Agnieszka Bogdewicz

SOME METRIC PROPERTIES OF HYPERSPACES

1. Introduction

Metric convexity and strong metric convexity are basic notions of distance geometry (see [2]). Let us briefly recall the definitions and summarize some simple facts.

Let (X, ρ) be a metric space. For any pair of distinct points $a, b \in X$, a metric segment with the endpoints a, b is a subset of X isometric to the interval $[0, \rho(a, b)]$. For every isometric embedding $f : [0, \rho(a, b)] \to X$ with f(0) = a and $f(\rho(a, b)) = b$, let

(1.1)
$$\Delta_f(a,b) := f([0,\rho(a,b)]).$$

For any $a, b \in X$ a point $c \in X$ lies between a, b (we write $B_{\rho}(a, c, b)$) if and only if

$$\rho(a,c) + \rho(c,b) = \rho(a,b).$$

For any $a, b \in X$ a point $c \in X$ such that

$$\rho(a,c) = \rho(c,b) = \frac{1}{2}\rho(a,b)$$

is called a *midpoint* of the pair $\{a, b\}$.

We say that (X, ρ) is (strongly) metrically convex if every pair of points $a, b \in X$ can be joined by a (unique) metric segment.

- **1.1.** Let X be metrically convex. The union of all metric segments with endpoints $x_1, x_2 \in X$ coincides with the set of points lying between x_1 and x_2 .
- **1.2.** [4, Lemma 0.1] A metric space (X, ρ) is strongly metrically convex if and only if (X, ρ) is metrically convex and every pair of points in (X, ρ) has a unique midpoint.

For every $a \in X$, $\alpha > 0$ the set

$$\mathbf{B}_{\rho}(a,\alpha) := \{ y \in X; \rho(a,y) \leqslant \alpha \}$$

is called the ball with center a and radius α .

By $\mathbf{B}(a,\alpha)$ we shall denote the ball with center a and radius α in \mathbb{R}^n with Euclidean metric.

For every $x \in X$ and $A \subset X$, let

$$\rho(x,A) := \inf\{\rho(x,a); a \in A\}$$

and

$$(1.2) (A)_{\alpha} := \{x \in X; \rho(x, A) \leqslant \alpha\}$$

for any $\alpha > 0$.

Let C(X) be the set of compact subsets of X.

For any nonempty sets $A, B \in \mathcal{C}(X)$ the Hausdorff distance is defined by the formula

(1.3)
$$\rho_H(A,B) = \max \{ \sup_{a \in A} \rho(a,B), \sup_{b \in B} \rho(b,A) \}.$$

It is well known (see [7], p. 48) that

$$(1.4) \rho_H(A,B) = \inf\{\alpha > 0; A \subset (B)_\alpha \text{ and } B \subset (A)_\alpha\}.$$

1.3 Theorem ([7, Th. 1.8.2.]). If (X, ρ) is complete, then so is the metric space $(\mathcal{C}(X), \rho_H)$.

The present paper concerns the hyperspace $\mathcal{C}^n := \mathcal{C}(\mathbb{R}^n)$ and its subspaces: \mathcal{K}^n consisting of all convex bodies (non-empty, compact, convex subsets) in \mathbb{R}^n and \mathcal{B}^n consisting of all n-balls in \mathbb{R}^n .

Evidently (\mathbb{R}^n, ρ) with ρ Euclidean is strongly metrically convex. For distinct a, b the affine segment

$$\triangle(a,b) = \{(1-t)a + tb; t \in [0,1]\}$$

is the unique metric segment with the endpoints a, b:

where

$$f(t) = \left(1 - \frac{t}{\rho(a,b)}\right) \cdot a + \frac{t}{\rho(a,b)} \cdot b$$

for every $t \in [0, \rho(a, b)]$.

1.4. Let (X, ρ) be a metrically convex space. Every metric segment in (X, ρ) is strongly metrically convex.

Proof. Let $x_1, x_2 \in X$ and $\rho(x_1, x_2) = \alpha$ and let $f : [0, \alpha] \to X$ be an isometric embedding.

Evidently, the metric segment $[0, \alpha]$ is strongly metrically convex in \mathbb{R} . Since strong metric convexity is invariant under isometries, also $\Delta_f(x_1, x_2)$ is strongly metrically convex in X.

An affine segment in \mathbb{C}^n is defined by means of the Minkowski addition and multiplication: for any distinct $A, B \in \mathbb{C}^n$,

$$\triangle(A,B) = \{(1-t)A + tB; t \in [0,1]\}.$$

An example of affine segment $\Delta(A, B)$ is presented in Fig. 1

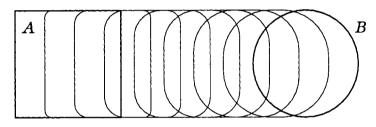


Fig. 1

As we shall see in Section 3, generally $\triangle(A, B)$ is one of many metric segments joining A and B.

