Cătălin Gherghe

HARMONICITY ON NEARLY TRANS-SASAKI MANIFOLDS

Abstract. In this paper we shall study the harmonicity and D-pluriharmonicity of a (φ, J) -holomorphic map from a nearly trans-Sasaki manifold into an almost Hermitian manifold.

1. Introduction

The theory of harmonic maps on Kähler and Riemannian manifolds is very rich in interesting results ([2]-[4]).

In 1995 S. Ianus and A. M. Pastore have introduced the study of harmonic maps into almost contact metric manifolds. Moreover they introduced the concept of φ -pluriharmonicity in analogy with the known one from the geometry of almost Hermitian manifolds ([7]).

In 1985 Oubina introduced a new class of almost contact metric manifold. Thus a trans-Sasaki manifold is an analogue of a locally conformal Kähler manifold ([11]). A nearly trans-Sasaki manifold is a more general concept.

The purpose of this paper is to study the harmonicity and D-pluri-harmonicity on nearly trans-Sasaki manifolds. We shall prove that any (φ, J) -holomorphic map from a nearly trans-Sasaki manifold into a quasi-Kähler manifold is harmonic. We also prove that any (φ, J) -holomorphic map from a nearly trans-Sasaki manifold into a Kähler manifold is D-pluriharmonic.

The author wishes to thank professor S. Ianus for very useful comments and discussions.

2. Preliminaries

In this section we recall some notions of the harmonic theory ([3], [4]). If $E \to M$ is a smooth vector bundle over a smooth manifold, we shall denote by $\Gamma(E)$ the space of smooth sections of E.

Let $f:(M,g)\to (N,h)$ be a smooth map between Riemannian manifolds. Then its differential df is a section of the bundle $TM\otimes f^{-1}TN\to M$.

This bundle has a connection ∇' induced from the Levi-Civita connection ∇^M of M and the pull back connection $\widetilde{\nabla}$. Then applying that connection to df gives the second fundamental form of f

$$\alpha_f(X,Y) = \widetilde{\nabla}_X df(Y) - df(\nabla_X^M Y)$$

for any $X, Y \in \Gamma(TM)$. It easy to prove that α_f is symmetric.

The section $\tau(f) \in \Gamma(f^{-1}(TN))$ defined by

$$au(f) = \operatorname{Tr}
abla' df = \sum_{i=1}^m
abla' df(e_i, e_i),$$

where $\{e_i\}$ is an orthonormal frame on TM, is called the tension field of f.

We say that a map $f:(M,g)\to (N,h)$ between two Riemannian manifolds M and N is harmonic if and only if $\tau(f)\equiv 0$ ([3]).

We shall give some classical examples:

- 1. Any totally geodesic map $f:(M,g)\to (N,h)$ is harmonic ([4]).
- 2. If $f:(M,g)\to (N,h)$ is an isometric immersion then f is harmonic if and only if it is a minimal immersion ([3]).
- 3. Any holomorphic or antiholomorphic map $f: M \to N$ between Kähler manifolds is harmonic ([9])
- 4. If $f: \mathbb{R}^m \to \mathbb{R}^n$ is a harmonic polinomial map then its restriction $f: \mathbb{S}^{m-1} \to \mathbb{S}^{n-1}$ is harmonic.
- 5. Let G_1 , G_2 be two Lie groups endowed with bi-invariant Riemannian metrics, then any Lie morphism $f: G_1 \to G_2$ is a harmonic map.

3. Harmonicity on nearly trans-Sasaki manifolds

Let M be a smooth manifold of dimension 2m + 1. We recall that an almost contact structure on M is a triple (φ, ξ, η) where φ is a tensor field of type $(1, 1), \xi$ is a vector field and η is a 1-form which satisfy (see [1])

$$\varphi^2 = -I + \eta \otimes \xi$$
 and $\eta(\xi) = 1$,

where I is the identity endomorphism on TM. Then we have

$$\varphi(\xi) = 0$$
 and $\eta \circ \varphi = 0$.

Furthemore, if g is an associated Riamannian metric on M, that is, a metric which satisfies

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$$

then we say that (φ, ξ, η, g) is an almost contact metric structure. In such a way we obtain an almost contact metric manifold. The fundamental 2-form Φ of an almost contact metric manifold M is defined by

$$\Phi(X,Y) = g(X,\varphi Y), \ X,Y \in \Gamma(TM).$$

We denote by D the distribution orthogonal to ξ .

Now let V be a C^{∞} -almost Hermitian manifold with the metric h and almost complex structure J. The Kähler form Ω is given by $\Omega(X,Y)=g(X,JY)$, and the Lee form is the 1-form θ defined by $\theta(X)=\frac{1}{n-1}\delta\Omega(JX)$, where δ the coderivative, dim V=2n and $X,Y\in\Gamma(TV)$.

