Agnieszka Bogdewicz #### SOME METRIC PROPERTIES OF HYPERSPACES ### 1. Introduction Metric convexity and strong metric convexity are basic notions of distance geometry (see [2]). Let us briefly recall the definitions and summarize some simple facts. Let (X, ρ) be a metric space. For any pair of distinct points $a, b \in X$, a metric segment with the endpoints a, b is a subset of X isometric to the interval $[0, \rho(a, b)]$. For every isometric embedding $f : [0, \rho(a, b)] \to X$ with f(0) = a and $f(\rho(a, b)) = b$, let (1.1) $$\Delta_f(a,b) := f([0,\rho(a,b)]).$$ For any $a, b \in X$ a point $c \in X$ lies between a, b (we write $B_{\rho}(a, c, b)$) if and only if $$\rho(a,c) + \rho(c,b) = \rho(a,b).$$ For any $a, b \in X$ a point $c \in X$ such that $$\rho(a,c) = \rho(c,b) = \frac{1}{2}\rho(a,b)$$ is called a *midpoint* of the pair $\{a, b\}$. We say that (X, ρ) is (strongly) metrically convex if every pair of points $a, b \in X$ can be joined by a (unique) metric segment. - **1.1.** Let X be metrically convex. The union of all metric segments with endpoints $x_1, x_2 \in X$ coincides with the set of points lying between x_1 and x_2 . - **1.2.** [4, Lemma 0.1] A metric space (X, ρ) is strongly metrically convex if and only if (X, ρ) is metrically convex and every pair of points in (X, ρ) has a unique midpoint. For every $a \in X$, $\alpha > 0$ the set $$\mathbf{B}_{\rho}(a,\alpha) := \{ y \in X; \rho(a,y) \leqslant \alpha \}$$ is called the ball with center a and radius α . By $\mathbf{B}(a,\alpha)$ we shall denote the ball with center a and radius α in \mathbb{R}^n with Euclidean metric. For every $x \in X$ and $A \subset X$, let $$\rho(x,A) := \inf\{\rho(x,a); a \in A\}$$ and $$(1.2) (A)_{\alpha} := \{x \in X; \rho(x, A) \leqslant \alpha\}$$ for any $\alpha > 0$. Let C(X) be the set of compact subsets of X. For any nonempty sets $A, B \in \mathcal{C}(X)$ the Hausdorff distance is defined by the formula (1.3) $$\rho_H(A,B) = \max \{ \sup_{a \in A} \rho(a,B), \sup_{b \in B} \rho(b,A) \}.$$ It is well known (see [7], p. 48) that $$(1.4) \rho_H(A,B) = \inf\{\alpha > 0; A \subset (B)_\alpha \text{ and } B \subset (A)_\alpha\}.$$ **1.3 Theorem** ([7, Th. 1.8.2.]). If (X, ρ) is complete, then so is the metric space $(\mathcal{C}(X), \rho_H)$. The present paper concerns the hyperspace $\mathcal{C}^n := \mathcal{C}(\mathbb{R}^n)$ and its subspaces: \mathcal{K}^n consisting of all convex bodies (non-empty, compact, convex subsets) in \mathbb{R}^n and \mathcal{B}^n consisting of all n-balls in \mathbb{R}^n . Evidently (\mathbb{R}^n, ρ) with ρ Euclidean is strongly metrically convex. For distinct a, b the affine segment $$\triangle(a,b) = \{(1-t)a + tb; t \in [0,1]\}$$ is the unique metric segment with the endpoints a, b: where $$f(t) = \left(1 - \frac{t}{\rho(a,b)}\right) \cdot a + \frac{t}{\rho(a,b)} \cdot b$$ for every $t \in [0, \rho(a, b)]$. **1.4.** Let (X, ρ) be a metrically convex space. Every metric segment in (X, ρ) is strongly metrically convex. Proof. Let $x_1, x_2 \in X$ and $\rho(x_1, x_2) = \alpha$ and let $f : [0, \alpha] \to X$ be an isometric embedding. Evidently, the metric segment $[0, \alpha]$ is strongly metrically convex in \mathbb{R} . Since strong metric convexity is invariant under isometries, also $\Delta_f(x_1, x_2)$ is strongly metrically convex in X. An affine segment in \mathbb{C}^n is defined by means of the Minkowski addition and multiplication: for any distinct $A, B \in \mathbb{C}^n$, $$\triangle(A,B) = \{(1-t)A + tB; t \in [0,1]\}.