1.5. Definition. A set $\mathcal{X} \subset \mathcal{C}^n$ is *convex* if and only if $\Delta(A, B) \subset \mathcal{X}$ for every $A, B \in \mathcal{X}$.

The problem of convexity and metric convexity of \mathcal{K}^n , \mathcal{C}^n were considered in [1], [3] and [5] - [7]. Most of the authors deal mainly with the space \mathcal{K}^n . From their results it follows that \mathcal{K}^n and \mathcal{C}^n are convex and metrically convex, but not strongly metrically convex.

L. Montejano in [6] introduced the notions of hypersegment and hyperconvexity in K^n ; these notions differ essentially from the notion of segment (metric segment) and convexity (metric convexity).

In the present paper we consider the convexity and the (strong) metric convexity of \mathcal{C}^n , \mathcal{K}^n , \mathcal{B}^n and some of their subsets (Section 2). In Section 3 we give some examples of metric segments in these spaces.

The main results are contained in Section 4. We introduce a partial order in the set of all metric segments with given endpoints in \mathcal{C}^n (\mathcal{K}^n , \mathcal{B}^n). We find the greatest segment in this set for \mathcal{C}^n , \mathcal{K}^n and \mathcal{B}^n and the least segment for \mathcal{B}^n . We prove that for \mathcal{K}^n and \mathcal{C}^n generally the least segment does not exist.

2. Convexity and metric convexity in (\mathcal{C}^n, ρ_H)

We start with some examples of convex subsets of C^n . Evidently

2.1. Every affine segment in C^n is convex.

Proof is analogous to that for affine segment in \mathbb{R}^n .

We shall prove that every ball in C^n with convex center is convex.

2.2 Proposition. For every convex $A \in \mathcal{C}^n$ and $\alpha > 0$ the set $\mathbf{B}_{\rho_H}(A, \alpha)$ is convex in \mathcal{C}^n .

Proof. By [5, 1.6 p.238], for every $X, Y \in \mathcal{C}^n$ and $Z \in \mathcal{K}^n$,

$$\rho_H(tX + (1-t)Y, Z) \leq t\rho_H(X, Z) + (1-t)\rho_H(Y, Z)$$

for every $t \in [0, 1]$.

Let $C_1, C_2 \in \mathbf{B}_{\rho_H}(A, \alpha)$ and $C = (1-t)C_1 + tC_2$ for some $t \in [0, 1]$. Then

$$\rho_H(A,C) \leqslant (1-t)\rho_H(A,C_1) + t\rho_H(A,C_2) \leqslant \alpha.$$

The following is evident.

2.3. The subspaces K^n and B^n are convex in (C^n, ρ_H) .

Notice that for any $A, B \in \mathcal{C}^n$ the affine segment $\Delta(A, B)$ is also a metric segment. Thus every convex subset of \mathcal{C}^n is metrically convex. In particular,

2.4. (\mathcal{B}^n, ρ_H) , (\mathcal{K}^n, ρ_H) , and (\mathcal{C}^n, ρ_H) are metrically convex.

Let us now pass to the notion of strong metric convexity. We start with the following:

2.5 Lemma. The space (\mathcal{B}^n, ρ_H) is isometric to $(\mathbb{R}^n \times \mathbb{R}^+, \bar{\rho})$, where

(2.1)
$$\bar{\rho}((x_1,t_1),(x_2,t_2)) = \rho(x_1,x_2) + |t_1-t_2|$$

for every $(x_i, t_i) \in \mathbb{R}^n \times \mathbb{R}^+$, i = 1, 2.

Proof. It is easy to check that for arbitrary $x_1, x_2 \in \mathbb{R}^n$ and $r_1, r_2 > 0$

(2.2)
$$\rho_H(\mathbf{B}(x_1,r_1),\mathbf{B}(x_2,r_2)) = \rho(x_1,x_2) + |r_1 - r_2|.$$

Let $h: \mathcal{B}^n \to \mathbb{R}^n \times \mathbb{R}^+$ be defined by the formula

(2.3)
$$h(\mathbf{B}(x,r)) := (x,r).$$

Then, by (2.2), the function h is an isometry.

Since, evidently, $(\mathbb{R}^n \times \mathbb{R}^+, \bar{\rho})$ is not strongly metrically convex, as a direct consequence of Lemma 2.5 we obtain the following.

2.6 Theorem. The space (\mathcal{B}^n, ρ_H) is not strongly metrically convex.

This yields the well known result (see [7], p. 59):

2.7 Corollary. (\mathcal{K}^n, ρ_H) and (\mathcal{C}^n, ρ_H) are not strongly metrically convex.

Every midpoint of a pair $\{A, B\}$ in \mathcal{C}^n belongs to a metric segment with endpoints A, B. Hence, to show two different metric segments joining A and B, it suffices to show two different midpoints of $\{A, B\}$.