We recall that V is said to be Kähler if $d\Omega = 0$ and $N_J = 0$ and locally conformal Kähler if $d\Omega = \theta \wedge \Omega$ and $N_J = 0$, where N_J denotes the Nijenhuis tensor of J ([12]).

An almost contact manifold $M(\varphi, \xi, \eta)$ is said to be normal if the almost complex structure J on $M \times R$ given by

$$J\bigg(X,a\frac{d}{dt}\bigg)=\bigg(\varphi X-a\xi,\eta(X)\frac{d}{dt}\bigg),$$

where a is a C^{∞} function on $M \times R$, is integrable, which is equivalent to the condition $N_{\omega} + 2d\eta \otimes \xi = 0$ where N_{ω} denotes the Nijenhuis tensor of φ ([1]).

Now let (φ, ξ, η, g) be an almost contact metric structure on M. We define an almost Hermitian structure (J, h) on $M \times R$, where J is the above almost complex structure J and h is the Hermitian metric

$$h\left(\left(X, a\frac{d}{dt}\right), \left(Y, b\frac{d}{dt}\right)\right) = g(X, Y) + ab.$$

An almost contact metric structure (φ, ξ, η, g) is said to be trans-Sasaki if the almost Hermitian structure (J, h) on $M \times R$ is locally conformal Kähler ([11]).

In ([11]) the author proves that if $M(\varphi, \xi, \eta, g)$ is an almost contact metric manifold, then M is trans Sasaki if and only if

$$(\nabla_X \varphi)Y = \alpha \{g(X, Y)\xi - \eta(Y)X\} + \beta \{g(\varphi X, Y)\xi - \eta(Y)\varphi X\},$$

where $\alpha, \beta \in C^{\infty}(M)$.

THEOREM 1. Let $M(\varphi, \xi, \eta, g)$ be an almost contact metric manifold, N(J, h) be an almost Hermitian manifold and $f: M \to N$ be a (φ, J) -holomorphic map. Then we have the following formula

(3.1)
$$J(\tau(f)) = df(\operatorname{div}\varphi) - \operatorname{Tr}_{g}\beta,$$

where $\beta(X,Y) = (\widetilde{\nabla}_X J)(dfY)$, for any $X,Y \in \Gamma(TM)$.

Proof. We see that df is an 1-form on M which takes values in $f^{-1}(TN)$, so that also $df \circ \varphi$ and $J \circ df$. As f is (φ, J) -holomorphic we have

(3.2)
$$\nabla'(df \circ \varphi) = \nabla'(J \circ df).$$

We recall that for an 1-form ω on M we have

$$(3.3) \qquad (\nabla \omega)(X,Y) = (\nabla_X \omega)(Y) = \nabla_X \omega(Y) - \omega(\nabla_X Y)$$

for any $X, Y \in \Gamma(TM)$. By using the above relation for $\omega = df \circ \varphi$ we have

$$\begin{split} (\nabla'(df \circ \varphi))(X,Y) &= \widetilde{\nabla}_X df(\varphi Y) - (df \circ \varphi)(\nabla_X^M Y) \\ &= (\widetilde{\nabla}_X df)(\varphi Y) + df(\nabla_X^M \varphi Y) - (df \circ \varphi)(\nabla_X^M Y) \\ &= (\widetilde{\nabla}_X df)(\varphi Y) + df((\nabla_X \varphi)(Y)). \end{split}$$

Thus we get

$$(3.4) \qquad (\nabla'(df \circ \varphi))(X,Y) = \alpha_f(X,\varphi Y) + df((\nabla_X \varphi)(Y)).$$

Now we rewrite (3.3) for $\omega = J \circ df$:

$$\begin{split} (\nabla'(J \circ df))(X,Y) &= \widetilde{\nabla}_X J(dfY) - (J \circ df)(\nabla_X^M Y) \\ &= (\widetilde{\nabla}_X J)(dfY) + J(\widetilde{\nabla}_X dfY) - J(df(\nabla_X^M Y)) \\ &= (\widetilde{\nabla}_X J)(dfY) + J((\widetilde{\nabla} df)(X,Y)). \end{split}$$

Thus we get

(3.5)
$$(\nabla'(J \circ df))(X, Y) = (\tilde{\nabla}_X J)(dfY) + J((\alpha_f(X, Y)).$$

From (3.2), (3.4) and (3.5) we have

$$(3.6) J((\alpha_f(X,Y)) + (\widetilde{\nabla}_X J)(dfY) = df((\nabla_X \varphi)(Y)) + \alpha_f(X,\varphi Y).$$