$$ An example of affine segment $\Delta(A, B)$ is presented in Fig. 1 Fig. 1 As we shall see in Section 3, generally $\triangle(A, B)$ is one of many metric segments joining A and B. **1.5. Definition.** A set $\mathcal{X} \subset \mathcal{C}^n$ is *convex* if and only if $\Delta(A, B) \subset \mathcal{X}$ for every $A, B \in \mathcal{X}$. The problem of convexity and metric convexity of \mathcal{K}^n , \mathcal{C}^n were considered in [1], [3] and [5] - [7]. Most of the authors deal mainly with the space \mathcal{K}^n . From their results it follows that \mathcal{K}^n and \mathcal{C}^n are convex and metrically convex, but not strongly metrically convex. L. Montejano in [6] introduced the notions of hypersegment and hyperconvexity in K^n ; these notions differ essentially from the notion of segment (metric segment) and convexity (metric convexity). In the present paper we consider the convexity and the (strong) metric convexity of \mathcal{C}^n , \mathcal{K}^n , \mathcal{B}^n and some of their subsets (Section 2). In Section 3 we give some examples of metric segments in these spaces. The main results are contained in Section 4. We introduce a partial order in the set of all metric segments with given endpoints in \mathcal{C}^n (\mathcal{K}^n , \mathcal{B}^n). We find the greatest segment in this set for \mathcal{C}^n , \mathcal{K}^n and \mathcal{B}^n and the least segment for \mathcal{B}^n . We prove that for \mathcal{K}^n and \mathcal{C}^n generally the least segment does not exist. 2. Convexity and metric convexity in (\mathcal{C}^n, ρ_H) We start with some examples of convex subsets of C^n . Evidently **2.1.** Every affine segment in C^n is convex. Proof is analogous to that for affine segment in \mathbb{R}^n . We shall prove that every ball in C^n with convex center is convex. **2.2 Proposition.** For every convex $A \in \mathcal{C}^n$ and $\alpha > 0$ the set $\mathbf{B}_{\rho_H}(A, \alpha)$ is convex in \mathcal{C}^n . Proof. By [5, 1.6 p.238], for every $X, Y \in \mathcal{C}^n$ and $Z \in \mathcal{K}^n$, $$\rho_H(tX + (1-t)Y, Z) \leq t\rho_H(X, Z) + (1-t)\rho_H(Y, Z)$$ for every $t \in [0, 1]$. Let $C_1, C_2 \in \mathbf{B}_{\rho_H}(A, \alpha)$ and $C = (1-t)C_1 + tC_2$ for some $t \in [0, 1]$. Then $$\rho_H(A,C) \leqslant (1-t)\rho_H(A,C_1) + t\rho_H(A,C_2) \leqslant \alpha.$$ The following is evident. **2.3.** The subspaces K^n and B^n are convex in (C^n, ρ_H) . Notice that for any $A, B \in \mathcal{C}^n$ the affine segment $\Delta(A, B)$ is also a metric segment. Thus every convex subset of \mathcal{C}^n is metrically convex. In particular, **2.4.** (\mathcal{B}^n, ρ_H) , (\mathcal{K}^n, ρ_H) , and (\mathcal{C}^n, ρ_H) are metrically convex. Let us now pass to the notion of strong metric convexity. We start with the following: **2.5 Lemma.** The space (\mathcal{B}^n, ρ_H) is isometric to $(\mathbb{R}^n \times \mathbb{R}^+, \bar{\rho})$, where (2.1) $$\bar{\rho}((x_1,t_1),(x_2,t_2)) = \rho(x_1,x_2) + |t_1-t_2|$$ for every $(x_i, t_i) \in \mathbb{R}^n \times \mathbb{R}^+$, i = 1, 2. Proof. It is easy to check that for arbitrary $x_1, x_2 \in \mathbb{R}^n$ and $r_1, r_2 > 0$ (2.2) $$\rho_H(\mathbf{B}(x_1,r_1),\mathbf{B}(x_2,r_2)) = \rho(x_1,x_2) + |r_1 - r_2|.