To illustrate Corollary 2.7, we shall now give an example of a pair $\{A, B\}$ with two different midpoints in \mathbb{C}^n .

2.8 Example. Let $A, B \in \mathcal{B}^2$

$$A = \mathbf{B}((-x,0),r), B = \mathbf{B}((x,0),r).$$

Let $\rho_H(A, B) = \alpha$, $M := (A)_{\frac{\alpha}{2}} \cap (B)_{\frac{\alpha}{2}}$,

$$M_{+} = \{(x, y) \in M; y \geqslant -r\}, \text{ and } M_{-} = \{(x, y) \in M; y \leqslant r\}.$$

Then

$$\rho_H(A, M_+) = \rho_H(M_+, B) = \frac{\alpha}{2} \text{ and } \rho_H(A, M_-) = \rho_H(M_-, B) = \frac{\alpha}{2}$$

and $M_{+} \neq M_{-}$. Hence M_{+}, M_{-} are two different midpoints of the pair $\{A, B\}$.

By 2.2, every ball with a convex center in \mathcal{C}^n is convex; hence, it is metrically convex in (\mathcal{C}^n, ρ_H) . However, generally, balls in (\mathcal{C}^n, ρ_H) are not strongly metrically convex.

2.9 Example. Let $X = \mathbf{B}(x_0, r)$, $A, B \in \mathbf{B}_{\rho_H}(X, 3r)$, $A = \mathbf{B}(x_1, r)$, $B = \mathbf{B}(x_2, r)$ and $\rho(x_0, x_1) = \rho(x_0, x_2) = r$, $\rho(x_1, x_2) = 2r$.

Evidently, all the metric segments joining A,B are contained in $\mathbf{B}_{\rho_H}(X,3r)$.

Let M_+, M_- be two midpoints described as in Example 2.8. For these midpoints we can find isometric embeddings $f, g : [0, \rho_H(A, B)] \to \mathcal{C}^n$ such, that

$$M_{+} = f(\frac{1}{2}\rho_{H}(A,B))$$
 and $M_{-} = g(\frac{1}{2}\rho_{H}(A,B)).$

Since $M_+ \neq M_-$, we found two different metric segments joining A, B and contained in $\mathbf{B}_{\rho_H}(X, 3r)$ (compare 4.2).

In view of 1.4, every metric segment in \mathbb{C}^n is strongly metrically convex. Schneider in [8] was concerned with metric segments in \mathbb{K}^n . His theorem can be formulated as follows:

- **2.10 Theorem** ([8]). For every $K_1, K_2 \in \mathcal{K}^n$ the following conditions are equivalent:
- (i) there exists a unique metric segment joining K_1 and K_2 ;
- (ii) either $K_1 = (K_2)_r$ or $K_2 = (K_1)_r$ with some $r \ge 0$, or else K_1, K_2 lie in parallel hyperplanes and $K_1 = K_2 + t$ with some vector t orthogonal to these hyperplanes.

This theorem provides next examples of strongly metrically convex subsets of (\mathcal{C}^n, ρ_H) :

- **2.11 Example.** Let $K \in \mathcal{K}^n$. If S is a connected subset of \mathbb{R}^+ , then the set $\{(K)_{\alpha}; \alpha \in S\}$ is strongly metrically convex.
- **2.12 Example.** Let $K \in \mathcal{K}^n$ and let K lie in a hyperplane H orthogonal to $u \neq o$. If T is a connected subset of \mathbb{R} then the set $\{K + t \cdot u; t \in T\}$ is strongly metrically convex.
- 3. Metric segments in (\mathcal{C}^n, ρ_H)

We shall first consider some examples of metric segments in (\mathcal{B}^n, ρ_H) .

3.1 Example. Let $B_i = \mathbf{B}(x_i, r_i)$ for i = 1, 2 and $\lambda := \rho(x_1, x_2) > 0$. We can assume, that $r_2 > r_1$. Let $\delta := r_2 - r_1 > 0$.

