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SOME METRIC PROPERTIES OF HYPERSPACES 

1. Introduction 
Metric convexity and strong metric convexity are basic notions of dis-

tance geometry (see [2]). Let us briefly recall the definitions and summarize 
some simple facts. 

Let (X, p) be a metric space. For any pair of distinct points a,b G X, 
a metric segment with the endpoints o, b is a subset of X isometric to the 
interval [0, p(a, 6)]. For every isometric embedding / : [0, p(a, £>)] —+ X with 
/(0) = a and f(p(a,b)) = b, let 

(1.1) Af(a,b):=f([0,p{a,b)]). 
For any a, 6 € X a point c G X lies between a, b (we write Bp(a, c, b)) if 

and only if 
p(a,c)+p(c,b) = p(a,b). 

For any a, b G X a point c G X such that 

p(a,c) = p(c,b) = ^p(o,6) 

is called a midpoint of the pair {a, 6}. 
We say that (X,p) is (strongly) metrically convex if every pair of points 

a,b G X can be joined by a (unique) metric segment. 
1.1. Let X be metrically convex. The union of all metric segments with 
endpoints X\,X2 G X coincides with the set of points lying between x\ and x^. 
1.2. [4, Lemma 0.1] A metric space (X,p) is strongly metrically convex if 
and only if (X,p) is metrically convex and every pair of points in (X,p) has 
a unique midpoint. 

For every a G X, a > 0 the set 
Bp(a,a) := {y G X-,p(a,y) ^ a} 

is called the ball with center a and radius a. 
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By B(a, a) we shall denote the ball with center a and radius a in Rn 

with Euclidean metric. 
For every x € X and A C X, let 

p(x,A) := inf{p(x,a);a G A} 
and 

(1.2) ( A ) a : = { x e X ; p ( x , A ) ^ a } 
for any a > 0. 

Let C(X) be the set of compact subsets of X. 
For any nonempty sets A,BG C(X) the Hausdorff distance is defined by 

the formula 

(1.3) PH(A, B) = max{sup p(a, B), supp(b, A)}. 
a^A beB 

It is well known (see [7], p. 48) that 

(1.4) PH(A,B) = inf{a >0;ic (B)A and B c (A)a}. 
1.3 Theorem ([7, Th. 1.8.2.]). IF(X,P) is complete, then so is the metric 
space ( C ( X ) , P H ) • 

The present paper concerns the hyperspace CN := C(Rn) and its sub-
spaces: K,n consisting of all convex bodies (non-empty, compact, convex 
subsets) in Kn and Bn consisting of all n-balls in Rn. 

Evidently (Rn, p) with p Euclidean is strongly metrically convex. For 
distinct a, b the affine segment 

A (a, b) = {(1 - t)a + tb-,t€ [0,1]} 
is the unique metric segment with the endpoints a, b: 

(1.5) A(o,6) = Af(a,b), 
where 

V p(ayb)J p{a,b) 
for every t 6 [0,p(a, 6)]. 

1.4. Let (X, p) be a metrically convex space. Every metric segment in (X, p) 
is strongly metrically convex. 

Proof . Let xi,x2 € X and p(x 1,^2) = a and let / : [0,a] —> X be an 
isometric embedding. 
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Evidently, the metric segment [0, a] is strongly metrically convex in R. 
Since strong metric convexity is invariant under isometries, also Aj(x i ,x2) 
is strongly metrically convex in X. • 

An affine segment in Cn is defined by means of the Minkowski addition 
and multiplication: for any distinct A,B G C", 

As we shall see in Section 3, generally A(A,B) is one of many metric 
segments joining A and B. 

1.5. Definition. A set X C Cn is convex if and only if A(A,B) C X for 
every A, B G X. 

The problem of convexity and metric convexity of Kn, Cn were considered 
in [1], [3] and [5] - [7]. Most of the authors deal mainly with the space /Cn. 
Prom their results it follows that Kn and Cn are convex and metrically 
convex, but not strongly metrically convex. 

L. Montejano in [6] introduced the notions of hypersegment and hyper-
convexity in /Cn; these notions differ essentialy from the notion of segment 
(metric segment) and convexity (metric convexity). 

In the present paper we consider the convexity and the (strong) metric 
convexity of Cn, JCn, Bn and some of their subsets (Section 2). In Section 3 
we give some examples of metric segments in these spaces. 

The main results are contained in Section 4. We introduce a partial order 
in the set of all metric segments with given endpoints in Cn (Kn, Bn). We 
find the greatest segment in this set for Cn, Kn and Bn and the least segment 
for Bn. We prove that for K.n and Cn generally the least segment does not 
exist. 

A (A, B) = {(1 - t)A + tB; t € [0,1]}. 

An example of affine segment A (A, B) is presented in Fig. 1 

B 

Fig. 1 
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2. Convexity and metric convexity in (Cn ,pn) 
We start with some examples of convex subsets of Cn. Evidently 

2.1. Every affine segment in Cn is convex. 
Proof is analogous to that for affine segment in Rn. 

We shall prove that every ball in Cn with convex center is convex. 