$$ Let $h: \mathcal{B}^n \to \mathbb{R}^n \times \mathbb{R}^+$ be defined by the formula (2.3) $$h(\mathbf{B}(x,r)) := (x,r).$$ Then, by (2.2), the function h is an isometry. Since, evidently, $(\mathbb{R}^n \times \mathbb{R}^+, \bar{\rho})$ is not strongly metrically convex, as a direct consequence of Lemma 2.5 we obtain the following. **2.6 Theorem.** The space (\mathcal{B}^n, ρ_H) is not strongly metrically convex. This yields the well known result (see [7], p. 59): **2.7 Corollary.** (\mathcal{K}^n, ρ_H) and (\mathcal{C}^n, ρ_H) are not strongly metrically convex. Every midpoint of a pair $\{A, B\}$ in \mathcal{C}^n belongs to a metric segment with endpoints A, B. Hence, to show two different metric segments joining A and B, it suffices to show two different midpoints of $\{A, B\}$. To illustrate Corollary 2.7, we shall now give an example of a pair $\{A, B\}$ with two different midpoints in \mathbb{C}^n . # **2.8 Example.** Let $A, B \in \mathcal{B}^2$ $$A = \mathbf{B}((-x,0),r), B = \mathbf{B}((x,0),r).$$ Let $\rho_H(A, B) = \alpha$, $M := (A)_{\frac{\alpha}{2}} \cap (B)_{\frac{\alpha}{2}}$, $$M_{+} = \{(x, y) \in M; y \geqslant -r\}, \text{ and } M_{-} = \{(x, y) \in M; y \leqslant r\}.$$ Then $$\rho_H(A, M_+) = \rho_H(M_+, B) = \frac{\alpha}{2} \text{ and } \rho_H(A, M_-) = \rho_H(M_-, B) = \frac{\alpha}{2}$$ and $M_{+} \neq M_{-}$. Hence M_{+}, M_{-} are two different midpoints of the pair $\{A, B\}$. By 2.2, every ball with a convex center in \mathcal{C}^n is convex; hence, it is metrically convex in (\mathcal{C}^n, ρ_H) . However, generally, balls in (\mathcal{C}^n, ρ_H) are not strongly metrically convex. **2.9 Example.** Let $X = \mathbf{B}(x_0, r)$, $A, B \in \mathbf{B}_{\rho_H}(X, 3r)$, $A = \mathbf{B}(x_1, r)$, $B = \mathbf{B}(x_2, r)$ and $\rho(x_0, x_1) = \rho(x_0, x_2) = r$, $\rho(x_1, x_2) = 2r$. Evidently, all the metric segments joining A,B are contained in $\mathbf{B}_{\rho_H}(X,3r)$. Let M_+, M_- be two midpoints described as in Example 2.8. For these midpoints we can find isometric embeddings $f, g : [0, \rho_H(A, B)] \to \mathcal{C}^n$ such, that $$M_{+} = f(\frac{1}{2}\rho_{H}(A,B))$$ and $M_{-} = g(\frac{1}{2}\rho_{H}(A,B)).$ Since $M_+ \neq M_-$, we found two different metric segments joining A, B and contained in $\mathbf{B}_{\rho_H}(X, 3r)$ (compare 4.2). In view of 1.4, every metric segment in \mathbb{C}^n is strongly metrically convex. Schneider in [8] was concerned with metric segments in \mathbb{K}^n . His theorem can be formulated as follows: - **2.10 Theorem** ([8]). For every $K_1, K_2 \in \mathcal{K}^n$ the following conditions are equivalent: - (i) there exists a unique metric segment joining K_1 and K_2 ; - (ii) either $K_1 = (K_2)_r$ or $K_2 = (K_1)_r$ with some $r \ge 0$, or else K_1, K_2 lie in parallel hyperplanes and $K_1 = K_2 + t$ with some vector t orthogonal to these hyperplanes. This theorem provides next examples of strongly metrically convex subsets of (\mathcal{C}^n, ρ_H) : - **2.11 Example.