Evidently, the following formulae define isometric embeddings f_j : $[0, \rho_H(B_1, B_2)] \to \mathcal{B}^n$ for j = 1, 2, 3.

$$f_{1}(t) = \begin{cases} \mathbf{B} \left(x_{1} \cdot \left(1 - \frac{t}{\lambda} \right) + x_{2} \cdot \frac{t}{\lambda}, \ r_{1} \right) & \text{for } t \in [0, \lambda] \\ \mathbf{B} \left(x_{2}, \ \left(1 - \frac{t - \lambda}{\delta} \right) \cdot r_{1} + \frac{t - \lambda}{\delta} \cdot r_{2} \right) & \text{for } t \in [\lambda, \lambda + \delta] \end{cases},$$

$$f_{2}(t) = \begin{cases} \mathbf{B} \left(x_{1}, \ r_{1} + t \right) & \text{for } t \in [0, \delta] \\ \mathbf{B} \left(x_{1}, \ \left(1 - \frac{t - \delta}{\lambda} \right) + x_{2} \cdot \frac{t - \delta}{\lambda}, \ r_{2} \right) & \text{for } t \in [\delta, \lambda + \delta] \end{cases},$$

$$f_{3}(t) = \mathbf{B} \left(s \left(t \right), r \left(t \right) \right), \text{ where } r \left(t \right) = r_{1} + t \cdot \frac{\delta}{\lambda + \delta}, s \left(t \right) = \frac{\lambda + \delta - t}{\lambda + \delta} x_{1} + \frac{t}{\lambda + \delta} x_{2}.$$

The metric segments $\triangle_{f_1}(B_1, B_2)$, $\triangle_{f_2}(B_1, B_2)$, and $\triangle_{f_3}(B_1, B_2)$ are presented in Fig. 2, 3 and 4, respectively.

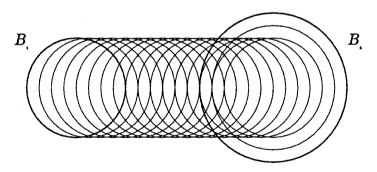


Fig. 2

Notice that $\triangle_{f_3}(B_1, B_2) = \triangle(B_1, B_2)$.

Example 3.1 can be generalized as follows.

3.2 Example. Let $B' = \mathbf{B}(x', t')$ and $B'' = \mathbf{B}(x'', t'')$ with $x' \neq x''$ and $t' \leq t''$.

Let, further, $\pi: \mathbb{R}^n \times \mathbb{R}^+ \to \mathbb{R}^n$ be the projection, $\pi(x,t) = x$, and let h be defined by (2.3).

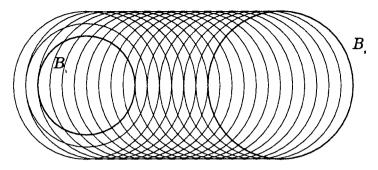


Fig. 3

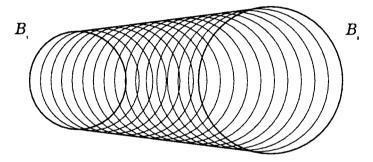


Fig. 4

Consider an arc $L \subset \mathbb{R}^n \times \mathbb{R}^+$ with endpoints (x',t'), (x'',t''), satisfying the following conditions:

- (i) $\pi(L) = \triangle(x', x'')$,
- (ii) $L = \bigcup_{i=1}^{m} L_i$, where L_i is an arc with endpoints (x_i, t_i) , (x_{i+1}, t_{i+1}) , for $i = 1, \ldots, m-1$, $x_1 = x'$, $x_m = x''$, $t_1 = t'$, $t_m = t''$, $t_1 \leqslant t_2 \ldots \leqslant t_m$ and each L_i is either the graph of weakly increasing function or $x_i = x_{i+1}$.

Then L is a metric segment in $(\mathbb{R}^n \times \mathbb{R}^+, \bar{\rho})$, and the set $h^{-1}(L)$ is a metric segment in \mathcal{B}^n with endpoints B', B'' (see Fig. 5).

By 1.1, the union of all metric segments in \mathcal{B}^n with endpoints B_1, B_2 coincides with the set of balls lying between B_1 and B_2 in (\mathcal{B}^n, ρ_H) :

(3.1)
$$\bigcup_{f \in F} \Delta_f(B_1, B_2) = \{ X \in \mathcal{B}^n; B_{\rho_H}(B_1, X, B_2) \},$$

where F is the set of all isometric embeddings of $[0, \rho_H(B_1, B_2)]$ into \mathcal{B}^n . We can describe this set as follows:

3.3. A ball $\mathbf{B}(x,r)$ lies between B_1 and B_2 in (\mathcal{B}^n, ρ_H) if and only if $x \in \Delta(x_1, x_2)$ and $r \in [r_1, r_2]$.

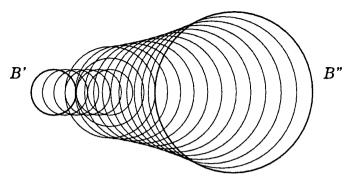


Fig. 5

The set of all balls lying between B_1 and B_2 in (\mathcal{B}^2, ρ_H) is presented in Fig. 6.

