

Valeriu Popa

A GENERAL COINCIDENCE THEOREM
FOR COMPATIBLE MULTIVALUED MAPPINGS
SATISFYING AN IMPLICIT RELATION

1. Introduction

Let (X, d) be a metric space. We denote by $CB(X)$ the set off all nonempty closed bounded subsets of (X, d) and by H the Hausdorff-Pompeiu metric on $CB(X)$, i.e.

$$H(A, B) = \max\{\sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A)\},$$

where $A, B \in CB(X)$ and

$$d(x, A) = \inf_{y \in A} \{d(x, y)\}.$$

It is well known that $(CB(X), H)$ is a metric space and the completeness of (X, d) implies the completeness of $(CB(X), H)$.

Let $A, B \in CB(X)$ and $k > 1$. In the sequel the following well known fact will be used [4]: for each $a \in A$, there is $b \in B$ such that $d(a, b) \leq kH(A, B)$.

Let S and T be two self mappings of a metric space (X, d) . Sessa [5] defines S and T to be weakly commuting if $d(STx, TSx) \leq d(Tx, Sx)$ for all x in X . Jungck [2] defines S and T to be compatible if

$$\lim_{n \rightarrow \infty} d(STx_n, TSx_n) = 0,$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} Tx_n = x$$

for some $x \in X$. Clearly, commuting mappings are weakly commuting and

1991 Mathematics Subject Classification: 54H25, 47H10.

Key words and phrases: coincidence point, compatible mappings, implicit relation.

weakly commuting mappings are compatible, but neither implication is reversible (Ex. 1 [6] and Ex. 2.2 [2]).

Kaneko and Sessa extend the definition of compatibility to include multivalued mappings in the following way.

DEFINITION 1 [3]. The mappings $f : X \rightarrow X$ and $T : X \rightarrow CB(X)$ are compatible if $fTx \in CB(X)$ for all $x \in X$ and

$$\lim_{n \rightarrow \infty} H(Tfx_n, fTx_n) = 0,$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \rightarrow \infty} Tx_n = M \in CB(X)$$

and

$$\lim_{n \rightarrow \infty} f(x_n) = t \in M.$$

DEFINITION 2. Consider $f : X \rightarrow X$ and $T : X \rightarrow CB(X)$. A point $z \in X$ is called a coincidence point of f and T if $fz \in Tz$.

THEOREM A [3]. *Let (X, d) be a complete metric space, $f : X \rightarrow X$ and $T : X \rightarrow CB(X)$ be compatible continuous mappings such that $T(X) \subset f(X)$ and $H(Tx, Ty) \leq h \cdot \max\{d(fx, fy), d(fx, Tx), d(fy, Ty), \frac{1}{2}(d(fx, Ty) + d(fy, Tx))\}$ for all $x, y \in X$, where $h \in (0, 1)$. Then there exists a coincidence point of f and T .*

THEOREM B [1]. *Let (X, d) be a complete metric space. Let $f, g : X \rightarrow X$ and $S, T : X \rightarrow CB(X)$ be continuous mappings such that f is compatible with S and g is compatible with T . Assume that $S(X) \subset g(X), T(X) \subset f(X)$ and that $H(Sx, Ty) \leq rd(fx, gy)$ for all $x, y \in X$, where $0 < r < 1$. Then there is a coincidence point for f and S , as for g and T .*

The purpose of this paper is to extend and improve Theorems A and B.

2. Implicit relations

Let $\tilde{\mathcal{F}}$ be the set of all functions $f : R_+^6 \rightarrow R$ satisfying the following conditions:

$\tilde{\mathcal{F}}_1$: $F(t_1, \dots, t_6)$ is decreasing in variables t_2, \dots, t_6 ;

$\tilde{\mathcal{F}}_2$: there exist $h \in (0, 1)$ and $k > 1$ with $hk < 1$ such that the inequality

(F_a): $u \leq kt$ and $F(t, v, v, u, u + v, 0) \leq 0$, or (F_b): $u \leq kt$ and $F(t, v, u, v, 0, u + v) \leq 0$ implies $t \leq hv$.