** Let $K \in \mathcal{K}^n$. If S is a connected subset of \mathbb{R}^+ , then the set $\{(K)_{\alpha}; \alpha \in S\}$ is strongly metrically convex. - **2.12 Example.** Let $K \in \mathcal{K}^n$ and let K lie in a hyperplane H orthogonal to $u \neq o$. If T is a connected subset of \mathbb{R} then the set $\{K + t \cdot u; t \in T\}$ is strongly metrically convex. - 3. Metric segments in (\mathcal{C}^n, ρ_H) We shall first consider some examples of metric segments in (\mathcal{B}^n, ρ_H) . **3.1 Example.** Let $B_i = \mathbf{B}(x_i, r_i)$ for i = 1, 2 and $\lambda := \rho(x_1, x_2) > 0$. We can assume, that $r_2 > r_1$. Let $\delta := r_2 - r_1 > 0$. Evidently, the following formulae define isometric embeddings f_j : $[0, \rho_H(B_1, B_2)] \to \mathcal{B}^n$ for j = 1, 2, 3. $$f_{1}(t) = \begin{cases} \mathbf{B} \left(x_{1} \cdot \left(1 - \frac{t}{\lambda} \right) + x_{2} \cdot \frac{t}{\lambda}, \ r_{1} \right) & \text{for } t \in [0, \lambda] \\ \mathbf{B} \left(x_{2}, \ \left(1 - \frac{t - \lambda}{\delta} \right) \cdot r_{1} + \frac{t - \lambda}{\delta} \cdot r_{2} \right) & \text{for } t \in [\lambda, \lambda + \delta] \end{cases},$$ $$f_{2}(t) = \begin{cases} \mathbf{B} \left(x_{1}, \ r_{1} + t \right) & \text{for } t \in [0, \delta] \\ \mathbf{B} \left(x_{1}, \ \left(1 - \frac{t - \delta}{\lambda} \right) + x_{2} \cdot \frac{t - \delta}{\lambda}, \ r_{2} \right) & \text{for } t \in [\delta, \lambda + \delta] \end{cases},$$ $$f_{3}(t) = \mathbf{B} \left(s \left(t \right), r \left(t \right) \right), \text{ where } r \left(t \right) = r_{1} + t \cdot \frac{\delta}{\lambda + \delta}, s \left(t \right) = \frac{\lambda + \delta - t}{\lambda + \delta} x_{1} + \frac{t}{\lambda + \delta} x_{2}.$$ The metric segments $\triangle_{f_1}(B_1, B_2)$, $\triangle_{f_2}(B_1, B_2)$, and $\triangle_{f_3}(B_1, B_2)$ are presented in Fig. 2, 3 and 4, respectively. Fig. 2 Notice that $\triangle_{f_3}(B_1, B_2) = \triangle(B_1, B_2)$. Example 3.1 can be generalized as follows. **3.2 Example.** Let $B' = \mathbf{B}(x', t')$ and $B'' = \mathbf{B}(x'', t'')$ with $x' \neq x''$ and $t' \leq t''$. Let, further, $\pi: \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}^n$ be the projection, $\pi(x,t) = x$, and let h be defined by (2.3). Fig. 3 Fig. 4 Consider an arc $L \subset \mathbb{R}^n \times \mathbb{R}^+$ with endpoints (x',t'), (x'',t''), satisfying the following conditions: - (i) $\pi(L) = \triangle(x', x'')$, - (ii) $L = \bigcup_{i=1}^{m} L_i$, where L_i is an arc with endpoints (x_i, t_i) , (x_{i+1}, t_{i+1}) , for $i = 1, \ldots, m-1$, $x_1 = x'$, $x_m = x''$, $t_1 = t'$, $t_m = t''$, $t_1 \leqslant t_2 \ldots \leqslant t_m$ and each L_i is either the graph of weakly increasing function or $x_i = x_{i+1}$. Then L is a metric segment in $(\mathbb{R}^n \times \mathbb{R}^+, \bar{\rho})$, and the set $h^{-1}(L)$ is a metric segment in \mathcal{B}^n with endpoints B', B'' (see Fig. 5). By 1.1, the union of all metric segments in \mathcal{B}^n with endpoints B_1, B_2 coincides with the set of balls lying between B_1 and B_2 in (\mathcal{B}^n, ρ_H) : (3.1) $$\bigcup_{f \in F} \Delta_f(B_1, B_2) = \{ X \in \mathcal{B}^n; B_{\rho_H}(B_1, X, B_2) \},$$ where F is the set of all isometric embeddings of $[0, \rho_H(B_1, B_2)]$ into \mathcal{B}^n . We can describe this set as follows: **3.3.