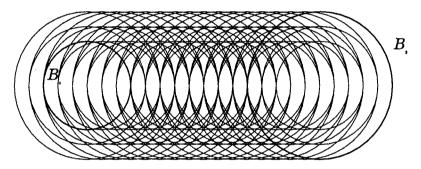


Fig. 6

Let us now consider some examples of metric segments in (\mathcal{C}^n, ρ_H) . The first example is provided by the following result of Jongmans.

- **3.4** (see [5], p. 241). Let $A, B, C \in C^n$. If C lies between A and B in (C^n, ρ_H) , then the set $\triangle(A, C) \cup \triangle(C, B)$ is a metric segment joining A and B.
- **3.5 Example.** Let $A = B_1$, $B = B_2$ as in Example 3.1, and let C be a midpoint of the pair $\{A, B\}$. The metric segment joining A and B described in 3.4 is presented in Fig. 7.
- **3.6 Lemma.** Let $A, B \in \mathcal{C}^n$, $\rho_H(A, B) = \alpha$, and let

$$(3.2) M(t) := (A)_t \cap (B)_{\alpha - t}$$

for every $t \in [0, \alpha]$. Then $\rho_H(A, M(t)) = t$ and $\rho_H(M(t), B) = \alpha - t$.

Proof. Since A, B are compact and ρ_H is continuous, there exist points $a \in A$ and $b \in B$ such that $\rho(a, b) = \rho_H(A, B)$. It is easy to see that $\frac{\alpha - t}{\alpha}a + \frac{t}{\alpha}b \in M(t)$. Thus $M(t) \neq \emptyset$.

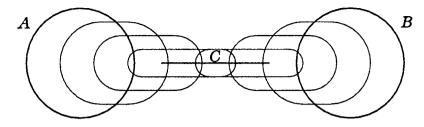


Fig. 7

Let us show that $\rho_H(A, M(t)) = t$ and $\rho_H(M(t), B) = \alpha - t$. By (3.2)

$$(3.3) M(t) \subset (A)_t.$$

We shall prove the inclusion

$$(3.4) A \subset (M(t))_t.$$

Let $x \in A$. Since B is compact, there is $y \in B$ such that $\rho(x, B) = \rho(x, y)$. By the assumption $\rho(x, y) \leq \alpha$. Take $s \in bd\mathbf{B}(x, t) \cap \triangle(x, y)$. Thus $s \in M(t)$ and $x \in \mathbf{B}(s, t)$ which implies $x \in (M(t))_t$.

$$(3.5) \rho_H(A, M(t)) \leqslant t.$$

Analogously we obtain

$$(3.6) \rho_H(M(t), B) \leqslant \alpha - t.$$

By (3.5), (3.6), and triangle inequality,

$$\rho_H(A, M(t)) + \rho_H(M(t), B) = \rho_H(A, B).$$

Finally $\rho_H(A, M(t)) = t$ and $\rho_H(M(t), B) = \alpha - t$.

3.7 Lemma. Let $A, B \in \mathcal{C}^n$, $\rho_H(A, B) = \alpha$, and let $0 \leqslant t_1 \leqslant t_2 \leqslant \alpha$. Then

$$(3.7) M(t_1) = (A)_{t_1} \cap (M(t_2))_{t_2-t_1}$$

and

(3.8)
$$M(t_2) = (B)_{\alpha-t_2} \cap (M(t_1))_{t_2-t_1},$$

where $M(t_1)$, $M(t_2)$ are defined by (3.2).

Proof. The inclusions

$$(A)_{t_1} \cap (M(t_2))_{t_2-t_1} \subset M(t_1)$$

and

$$M(t_1)\subset (A)_{t_1}$$

are obvious. We shall prove the inclusion

$$(3.9) M(t_1) \subset (M(t_2))_{t_2-t_1}.$$

Let $x \in M(t_1)$. Then there exist $a \in A$ and $b \in B$ such that $x \in \mathbf{B}(a, t_1) \cap \mathbf{B}(b, \alpha - t_1)$.

Take $s \in bd\mathbf{B}(x,t_2-t_1) \cap \triangle(x,b)$. Thus $\rho(a,s) \leqslant t_2$ and $\rho(s,b) \leqslant \alpha-t_2$. Hence $s \in M(t_2)$ and $x \in \mathbf{B}(s,t_2-t_1)$. Therefore $x \in (M(t_2))_{t_2-t_1}$.

Analogously we prove

$$(3.10) M(t_2) \subset (M(t_1))_{t_2-t_1}.$$

This together with obvious inclusions

$$(B)_{\alpha-t_2}\cap (M(t_1))_{t_2-t_1}\subset M(t_2)$$

and

$$M(t_2)\subset (B)_{\alpha-t_2}$$

completes the proof of (3.8).

3.8 Proposition. Let $A, B \in \mathcal{C}^n$, $\rho_H(A, B) = \alpha$, and let $M : [0, \alpha] \to \mathcal{C}^n$ be defined by (3.2). Then $\Delta_M(A, B)$ is a metric segment in \mathcal{C}^n .