Ex.1. $F(t_1, \dots, t_6) = t_1 - m \max\{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6)\}$, where $m \in (0, 1)$.

$\tilde{\mathcal{F}}_1$: Obviously.

$\tilde{\mathcal{F}}_2$: Let be $u > 0, u \leq kt$ and

$$F(t, v, v, u, u+v, 0) = t - m \max\{u, v, \frac{1}{2}(u+v)\} \leq 0,$$

where $1 < k < \frac{1}{m}$. If $u \geq v$ then $u \leq kt \leq kmu < u$, a contradiction. Thus $v > u$ and $t \leq mv = hv$, where $h = m < 1$. Similarly, $u > 0, u \leq kt$ and $F(t, v, u, v, 0, u+v) \leq 0$ imply $t \leq hv$. If $u = 0$, then $u \leq v$ and $t \leq mv = hv$.

Ex.2. $F(t_1, \dots, t_6) = t_1 - m[\max\{t_2^2, t_3t_4, t_5t_6, t_3t_5, t_4t_6\}]]^{1/2}$, where $0 < m < \frac{1}{\sqrt{2}}$.

$\tilde{\mathcal{F}}_1$: Obviously.

$\tilde{\mathcal{F}}_2$: Let be $u > 0, u \leq kt$ and

$F(t, v, v, u, u+v, 0) = t - m[\max\{v^2, uv, 0, v(u+v)\}]^{1/2} \leq 0$, with $h = \sqrt{2}m \in (0, 1)$, $k > 1$ and $kh < 1$. If $u \geq v$ then $u \leq kt \leq km\sqrt{2}u < u$, a contradiction. Thus $v > u$ and $t \leq m\sqrt{2}v = hv$. Similarly, $u > 0, u \leq kt$ and $F(t, v, u, v, 0, u+v) \leq 0$ imply $t \leq hv$. If $u = 0$, then $u \leq v$ and $t \leq m\sqrt{2}v = hv$.

Ex.3. $F(t_1, \dots, t_6) = t_1^2 + \frac{t_1}{t_5t_6+1} - (at_2^2 + bt_3^2 + ct_4^2)$, where $a > 0, b > 0, c > 0$ and $a+b+c < 1$.

$\tilde{\mathcal{F}}_1$: Obviously.

$\tilde{\mathcal{F}}_2$: Let be $u > 0, v \geq 0, u \leq kt$ and $F(t, v, v, u, u+v, 0) \leq 0$, where $1 < k < \frac{1}{\sqrt{a+b+c}}$. Then $t^2 + t - (av^2 + bv^2 + cu^2) \leq 0$ which implies $t^2 \leq av^2 + bv^2 + cu^2$. If $u \geq v$, then $u^2 \leq k^2t^2 \leq k^2(a+b+c)u^2 < u^2$, a contradiction. Thus $u < v$ and $t \leq \sqrt{a+b+c}v = hv$, where $h = \sqrt{a+b+c} \in (0, 1)$ and $kh < 1$. Similarly, $u > 0, v \geq 0, u \leq kt$ and $F(t, v, u, v, 0, u+v) \leq 0$ imply $t \leq hv$. If $u = 0$, then $u \leq v$ and $t \leq \sqrt{a+b+c}v = hv$.

3. Main result

THEOREM. Let (X, d) be a complete metric space. Let $f, g : X \rightarrow X$ and $S, T : X \rightarrow CB(X)$ be continuous mappings such that f is compatible with S and g is compatible with T . Assume $S(X) \subset g(X), T(X) \subset f(X)$ and for all $x, y \in X$

(1) $F(H(Sx, Ty), d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(gy, Sx)) \leq 0$, where $F \in \tilde{\mathcal{F}}$. Then f and S and g and T have a common coincidence point.