** A ball $\mathbf{B}(x,r)$ lies between B_1 and B_2 in (\mathcal{B}^n, ρ_H) if and only if $x \in \Delta(x_1, x_2)$ and $r \in [r_1, r_2]$. Fig. 5 The set of all balls lying between B_1 and B_2 in (\mathcal{B}^2, ρ_H) is presented in Fig. 6. Fig. 6 Let us now consider some examples of metric segments in (\mathcal{C}^n, ρ_H) . The first example is provided by the following result of Jongmans. - **3.4** (see [5], p. 241). Let $A, B, C \in C^n$. If C lies between A and B in (C^n, ρ_H) , then the set $\triangle(A, C) \cup \triangle(C, B)$ is a metric segment joining A and B. - **3.5 Example.** Let $A = B_1$, $B = B_2$ as in Example 3.1, and let C be a midpoint of the pair $\{A, B\}$. The metric segment joining A and B described in 3.4 is presented in Fig. 7. - **3.6 Lemma.** Let $A, B \in \mathcal{C}^n$, $\rho_H(A, B) = \alpha$, and let $$(3.2) M(t) := (A)_t \cap (B)_{\alpha - t}$$ for every $t \in [0, \alpha]$. Then $\rho_H(A, M(t)) = t$ and $\rho_H(M(t), B) = \alpha - t$. Proof. Since A, B are compact and ρ_H is continuous, there exist points $a \in A$ and $b \in B$ such that $\rho(a, b) = \rho_H(A, B)$. It is easy to see that $\frac{\alpha - t}{\alpha}a + \frac{t}{\alpha}b \in M(t)$. Thus $M(t) \neq \emptyset$. Fig. 7 Let us show that $\rho_H(A, M(t)) = t$ and $\rho_H(M(t), B) = \alpha - t$. By (3.2) $$(3.3) M(t) \subset (A)_t.$$ We shall prove the inclusion $$(3.4) A \subset (M(t))_t.$$ Let $x \in A$. Since B is compact, there is $y \in B$ such that $\rho(x, B) = \rho(x, y)$. By the assumption $\rho(x, y) \leq \alpha$. Take $s \in bd\mathbf{B}(x, t) \cap \triangle(x, y)$. Thus $s \in M(t)$ and $x \in \mathbf{B}(s, t)$ which implies $x \in (M(t))_t$. $$(3.5) \rho_H(A, M(t)) \leqslant t.$$ Analogously we obtain $$(3.6) \rho_H(M(t), B) \leqslant \alpha - t.$$ By (3.5), (3.6), and triangle inequality, $$\rho_H(A, M(t)) + \rho_H(M(t), B) = \rho_H(A, B).$$ Finally $\rho_H(A, M(t)) = t$ and $\rho_H(M(t), B) = \alpha - t$. **3.7 Lemma.** Let $A, B \in \mathcal{C}^n$, $\rho_H(A, B) = \alpha$, and let $0 \leqslant t_1 \leqslant t_2 \leqslant \alpha$. Then $$(3.7) M(t_1) = (A)_{t_1} \cap (M(t_2))_{t_2-t_1}$$ and (3.8) $$M(t_2) = (B)_{\alpha-t_2} \cap (M(t_1))_{t_2-t_1},$$ where $M(t_1)$, $M(t_2)$ are defined by (3.2). Proof. The inclusions $$(A)_{t_1} \cap (M(t_2))_{t_2-t_1} \subset M(t_1)$$ and $$M(t_1)\subset (A)_{t_1}$$ are obvious. We shall prove the inclusion $$(3.9) M(t_1) \subset (M(t_2))_{t_2-t_1}.$$ Let $x \in M(t_1)$. Then there exist $a \in A$ and $b \in B$ such that $x \in \mathbf{B}(a, t_1) \cap \mathbf{B}(b, \alpha - t_1)$. Take $s \in bd\mathbf{B}(x,t_2-t_1) \cap \triangle(x,b)$. Thus $\rho(a,s) \leqslant t_2$ and $\rho(s,b) \leqslant \alpha-t_2$. Hence $s \in M(t_2)$ and $x \in \mathbf{B}(s,t_2-t_1)$. Therefore $x \in (M(t_2))_{t_2-t_1}$. Analogously we prove $$(3.10) M(t_2) \subset (M(t_1))_{t_2-t_1}.$$ This together with obvious inclusions $$(B)_{\alpha-t_2}\cap (M(t_1))_{t_2-t_1}\subset M(t_2)$$ and $$M(t_2)\subset (B)_{\alpha-t_2}$$ completes the proof of (3.8). **3.8 Proposition.** Let $A, B \in \mathcal{C}^n$, $\rho_H(A, B) = \alpha$, and let $M : [0, \alpha] \to \mathcal{C}^n$ be defined by (3.2). Then $\Delta_M(A, B)$ is a metric segment in \mathcal{C}^n . Proof. Let $0 \le t_1 \le t_2 \le \alpha$. Then $M(t_1) := (A)_{t_1} \cap (B)_{\alpha-t_1}$ and $M(t_2) := (A)_{t_2} \cap (B)_{\alpha-t_2}$. To prove that M is an isometry we have to verify the condition (3.11) $$\rho_H(M(t_1), M(t_2)) = t_2 - t_1.