Proof. Let $0 \le t_1 \le t_2 \le \alpha$. Then $M(t_1) := (A)_{t_1} \cap (B)_{\alpha-t_1}$ and $M(t_2) := (A)_{t_2} \cap (B)_{\alpha-t_2}$. To prove that M is an isometry we have to verify the condition

(3.11)
$$\rho_H(M(t_1), M(t_2)) = t_2 - t_1.$$

By (1.4), (3,7) and (3.8)

(3.12)
$$\rho_H(M(t_1), M(t_2)) \leqslant t_2 - t_1.$$

By Lemma 3.6

$$(3.13) \rho_H(A, M(t_i)) = t_i$$

for i = 1, 2.

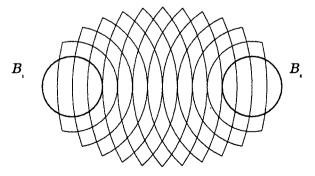


Fig. 8

The triangle inequality, combined with (3.12) and (3.13) yields

$$\rho_H(A, M(t_2)) \leqslant \rho_H(A, M(t_1)) + \rho_H(M(t_1), M(t_2)) \leqslant t_2.$$

Hence, by (3.16), $\rho_H(M(t_1), M(t_2)) = t_2 - t_1$.

3.9 Example. Let B_1 , B_2 be two balls in \mathbb{R}^2 with equal radii. The segment $\Delta_M(B_1, B_2)$ is presented in Fig. 8.

4. A partial order in the set of metric segments

We introduce the following relation \leq in the set of metric segments with given endpoints.

- **4.1. Definition.** Let \mathcal{X} , \mathcal{Y} be metric segments with endpoints $A, B \in \mathcal{C}^n$ and $\alpha := \rho_H(A, B) > 0$. Then $\mathcal{X} \preceq \mathcal{Y}$ if and only if there exist isometric embeddings $f, g : [0, \alpha] \to \mathcal{C}^n$ such that $f([0, \alpha]) = \mathcal{X}$, $g([0, \alpha]) = \mathcal{Y}$, f(0) = A = g(0), $f(\alpha) = B = g(\alpha)$, and $f(t) \subset g(t)$ for every $t \in [0, \alpha]$.
- **4.2 Proposition.** The relation \leq is a partial order but is not a linear order.

Proof. It is easy to check that \leq is a partial order. We shall show that \leq is not connected (see Fig. 9).

Let $A = \mathbf{B}(x,r)$, $B = \mathbf{B}(y,r)$, $x = (x_1, \dots x_{n-1}, 0)$, $y = (y_1, \dots y_{n-1}, 0)$, and $\alpha := \rho(x,y) > 0$ (then $\alpha := \rho_H(A,B)$). Using Proposition 3.8 we construct two metric segments, $\Delta_{M_+}(A,B)$ and $\Delta_{M_-}(A,B)$, as follows.

Let $M:[0,\alpha]\to\mathcal{C}^n$ be defined by (3.2).

We define $M_+, M_-: [0, \alpha] \to \mathcal{C}^n$ by the formulae

$$M_{+}(t) = \{(z_{1}, \dots z_{n}) \in M(t); z_{n} \geqslant -r\}$$

$$M_{-}(t) = \{(z_{1}, \dots z_{n}) \in M(t); z_{n} \leqslant r\}.$$

Then M_+ and M_- are isometric embeddings. Moreover, neither $\triangle_{M_+}(A,B) \preceq \triangle_{M_-}(A,B)$ nor $\triangle_{M_-}(A,B) \preceq \triangle_{M_+}(A,B)$.

4.3 Proposition. The relation \leq restricted to \mathcal{K}^n or \mathcal{B}^n is a partial order but is not a linear order.

Proof. We shall show that \leq is not connected.

Notice that if $A, B \in \mathcal{K}^n$, then $M_+(t), M_-(t) \in \mathcal{K}^n$ for every $t \in [0, \rho_H(A, B)]$. Hence

$$\triangle_{M_+}(A,B), \ \triangle_{M_-}(A,B) \subset \mathcal{K}^n.$$

Now we shall show that \leq restricted to \mathcal{B}^n is disconnected. Let $A, B \in \mathcal{B}^n$, $A = \mathbf{B}(x, r)$, $B = \mathbf{B}(y, R)$, R > r > 0 and $r + R < \rho(x, y)$. Let $s := \frac{R+r}{2}$,

$$L = \triangle \left((x,r), (x,s) \right) \cup \triangle \left((x,s), (y,s) \right) \cup \triangle \left((y,s), (y,R) \right),$$

and let h be defined by (2.3).