Now let $\{e_1, \ldots, e_m, \varphi e_1, \ldots, \varphi e_m, \xi\}$ be an orthonormal local frame on TM. By using the symmetry of the second fundamental form of f we get

$$\sum_{i=1}^{m} \{\alpha_f(e_i, \varphi e_i) + \alpha_f(\varphi e_i, \varphi^2 e_i)\} + \alpha_f(\xi, \varphi \xi)$$

$$= \sum_{i=1}^{m} \{\alpha_f(e_i, \varphi e_i) - \alpha_f(\varphi e_i, e_i)\} = 0.$$

Finally by taking the trace in (3.6) we get the formula (3.1).

The above result is proved more generally for f-structures (see [6]).

We recall that an almost Hermitian manifold N(J,h) is quasi-Kähler if

$$(\nabla_X^N J)Y + (\nabla_{JX}^N J)JY = 0$$

for any $X,Y\in\Gamma(TN)$. Any Riemannian 3-symmetric space and thus the sphere S^6 is a quasi-Kähler manifold.

Let $M(\varphi, \xi, \eta, g)$ be an almost contact metric manifold. Then M is called nearly trans-Sasaki if

(3.7)
$$(\nabla_X \varphi) Y + (\nabla_Y \varphi) X = \alpha \{ 2g(X, Y) \xi - \eta(Y) X - \eta(X) Y \}$$
$$-\beta \{ \eta(Y) \varphi X + \eta(X) \varphi Y \}.$$

It is clear that any trans-Sasaki, and thus any Sasaki manifold satisfies the above relation.

THEOREM 2. Let $M(\varphi, \xi, \eta, g)$ be a nearly trans-Sasaki manifold, N(J, h) be a quasi-Kähler manifold and $f: M \to N$ be a (φ, J) -holomorphic map. Then the tension field $\tau(f)$ vanishes and thus f is a harmonic map.

Proof. Let $\{e_1, \ldots, e_m, \varphi e_1, \ldots, \varphi e_m, \xi\}$ be an orthonormal φ -adapted local frame on TM. Then

$$\operatorname{div} \varphi = \sum_{i=1}^{m} \{ (\nabla_{e_i} \varphi) e_i + (\nabla_{\varphi e_i} \varphi) \varphi e_i \} + (\nabla_{\xi} \varphi) \xi.$$

From (3.7) we have $(\nabla_{e_i}\varphi)e_i = \alpha\xi$, $(\nabla_{\varphi e_i}\varphi)\varphi e_i = \alpha\xi$, and $(\nabla_{\xi}\varphi)\xi = 0$ and thus

$$\operatorname{div}\varphi=2m\alpha\xi.$$

On the other hand as f is (φ, J) -holomorphic we have $J(df\xi) = df(\varphi\xi) = 0$, and thus $df(\xi) = 0$. Now as N is a quasi-Kähler manifold we obtain

$$\operatorname{Tr}_{g} \beta = \sum_{i=1}^{m} \{ (\widetilde{\nabla}_{e_{i}} J) df e_{i} + (\widetilde{\nabla}_{\varphi e_{i}} J) df \varphi e_{i} \} + (\widetilde{\nabla}_{\xi} J) df \xi$$
$$= (\nabla_{df e_{i}}^{N} J) df e_{i} + (\nabla_{J df e_{i}} J) J df e_{i} = 0.$$

Finally by using Theorem 1, as $df(\xi) = 0$, we obtain that $\tau(f) = 0$ and hence f is harmonic.

COROLLARY 1. Let $M(\varphi, \xi, \eta, g)$ be a Sasaki manifold, N(J, h) be a Kähler manifold and $f: M \to N$ be a (φ, J) -holomorphic map. Then f is a harmonic map.

EXAMPLE ([7]) A Sasaki manifold $M(\varphi, \xi, \eta, g)$ is regular if every point $x \in M$ has a cubical coordinate neighborhood $\mathcal U$ such that the integral curves of ξ passing through $\mathcal U$ pass through the neighborhood only once. A compact regular Sasaki manifold is a circle bundle $S^1 \to M \to N \simeq M/S^1$ called the Boothby-Wang fibration and N has an induced Kähler structure (J,h) such that the projection map $\pi: M \to N$ is (φ, J) -holomorphic.

A classical example is the Hopf fibration $S^1 \to S^{2n+1} \to P^n(C)$.

4. D-pluriharmonicity on nearly trans-Sasaki manifolds

Let M be Kähler manifold with complex structure J and N a Riemannian manifold. A smooth map $f:M\to N$ is called pluriharmonic if the second fundamental form α_f satisfies

$$\alpha_f(X,Y) + \alpha_f(JX,JY) = 0$$

for any $X, Y \in \Gamma(TM)$. Any pluriharmonic map is a harmonic map ([10]).