P r o o f. Let x_0 be an arbitrary but fixed element in X . We shall construct two sequences $\{x_n\}, \{y_n\}$ of elements in X and sequence $\{A_n\}$ of elements in $CB(X)$. Since $S(X) \subset g(X)$, there exists $x_1 \in X$ such that $y_1 = gx_1 \in Sx_0$.

Then there exists an element $y_2 = f(x_2) \in Tx_1 = A_1$, because $T(X) \subset f(X)$, such that

$$d(y_1, y_2) = d(gx_1, fx_2) \leq kH(Sx_0, Tx_1).$$

Since $S(X) \subset g(X)$, we may choose $x_3 \in X$ such that $y_3 = gx_3 \in Sx_2 = A_2$ and

$$d(y_2, y_3) \leq kH(Tx_1, Sx_2).$$

By induction we produce the sequences $\{x_n\}$, $\{y_n\}$ and $\{A_n\}$ such that

$$(2) \quad y_{2k+1} = gx_{2k+1} \in Sx_{2k} = A_{2k},$$

$$(3) \quad y_{2k+2} = fx_{2k+2} \in Tx_{2k+1} = A_{2k+1},$$

$$(4) \quad d(y_{2k+1}, y_{2k}) \leq kH(Sx_{2k}, Tx_{2k-1}),$$

$$(5) \quad d(y_{2k+1}, y_{2k+2}) \leq kH(Sx_{2k}, Tx_{2k+1}) \quad \text{for every } k \in N.$$

Letting $x = x_{2k}$, $y = x_{2k+1}$ in condition (1), we have successively

$$F(H(Sx_{2k}, Tx_{2k+1}), d(fx_{2k}, gx_{2k+1}), d(fx_{2k}, Sx_{2k}), d(gx_{2k+1}, Tx_{2k+1}),$$

$$d(fx_{2k}, Tx_{2k+1}), d(gx_{2k+1}, Sx_{2k})) \leq 0,$$

$$F(H(Sx_{2k+1}, Tx_{2k+1}), d(y_{2k}, y_{2k+1}), d(y_{2k}, y_{2k+1}), d(y_{2k+1}, y_{2k+2}),$$

$$d(y_{2k}, y_{2k+2}), d(y_{2k+1}, y_{2k+1})) \leq 0.$$

Thus

$$(6) \quad F(H(Sx_{2k}, Tx_{2k+1}), d(y_{2k}, y_{2k+1}), d(y_{2k}, y_{2k+1}),$$

$$d(y_{2k+1}, y_{2k+2}), d(y_{2k}, y_{2k+1}) + d(y_{2k+1}, y_{2k+2}), 0) \leq 0.$$

By (5), (6) and (F_a) we have

$$(7) \quad H(Sx_{2k}, Tx_{2k+1}) = H(A_{2k}, A_{2k+1}) \leq hd(y_{2k}, y_{2k+1}),$$

$$(8) \quad d(y_{2k+1}, y_{2k+2}) \leq khd(y_{2k}, y_{2k+1}).$$

Similarly, by (1), (4) and (F_b) , we obtain

$$(9) \quad H(Sx_{2k}, Tx_{2k-1}) = H(A_{2k}, A_{2k-1}) \leq hd(y_{2k-1}, y_{2k}),$$

$$(10) \quad d(y_{2k}, y_{2k+1}) \leq khd(y_{2k-1}, y_{2k}).$$

Since $kh \in (0, 1)$ it follows from (8) and (10) that $\{y_n\}$ is a Cauchy sequence. Hence there exists z in X such that $y_n \rightarrow z$. Therefore, $gx_{2k+1} \rightarrow z$ and $fx_{2k+2} \rightarrow z$. Moreover, $g f x_{2k+2} \rightarrow g z$, $S f x_{2k+2} \rightarrow S z$, $f g x_{2k+1} \rightarrow f z$ and $T g x_{2k+1} \rightarrow T z$, by the continuity. Also from (7), (9), $h \in (0, 1)$ and the fact that $\{y_n\}$ is a Cauchy sequence it follows that $\{A_k\}$ is a Cauchy sequence in the complete metric space $(CB(X), H)$. Thus $A_k \rightarrow A \in CB(X)$. This implies $Tx_{2k+1} \rightarrow A$, $Sx_{2k+2} \rightarrow A$ and therefore $z \in A$, because

$$d(z, A) = \lim_{n \rightarrow \infty} d(y_n, A) \leq \lim_{k \rightarrow \infty} H(A_{n-1}, A_n) = 0.$$