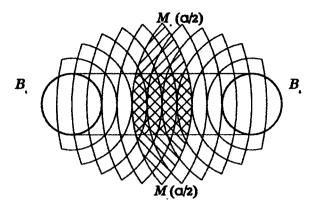


Fig. 9

Then, by 3.2, the set $h^{-1}(L)$ is a metric segment joining A and B. Let us take isometric embedding f_3 from Example 3.1.

It is easy to see that neither $\triangle_{f_3}(A,B) \leq h^{-1}(L)$ nor $h^{-1}(L) \leq \triangle_{f_3}(A,B)$.

4.4 Proposition. Let M be defined by (3.2). For every $A, B \in C^n$ the metric segment $\Delta_M(A, B)$ is the greatest in the sense of relation \preceq .

Proof. Let $A, B \in \mathcal{C}^n$, $\alpha := \rho_H(A, B) > 0$ and let $\Delta_g(A, B)$ be an arbitrary metric segment with the endpoints A, B. We shall prove, that $g(t) \subset M(t)$ for every $t \in [0, \alpha]$.

Evidently,

and

$$(4.2) \rho_H(g(t), B) = \alpha - t.$$

By (1.4) and (4.1) we obtain

$$g(t) \subset (A)_t;$$

by (1.4) and (4.2) we obtain

$$g(t) \subset (B)_{\alpha-t}$$
.

Thus
$$g(t) \subset (A)_t \cap (B)_{\alpha-t} = M(t)$$
.

Restricting our consideration to the subspace of convex bodies we obtain analogous result:

4.5 Proposition. Let M be defined by (3.2). For every $A, B \in \mathcal{K}^n$ the metric segment $\Delta_M(A, B)$ is the greatest in the sense of relation \leq restricted to \mathcal{K}^n .

Proof. If $A, B \in \mathcal{K}^n$, then $(A)_t, (B)_{\alpha-t} \in \mathcal{K}^n$, whence $(A)_t \cap (B)_{\alpha-t} \in \mathcal{K}^n$. Thus the proof is analogous to that of Proposition 4.4.

4.6 Proposition. For every $B_1, B_2 \in \mathcal{B}^n$ the metric segment $\triangle_{f_1}(B_1, B_2)$ from Example 3.1 is the least in the sense of relation \leq restricted to \mathcal{B}^n .

Proof. Let $B_1 = \mathbf{B}(x_1, r_1)$, $B_2 = \mathbf{B}(x_2, r_2)$, $\lambda := \rho(x_1, x_2) > 0$. We can assume that $r_1 < r_2$. Let $\delta := r_2 - r_1 > 0$.

We shall prove that, for any isometry $g:[0,\rho_H(B_1,B_2)]\to \Delta_g(B_1,B_2)$ with $g(0)=B_1$ and $g(\alpha)=B_2$,

$$f_1(t) \subset g(t)$$

for every $t \in [0, \rho_H(B_1, B_2)]$.

Notice that if g(t) = B(x, r), then

(4.3)
$$x \in \Delta(x_1, x_2) \text{ and } r \in [r_1, r_2].$$

Let a and s be the center and the radius of the ball $f_1(t)$. Then

$$(4.4) a \in \triangle(x_1, x_2) \text{ and } s \in [r_1, r_2].$$

Notice also that, for $t \in [0, \lambda + \delta]$,

(4.5)
$$\rho_H(B_1, f_1(t)) = \rho_H(B_1, g(t)) = t$$

and

(4.6)
$$\rho_H(f_1(t), B_2) = \rho_H(g(t), B_2) = \lambda + \delta - t.$$

We shall consider two cases.

Case 1: $t \in [0, \lambda]$. Then, by (4.5), we obtain

$$\rho(x_1,a) = \rho(x_1,x) + |r-r_1|,$$

whence the balls $f_1(t)$ and g(t) are internally tangent and from (4.3) it follows that $r \ge r_1$. Thus $f_1(t) \subset g(t)$.

Case 2: $t \in [\lambda, \lambda + \delta]$. Then, by (4.3), (4.4) and (4.6) we obtain

$$\rho(x,a)=\rho(x,x_2)=r-s.$$

Hence the balls $f_1(t)$ and g(t) are internally tangent and $r \ge s$. Thus $f_1(t) \subset g(t)$.

Analogously we prove the following:

4.7 Proposition. For every $B_1, B_2 \in \mathcal{B}^n$, the metric segment $\Delta_{f_2}(B_1, B_2)$ from Example 3.1 is the greatest in the sense of relation \leq restricted to \mathcal{B}^n .

As a direct consequence of Propositions 4.6 and 4.7 we obtain

- **4.8 Corollary.** For every $B_1, B_2 \in \mathcal{B}^n$
- (i) there exists the greatest metric segment in B^n with endpoints B_1, B_2 ;
- (ii) there exists the least metric segment in B^n with endpoints B_1, B_2 .

