (i.e. xn > 0 for all n) 
(ii) L(e) = 1, where, e = (1 ,1 . . . ) 

(iii) L(Sx) = L(x), 

where the shift operator S is defined by 

Let B be the set of all Banach limits on Zoo- A sequence x is almost 
convergent to a number s if L(x) = s for all L € B. 

Lorentz [5] has shown that x is almost convergent to s if and only if 

as k —• oo uniformly in m. We denote the set of all almost convergent 
sequences by c and we denote the set of all sequences which are almost 
convergent to zero by Co- Maddox [6, 7] has defined that x is strongly almost 
convergent to a numbers s if 

as k —» oo uniformly in m. We denote the space of all strongly almost 
convergent sequences by [c] and we denote the space of all sequences which 

(Sx)n = Xn+\. 

tkm — — 

Xm + . . . + 
k + 1 

—> s 
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are strongly almost convergent to zero by [cb] - It is obvious that 

[c0] C C c C ioo-

Using the concept of almost convergence the following sequence space 
has been recently introduced and examined by Das and Sahoo [2]. 

f 1 n 

M = 1 x : — — | t k m ( x - s ) | 0 
^ fc=o . 

as n —• oo uniformly in m for some s >. 

Quite recently E. Sava§ [17] defined the following sequence space related 
with the concept of almost convergence 

n = 0 fe=0 . 

as r —> oo uniformly in m for some s >. 

If we put s = 0, we write [io°] in place of [w1]. 
We recall that a function / : [0, oo) —• [0, oo) is called a modulus if, 

(i) f(x) = 0 if and only if x = 0; 
(ii) f(x + y)< f(x) + f(y) for all x > 0, y > 0; 

(iii) / is increasing; 
(iv) / is continuous from the right at 0. 

It is immediate from (ii) and (iv) that / is continuous everywhere on 
[0, oo). 

A modulus function may be unbounded or bounded. For example, f(t) = 
tp(0 < p < 1) is unbounded but f(t) = t/( 1 4-1) is bounded. 

Ruckle [13] and Maddox [8] and other authors used modulus function to 
construct new sequence spaces. Recently Mursaleen and Chishti [11] intro-
duced and examined the following sequence spaces 

M/)] = U ^ E H\tkm(x - »)|) - o 
^ fc=0 . 

as n —> oo uniformly in m, for some s >, 

where / is a modulus function. Quite recently in [15], E. Sava§ defined and 
studied some sequence spaces by using a modulus / . 

Now we extend the spaces [to1] and [io°] to the spaces [xo1 (/)] and [w°(/)]. 
Then we extend the relationship between the 5-null sequences and the se-
quence space [u>°(/)]. 
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Let / be a modulus. We define, 

as r —• cx) uniformly m m}. 

If we put s = 0, then we obtain [to°(/)]. Note that, if we put f(x) = x 
then [w(f)} = [w] and [w1(/)j = [to1] which were studied by Das and Sahoo 
[2] and E. Sava§ [17] respectively. 

2. Main results 
We now establish a number of theorems about the sequence spaces which 

were defined above. We now have 

THEOREM 1. Let f be a modulus. Then [ w ( / ) ] and [ w 1 ( / ) j are linear spaces. 

P r o o f . We consider only [it;1 (/)]. Suppose that Xfe —> s in [iu1(/)], —> s' 
in [xo1 (/)] and a , /3 are in C. Then there exists integers Ta and Rp such 
that \a\ < Ta and \/3\ < Rp. 

We therefore have, uniformly in m 

vh E ^ T T E f^o* + i 5 y - <QS + ¿ ' » I ) 
n=0 fc=0 

n=0 fc=0 

n=0 fc=0 

This implies that ax + f3y —> o s + fls' in [UJ1(/)]. 
We have 

THEOREM 2. Let f be any modulus. If (3 = l i m ^ o o f(t)/t > 0 , then [ u ; 1 ( / ) ] 
= 

Before we proceed to prove Theorem 2 we first state a Lemma. 

LEMMA. Let f be modulus. Let 0 < 8 < 1. Then for each x > 6 we have 
f{x) < 2f(l)Sx. 

The proof follows on the line on Maddox [8]. 

P r o o f of T h e o r e m 2. We note that the limit exists for any modulus 
/ by proposition of Maddox [9]. Then x € [to1] implies that a(r,m) = 
7TI £n=0 HTi I tkmix - s ) | - > 0 a s r - » o o uniformly in m for some s. 
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For arbitrary e > 0, choose 6 with 0 < S < 1, such that f(u) < e for every 
u with 0 < u < 6. We can write for each m 

t ¡¿i E/<*-<*">i> 
71=0 k = o 

= t -)D 

n=0 fc=0 

n=0 fc=0 
< e + 2/(l)<5_1a(r, m) —• 0, 

by the lemma as r —» oo uniformly in m. Therefore x G [w1 (/)]-
Note that in this part of the proof we do not need j3 > 0. 
Now suppose that ¡3 > 0 and x 6 [w1(/)]) since this ft > 0, we have 

f(t) > fit for all i > 0. It follows that x G [w^/ ) ] implies that x G [w1]. 
THEOREM 3. Let f be any modulus. Then [ w ( f ) ] c [^H/)]-

P r o o f , x e [iy(/)] and let ^ f { \ t k m { x - s ) | ) - > 0 a s n - > o o uni-
formly in m, this implies that its arithmetic mean also converges to 0 as 
r —• oo uniformly in m. This completes the proof. 

Recall that if a; is a sequence of complex number, we say that x is sta-
tistically convergent to the number s provided that for each e > 0, 

lim — |{fc < m : — s| > = 0 for each e > 0, n—»oo n 
where the larger vertical bars indicate the number of elements in the enclosed 
set. The set of all statistical convergent sequences is denoted by s, [see, 4]. 

Over the years, statistical convergence has been studied in number theory 
[3] and trigonometric series [18]. It has also been considered in locally convex 
spaces [10]. 

Quite recently E. Sava§ [16] defined ¿"-convergence as follows: 
A sequence x — (xk) is said to be 5-convergence to 0 if for every e > 0 

l imn - ,00 ^ |{0 < k < n : |ifcm(a;)| > e}| = 0, uniformly in m. The set of all 
¿¡"-convergence is denoted by So. 

We now have 

THEOREM 4. So C [w°(/)] i f f is bounded. 

P r o o f . Suppose that / is bounded and that x € SQ. Since / is bounded 
there exists an integer K such that f ( t ) < K for all t > 0. Let e > 0. Then 
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for each m we have 

7X7 è ^TT è /(I Ws) | ) 

n=0 fc=0 
|tfcm(®)l>e 

n=0 Jfc=0 
|tfcm(l)|<£ 

< —j-7 £ ~ T ' < k < n : |ifcm(x)| > e}| + /(e) . 
r + 1 ^ o n+1 

|tfcm(®)l>e 

We now select jVe such that 

- i - | { 0 < f c < n : | i f c m ( x ) | > £ } | < ^ 
n + 1 K 

for each m and n > Ne. Now for n > Ne we have 

E ^ r E / ( I f c m ( s ) i ) / ( £ ) = £ + / ( £ ) 
n=0 fc=0 n=0 

and so letting e —> 0, the result follows. This completes the proof. 
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