In ([7]) S. Ianus and A. M. Pastore considered an analogue concept for the almost contact metric manifolds. If $M(\varphi, \xi, \eta, g)$ is an almost contact metric

manifold and N is a Riemannian manifold, a smooth map $f:M\to N$ is called φ -pluriharmonic if

(4.1)
$$\alpha_f(X,Y) + \alpha_f(\varphi X, \varphi Y) = 0$$

for any $X, Y \in \Gamma(TM)$. Furthermore f is said to be D-pluriharmonic if (4.1) holds for any $X, Y \in \Gamma(D)$. It is also known that φ -pluriharmonicity implies harmonicity ([7]).

PROPOSITION 1. Let $M(\varphi, \xi, \eta, g)$ be a nearly trans-Sasaki manifold, N(J, h) be a Kähler manifold and $f: M \to N$ be a (φ, J) -holomorphic map. Then f is D-pluriharmonic.

Proof. We recall that for any $X, Y \in \Gamma(TM)$ we have ([2])

$$\widetilde{\nabla}_X df(Y) - \widetilde{\nabla}_Y df(X) = df([X, Y]).$$

It is obvious that as M is a nearly trans-Sasaki manifold we have

$$(\nabla_X \varphi)Y + (\nabla_Y \varphi)X = \alpha 2g(X, Y)\xi$$

for every $X, Y \in \Gamma(D)$.

As f is (φ, J) -holomorphic and N is a Kähler manifold we get

$$\begin{split} \widetilde{\nabla}_{\varphi X} df(\varphi Y) &= \widetilde{\nabla}_{\varphi X} J df(Y) = J(\widetilde{\nabla}_{\varphi X} df(Y)) \\ &= J(\widetilde{\nabla}_Y df(\varphi X) + df([\varphi X, Y])) \\ &= -\widetilde{\nabla}_Y df(X) + df(\varphi[\varphi X, Y]). \end{split}$$

Now by using the above relations and the symmetry of the second fundamental form α_f of f we have

$$2\alpha_f(X,Y) + 2\alpha_f(\varphi X,\varphi Y) = df\{(\nabla_Y \varphi)\varphi X + (\nabla_X \varphi)\varphi Y\}$$

for all $X, Y \in \Gamma(D)$.

We have seen that for a (φ, J) -holomorphic map from an almost contact metric manifold into an almost Hermitian manifold we have $df(\xi) = 0$. Now by using this relation and (3.7) we have

$$\alpha_f(X,Y) + \alpha_f(\varphi X, \varphi Y) = 0$$

for all $X, Y \in \Gamma(D)$, and thus f is D-pluriharmonic.

References

- D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.
- [2] S. Dragomir, J. C. Wood, Sottovarieta et applicazione armoniche, Bologna, 1989.
- [3] J. Eells, L. Lemaire, Selected topics in harmonic maps, C.B.M.S. Regional Conf. Series 50, Amer. Math. Society (1983).

- [4] J. Eells, L. Lemaire, Another report on harmonic maps, Bulletin London Math. Society 20 (1988) 385-524.
- [5] C. Gherghe, Harmonicity on almost contact metric manifolds, (to appear in Rend. Circ. di Palermo vol. 48, 1999).
- [6] C. Gherghe, S. Ianus, A. M. Pastore, Harmonic maps on f-structures, (preprint).
- [7] S. Ianus, A. M. Pastore, Harmonic maps on contact metric manifolds, Ann. Math. Blaise Pascal, vol 2 (1995), 43-55.
- [8] S. Ianus, A. M. Pastore, Harmonic maps and f-structures with parallelizable kernel in: "New Developments in Differential Geometry Proceedings", Budapest 1996 (ed. Szenthe J.) Kluwer Acad. Publ., (1998), 143-154.
- [9] A. Lichnerowicz, Applications harmoniques et varietes Kähleriennes, Symposia Mathematica 3 (1980), 341-402.
- [10] Y. Ohnita, On pluriaharmonicity of stable harmonic maps, J. London Math. Soc. (2) 35 (1987), 563-568.
- [11] A. Oubina, New class of almost contact metric structure, Publ. Math. Debrecen 32 (1985), 187-193.
- [12] I. Vaismann, On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc., 262 (1980), 439-447.

UNIVERSITY OF BUCHAREST,
FACULTY OF MATHEMATICS
Str. Academiei 14,
RO-70109 BUCHAREST, ROMANIA
E-mail: cgherghe@geometry.math.unibuc.ro

Received March 8, 1999.