$$ By (1.4), (3,7) and (3.8) (3.12) $$\rho_H(M(t_1), M(t_2)) \leqslant t_2 - t_1.$$ By Lemma 3.6 $$(3.13) \rho_H(A, M(t_i)) = t_i$$ for i = 1, 2. Fig. 8 The triangle inequality, combined with (3.12) and (3.13) yields $$\rho_H(A, M(t_2)) \leqslant \rho_H(A, M(t_1)) + \rho_H(M(t_1), M(t_2)) \leqslant t_2.$$ Hence, by (3.16), $\rho_H(M(t_1), M(t_2)) = t_2 - t_1$. **3.9 Example.** Let B_1 , B_2 be two balls in \mathbb{R}^2 with equal radii. The segment $\Delta_M(B_1, B_2)$ is presented in Fig. 8. # 4. A partial order in the set of metric segments We introduce the following relation \leq in the set of metric segments with given endpoints. - **4.1. Definition.** Let \mathcal{X} , \mathcal{Y} be metric segments with endpoints $A, B \in \mathcal{C}^n$ and $\alpha := \rho_H(A, B) > 0$. Then $\mathcal{X} \preceq \mathcal{Y}$ if and only if there exist isometric embeddings $f, g : [0, \alpha] \to \mathcal{C}^n$ such that $f([0, \alpha]) = \mathcal{X}$, $g([0, \alpha]) = \mathcal{Y}$, f(0) = A = g(0), $f(\alpha) = B = g(\alpha)$, and $f(t) \subset g(t)$ for every $t \in [0, \alpha]$. - **4.2 Proposition.** The relation \leq is a partial order but is not a linear order. Proof. It is easy to check that \leq is a partial order. We shall show that \leq is not connected (see Fig. 9). Let $A = \mathbf{B}(x,r)$, $B = \mathbf{B}(y,r)$, $x = (x_1, \dots x_{n-1}, 0)$, $y = (y_1, \dots y_{n-1}, 0)$, and $\alpha := \rho(x,y) > 0$ (then $\alpha := \rho_H(A,B)$). Using Proposition 3.8 we construct two metric segments, $\Delta_{M_+}(A,B)$ and $\Delta_{M_-}(A,B)$, as follows. Let $M:[0,\alpha]\to\mathcal{C}^n$ be defined by (3.2). We define $M_+, M_-: [0, \alpha] \to \mathcal{C}^n$ by the formulae $$M_{+}(t) = \{(z_{1}, \dots z_{n}) \in M(t); z_{n} \geqslant -r\}$$ $$M_{-}(t) = \{(z_{1}, \dots z_{n}) \in M(t); z_{n} \leqslant r\}.$$ Then M_+ and M_- are isometric embeddings. Moreover, neither $\triangle_{M_+}(A,B) \preceq \triangle_{M_-}(A,B)$ nor $\triangle_{M_-}(A,B) \preceq \triangle_{M_+}(A,B)$. **4.3 Proposition.** The relation \leq restricted to \mathcal{K}^n or \mathcal{B}^n is a partial order but is not a linear order. Proof. We shall show that \leq is not connected. Notice that if $A, B \in \mathcal{K}^n$, then $M_+(t), M_-(t) \in \mathcal{K}^n$ for every $t \in [0, \rho_H(A, B)]$. Hence $$\triangle_{M_+}(A,B), \ \triangle_{M_-}(A,B) \subset \mathcal{K}^n.$$ Now we shall show that \leq restricted to \mathcal{B}^n is disconnected. Let $A, B \in \mathcal{B}^n$, $A = \mathbf{B}(x, r)$, $B = \mathbf{B}(y, R)$, R > r > 0 and $r + R < \rho(x, y)$. Let $s := \frac{R+r}{2}$, $$L = \triangle \left((x,r), (x,s) \right) \cup \triangle \left((x,s), (y,s) \right) \cup \triangle \left((y,s), (y,R) \right),$$ and let h be defined by (2.3). Fig. 9 Then, by 3.2, the set $h^{-1}(L)$ is a metric segment joining A and B. Let us take isometric embedding f_3 from Example 3.1. It is easy to see that neither $\triangle_{f_3}(A,B) \leq h^{-1}(L)$ nor $h^{-1}(L) \leq \triangle_{f_3}(A,B)$. **4.4 Proposition.