Observe that then

$$\lim_{k \rightarrow \infty} fx_{2k} = z \in A = \lim_{k \rightarrow \infty} Sx_{2k}.$$

Hence, by compatibility of f and S , we have

$$\lim_{k \rightarrow \infty} H(fSx_{2k}, Sfx_{2k}) = 0.$$

Therefore

$$\lim_{k \rightarrow \infty} d(fy_{2k+1}, Sy_{2k}) = 0.$$

Hence $d(fz, Sz) = 0$, so $fz \in Sz$. Similarly $gz \in Tz$.

Theorem and Ex. 1.3 imply the following result.

COROLLARY1. *Let (X, d) be a complete metric space. Let $f, g : X \rightarrow X$ and $S, T : X \rightarrow CB(X)$ be continuous mappings such that f is compatible with S and g is compatible with T . Assume that $S(X) \subset g(X), T(X) \subset f(X)$ and for all $x, y \in X$ there is*

$$(1.1) \quad H(Sx, Ty) \leq m \max\{d(fx, gy), d(fx, Sx), d(gx, Ty), \frac{1}{2}(d(fx, Ty) + d(gy, Sx))\}, \quad \text{where } m \in (0, 1),$$

or

$$(1.2) \quad H^2(Sx, Ty) \leq m^2 \max\{d^2(fx, gy), d(fx, Sx)d(gy, Ty), d(fx, Ty) \\ d(gy, Sx), d(fx, Ty)d(fx, Sx), d(gy, Ty)d(gy, Sx)\}, \quad \text{where } 0 < m^2 < \frac{1}{2},$$

or

$$(1.3) \quad H^2(Sx, Ty) + \frac{H(Sx, Ty)}{d(fx, Ty)d(gy, Sx) + 1} - (ad^2(fx, gy) + bd^2(fx, Sx) \\ + cd^2(gy, Ty)) \leq 0, \quad \text{where } a, b, c > 0 \quad \text{and } a + b + c < 1.$$

Then f and S as g and T have a common coincidence point.

REMARK. By Corollary 1 and (1.1) for $S = T$ and $f = g$, we obtain Theorem A. Theorem B follows from Corollary (1) and (1.1), because

$$d(fx, gy) \leq \max\{d(fx, gy), d(fx, Sx), d(gy, Ty), \frac{1}{2}(d(fx, Ty) + d(gy, Sx))\}.$$

References

- [1] A. Azam and I. Beg, *Coincidence points of compatible multivalued mappings*, Demonstratio Math. 29 (1996), 17–22.
- [2] G. Jungck, *Compatible mappings and common fixed points*, Internat. J. Math. and Math. Sci. 9 (1986), 771–779.
- [3] H. Kaneko, S. Sessa, *Fixed point theorems for compatible multivalued and single valued mappings*, Internat. J. Math. and Math. Sci. 12 (1989), 257–262.

- [4] S. B. Nadler, *Multivalued contraction mappings*, Pacific J. Mat. 20 (2) (1969), 457–488.
- [5] S. Sessa, *On weak commutativity condition in a fixed points considerations*, Publ. Inst. Mat. 38 (46) (1982), 149–153.
- [6] S. Sessa, B. Fisher, *Common fixed point of weakly commuting mappings*, Bull. Polish Acad. Sci. Math. 36 (1987), 341–349.

DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF BACĂU,

5500 BACĂU, ROMANIA

E-mail: vpopa@ub.ro

Received January 12, 1999; revised version May 10, 1999.