By Propositions 4.4 and 4.5, the statement 4.8 (i) remains valid if \mathcal{B}^n is replaced by either \mathcal{C}^n or \mathcal{K}^n . We shall now prove that for 4.8 (ii) the situation is opposite.

4.9 Theorem. There exist $A, B \in C^n$ such that the least metric segment in C^n with endpoints A, B does not exist.

Proof. Let $A = \mathbf{B}(x,r)$, $B = \mathbf{B}(y,R)$, 0 < r < R and $\rho(x,y) > r + R$. Let $\alpha := \rho_H(A,B) > 0$.

Suppose that $\Delta_g(A, B)$ is the least metric segment joining A and B, and g(0) = A, $g(\alpha) = B$. Then, by Definition 4.1, for every isometric embeddings $h_1, h_2 : [0, \alpha] \to \mathcal{C}^n$ with $h_i(0) = A$ and $h_i(\alpha) = B$, where i = 1, 2,

$$(4.7) g(t) \subset h_1(t) \cap h_2(t)$$

for every $t \in [0, \alpha]$. Since every midpoint of $\{A, B\}$ in \mathbb{C}^n is the value $h(\frac{\alpha}{2})$ of an isometric embedding $h : [0, \alpha] \to \mathbb{C}^n$, it follows that $g(\frac{\alpha}{2})$ is contained in the intersection of arbitrary two midpoints of $\{A, B\}$.

On the other hand, there exist $a, b, c \in \mathbb{R}^n$ such that

$$\begin{split} \rho(x,a) &= \frac{\alpha}{2} - 2R + r, & \rho(y,a) &= \frac{\alpha}{2} + r, \\ \rho(x,b) &= \frac{\alpha}{2} - r, & \rho(y,b) &= \frac{\alpha}{2} - R + 2r, \\ \rho(x,c) &= \frac{\alpha}{2} + r, & \rho(y,c) &= \frac{\alpha}{2} - R. \end{split}$$

Then the sets $\{a,c\}$ and $\{b,c\}$ are midpoints of $\{A,B\}$, and the set $\{c\} = \{a,c\} \cap \{a,c\}$ does not contain any midpoint of $\{A,B\}$, so, in particular, it does not contain $g(\frac{\alpha}{2})$.

4.10 Theorem. There exist $A, B \in \mathcal{K}^n$ such that the least metric segment in \mathcal{K}^n with endpoints A, B does not exist.

Proof. We follow the idea of proof of Theorem 4.9.

Let A, B, and α be as above. Let $a, b, c \in \mathbb{R}^n$ and

$$egin{aligned}
ho(x,a) &= rac{lpha}{2} - 2R + r, &
ho(y,a) &= rac{lpha}{2} + r, \
ho(x,b) &= rac{lpha}{2} - r, &
ho(y,b) &= rac{lpha}{2} + R, \
ho(x,c) &= rac{lpha}{2} + r, &
ho(y,c) &= rac{lpha}{2} - R. \end{aligned}$$

Then the sets $\triangle(a,c)$ and $\triangle(b,c)$ are midpoints of $\{A,B\}$, and the set $\{c\} = \triangle(a,c) \cap \triangle(b,c)$ does not contain any midpoint of $\{A,B\}$.

Acknowledgements. The author is grateful to Professor Maria Moszyńska for helpful discussions, valuable suggestions, and useful remarks. The author would like to thank Doctor Irmina Herburt for helpful comments and suggestions.

References

- [1] R. Bantegnie, Convexité des hyperespaces, Arch. Math. 26 (1975), 414-420.
- [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford, 1953.
- [3] R. Duda, On convex metric spaces III, Fund. Math. 51 (1962), 23-33.

- [4] I. Herburt and M. Moszyńska, On metric products, Colloq. Math. 62 (1991), 121-133.
- [5] F. Jongmans, De l'art d'être a bonne distance des ensembles dont la décomposition atteint un stade avancé, Bull. Soc. Roy. Sci. Liège 48 (1979), 237-261.
- [6] L. Montejano, Convexity in the hyperspace of compact convex sets, An. Inst. Math. Univ. Nac. Autónoma México 26 (1986), 145-159.
- [7] R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, 1993.
- [8] R. Schneider, Pairs of convex bodies with unique joining metric segment, Bull. Soc. Roy. Sci. Liège 50 (1981), 5-7.
- [9] G. C. Shephard and R. J. Webster, *Metrics for sets of convex bodies*, Mathematica 12 (1965), 73-88.

FACULTY OF MATHEMATICS AND INFORMATION SCIENCE WARSAW UNIVERSITY OF TECHNOLOGY
Pl. Politechniki 1
00-661 WARSAW, POLAND
e-mail korentz@prioris.im.pw.edu.pl

Received February 26, 1999.