** Let M be defined by (3.2). For every $A, B \in C^n$ the metric segment $\Delta_M(A, B)$ is the greatest in the sense of relation \preceq . Proof. Let $A, B \in \mathcal{C}^n$, $\alpha := \rho_H(A, B) > 0$ and let $\Delta_g(A, B)$ be an arbitrary metric segment with the endpoints A, B. We shall prove, that $g(t) \subset M(t)$ for every $t \in [0, \alpha]$. Evidently, and $$(4.2) \rho_H(g(t), B) = \alpha - t.$$ By (1.4) and (4.1) we obtain $$g(t) \subset (A)_t;$$ by (1.4) and (4.2) we obtain $$g(t) \subset (B)_{\alpha-t}$$. Thus $$g(t) \subset (A)_t \cap (B)_{\alpha-t} = M(t)$$. Restricting our consideration to the subspace of convex bodies we obtain analogous result: **4.5 Proposition.** Let M be defined by (3.2). For every $A, B \in \mathcal{K}^n$ the metric segment $\Delta_M(A, B)$ is the greatest in the sense of relation \leq restricted to \mathcal{K}^n . Proof. If $A, B \in \mathcal{K}^n$, then $(A)_t, (B)_{\alpha-t} \in \mathcal{K}^n$, whence $(A)_t \cap (B)_{\alpha-t} \in \mathcal{K}^n$. Thus the proof is analogous to that of Proposition 4.4. **4.6 Proposition.** For every $B_1, B_2 \in \mathcal{B}^n$ the metric segment $\triangle_{f_1}(B_1, B_2)$ from Example 3.1 is the least in the sense of relation \leq restricted to \mathcal{B}^n . Proof. Let $B_1 = \mathbf{B}(x_1, r_1)$, $B_2 = \mathbf{B}(x_2, r_2)$, $\lambda := \rho(x_1, x_2) > 0$. We can assume that $r_1 < r_2$. Let $\delta := r_2 - r_1 > 0$. We shall prove that, for any isometry $g:[0,\rho_H(B_1,B_2)]\to \Delta_g(B_1,B_2)$ with $g(0)=B_1$ and $g(\alpha)=B_2$, $$f_1(t) \subset g(t)$$ for every $t \in [0, \rho_H(B_1, B_2)]$. Notice that if g(t) = B(x, r), then (4.3) $$x \in \Delta(x_1, x_2) \text{ and } r \in [r_1, r_2].$$ Let a and s be the center and the radius of the ball $f_1(t)$. Then $$(4.4) a \in \triangle(x_1, x_2) \text{ and } s \in [r_1, r_2].$$ Notice also that, for $t \in [0, \lambda + \delta]$, (4.5) $$\rho_H(B_1, f_1(t)) = \rho_H(B_1, g(t)) = t$$ and (4.6) $$\rho_H(f_1(t), B_2) = \rho_H(g(t), B_2) = \lambda + \delta - t.$$ We shall consider two cases. Case 1: $t \in [0, \lambda]$. Then, by (4.5), we obtain $$\rho(x_1,a) = \rho(x_1,x) + |r-r_1|,$$ whence the balls $f_1(t)$ and g(t) are internally tangent and from (4.3) it follows that $r \ge r_1$. Thus $f_1(t) \subset g(t)$. Case 2: $t \in [\lambda, \lambda + \delta]$. Then, by (4.3), (4.4) and (4.6) we obtain $$\rho(x,a)=\rho(x,x_2)=r-s.$$ Hence the balls $f_1(t)$ and g(t) are internally tangent and $r \ge s$. Thus $f_1(t) \subset g(t)$. Analogously we prove the following: **4.7 Proposition.** For every $B_1, B_2 \in \mathcal{B}^n$, the metric segment $\Delta_{f_2}(B_1, B_2)$ from Example 3.1 is the greatest in the sense of relation \leq restricted to \mathcal{B}^n . As a direct consequence of Propositions 4.6 and 4.7 we obtain - **4.8 Corollary.** For every $B_1, B_2 \in \mathcal{B}^n$ - (i) there exists the greatest metric segment in B^n with endpoints B_1, B_2 ; - (ii) there exists the least metric segment in B^n with endpoints B_1, B_2 . By Propositions 4.4 and 4.5, the statement 4.8 (i) remains valid if \mathcal{B}^n is replaced by either \mathcal{C}^n or \mathcal{K}^n . We shall now prove that for 4.8 (ii) the situation is opposite. **4.9 Theorem.** There exist $A, B \in C^n$ such that the least metric segment in C^n with endpoints A, B does not exist. Proof. Let $A = \mathbf{B}(x,r)$, $B = \mathbf{B}(y,R)$, 0 < r < R and $\rho(x,y) > r + R$. Let $\alpha := \rho_H(A,B) > 0$. Suppose that $\Delta_g(A, B)$ is the least metric segment joining A and B, and g(0) = A, $g(\alpha) = B$. Then, by Definition 4.1, for every isometric embeddings $h_1, h_2 : [0, \alpha] \to \mathcal{C}^n$ with $h_i(0) = A$ and $h_i(\alpha) = B$, where i = 1, 2, $$(4.7) g(t) \subset h_1(t) \cap h_2(t)$$ for every $t \in [0, \alpha]$. Since every midpoint of $\{A, B\}$ in \mathbb{C}^n is the value $h(\frac{\alpha}{2})$ of an isometric embedding $h : [0, \alpha] \to \mathbb{C}^n$, it follows that $g(\frac{\alpha}{2})$ is contained in the intersection of arbitrary two midpoints of $\{A, B\}$. On the other hand, there exist $a, b, c \in \mathbb{R}^n$ such that $$\begin{split} \rho(x,a) &= \frac{\alpha}{2} - 2R + r, & \rho(y,a) &= \frac{\alpha}{2} + r, \\ \rho(x,b) &= \frac{\alpha}{2} - r, & \rho(y,b) &= \frac{\alpha}{2} - R + 2r, \\ \rho(x,c) &= \frac{\alpha}{2} + r, & \rho(y,c) &= \frac{\alpha}{2} - R. \end{split}$$ Then the sets $\{a,c\}$ and $\{b,c\}$ are midpoints of $\{A,B\}$, and the set $\{c\} = \{a,c\} \cap \{a,c\}$ does not contain any midpoint of $\{A,B\}$, so, in particular, it does not contain $g(\frac{\alpha}{2})$. **4.10 Theorem.** There exist $A, B \in \mathcal{K}^n$ such that the least metric segment in \mathcal{K}^n with endpoints A, B does not exist. Proof. We follow the idea of proof of Theorem 4.9. Let A, B, and α be as above. Let $a, b, c \in \mathbb{R}^n$ and $$egin{aligned} ho(x,a) &= rac{lpha}{2} - 2R + r, & ho(y,a) &= rac{lpha}{2} + r, \ ho(x,b) &= rac{lpha}{2} - r, & ho(y,b) &= rac{lpha}{2} + R, \ ho(x,c) &= rac{lpha}{2} + r, & ho(y,c) &= rac{lpha}{2} - R. \end{aligned}$$ Then the sets $\triangle(a,c)$ and $\triangle(b,c)$ are midpoints of $\{A,B\}$, and the set $\{c\} = \triangle(a,c) \cap \triangle(b,c)$ does not contain any midpoint of $\{A,B\}$. Acknowledgements. The author is grateful to Professor Maria Moszyńska for helpful discussions, valuable suggestions, and useful remarks. The author would like to thank Doctor Irmina Herburt for helpful comments and suggestions. #### References - [1] R. Bantegnie, Convexité des hyperespaces, Arch. Math. 26 (1975), 414-420. - [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford, 1953. - [3] R. Duda, On convex metric spaces III, Fund. Math. 51 (1962), 23-33. - [4] I. Herburt and M. Moszyńska, On metric products, Colloq. Math. 62 (1991), 121-133. - [5] F. Jongmans, De l'art d'être a bonne distance des ensembles dont la décomposition atteint un stade avancé, Bull. Soc. Roy. Sci. Liège 48 (1979), 237-261. - [6] L. Montejano, Convexity in the hyperspace of compact convex sets, An. Inst. Math. Univ. Nac. Autónoma México 26 (1986), 145-159. - [7] R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, 1993. - [8] R. Schneider, Pairs of convex bodies with unique joining metric segment, Bull. Soc. Roy. Sci. Liège 50 (1981), 5-7. - [9] G. C. Shephard and R. J. Webster, *Metrics for sets of convex bodies*, Mathematica 12 (1965), 73-88. FACULTY OF MATHEMATICS AND INFORMATION SCIENCE WARSAW UNIVERSITY OF TECHNOLOGY Pl. Politechniki 1 00-661 WARSAW, POLAND e-mail korentz@prioris.im.pw.edu.pl Received February 26, 1999.