2.2 Proposition. For every convex A £Cn and a > 0 the set 3PH(A, a) is 
convex in Cn. 

Proof . By [5, 1.6 p.238], for every X,YeCn and Z € /Cn, 

pH(tX + (1 - t)Y, Z) < tp„(X, Z) + ( 1 - t)pH(Y, Z) 
for every t € [0,1]. 

Let C\, C2 £ B P h ( A , a) and C = ( l - i ) C i +tC2 for some t e [0,1]. Then 

PH(A, C) < (1 - t)pH{A, Ci) 4- tpH(A, C2) < a. • 

The following is evident. 

2.3. The subspaces Kn and Bn are convex in (Cn,pjj)• 
Notice that for any A,B E Cn the affine segment A (A, B) is also a metric 

segment. Thus every convex subset of Cn is metrically convex. In particular, 

2.4. (Bn ,pu) , (!Cn, PH), and (Cn, p f j ) are metrically convex. 
Let us now pass to the notion of strong metric convexity. We start with 

the following: 

2.5 Lemma. The space (Bn,pn) is isometric to (Rn x R+,p), where 
(2.1) p((xi,ti),(x2,t2)) = p(xi,x2) + |*i -t2\ 
for every (Xi, U) G R" x R+ , i - 1,2. 

Proof . It is easy to check that for arbitrary xi,x2 € Rn and r\,r2 > 0 

(2.2) PH (B(xi,ri),B(x2,r2)) = p{x\,x2) + -r2\. 
Let h : Bn Rn x R+ be defined by the formula 

(2.3) h (B(x,r)) := (x,r). 
Then, by (2.2), the function h is an isometry. • 

Since, evidently, (Rn x R+ ,p) is not strongly metrically convex, as a direct 
consequence of Lemma 2.5 we obtain the following. 

2.6 Theorem. The space (Ba,pH) is not strongly metrically convex. 

This yields the well known result (see [7], p. 59): 

2.7 Corollary. ( K n , p n ) and (Cn,pH) are not strongly metrically convex. 
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Every midpoint of a pair {A, B} in Cn belongs to a metric segment with 
endpoints A, B. Hence, to show two different metric segments joining A and 
B, it suffices to show two different midpoints of {A,B}. 

To illustrate Corollary 2.7, we shall now give an example of a pair {A, B) 
with two different midpoints in Cn. 
2.8 Example. Let A, B G B2 

A = B((—x,0),r), B = B((x,0),r). 
Let pH(A, B) = a, M := n ( S ) f , 

M+ = {(x, y) G M; y ^ - r } , and M_ = {(x, y) G M; y ^ r } . 

Then 
pH {A, M+) = PH ( M + , B ) = | a n d p„ (A, M _ ) = pH ( M _ , B) = | 

and M+ / M_. Hence M+,M_ are two different midpoints of the pair 
{A,B}. 

By 2.2, every ball with a convex center in Cn is convex; hence, it is 
metrically convex in (Cn,pn)• However, generally, bails in (Cn,pu) are not 
strongly metrically convex. 
2.9 Example. Let X = B(x0,r), A,B G Bpil(X,3r), A = B(xi , r) , B = 
B(x2,r) and p(xo,xi) = p(xo,x2) = r, p(xi,x2) = 2 r . 

Evidently, all the metric segments joining A, B are contained in 
Bp„(X,3r) . 

Let M+, M- be two midpoints described as in Example 2.8. For these 
midpoints we can find isometric embeddings / , g : [0, PH(A, B)} —> Cn such, 
that 

M+ = f(±PH(A,B)) a n d M _ = g(±pH(A,B)). 

Since M+ ^ M_, we found two different metric segments joining A,B 
and contained in BP w(X, 3r) (compare 4.2). 

In view of 1.4, every metric segment in Cn is strongly metrically convex. 
Schneider in [8] was concerned with metric segments in Kn . His theorem 

can be formulated as follows: 
2.10 Theorem ([8]). For every K\, K2 G /Cn the following conditions are 
equivalent: 
(i) there exists a unique metric segment joining K\ and K2; 
(ii) either K\ = (K^),. or K<i = (K\)r with some r ^ 0 , or else K\,K2 lie in 
parallel hyperplanes and K\ = K2 + t with some vector t orthogonal to these 
hyperplanes. 

This theorem provides next examples of strongly metrically convex sub-
sets of ( C n , p H ) : 
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2.11 Example. Let K G Kn. If S is a connected subset of R+ , then the set 
{(K)a;a G 5} is strongly metrically convex. 

2.12 Example. Let K G Kn and let K lie in a hyperplane H orthogonal 
to it o. If T is a connected subset of R then the set {K + t • u\t £ T} is 
strongly metrically convex. 

3. Metric segments in (Cn,pn) 
We shall first consider some examples of metric segments in (Bn,pu)• 

3.1 Example. Let Bi = B(xj,ri) for i — 1,2 and A := p(x 1,0:2) > 0. We 
can assume, that r2 > r\. Let S := r2 — r\ > 0. 

Evidently, the following formulae define isometric embeddings f j : 
[O ,p t f (B i ,B 2 ) ] -+0" fo r j = 1,2,3. 

f ( t ) = i B {Xl ' (1 " ^ +*2 ' n ) f°r * € [°'A] 
J L { ) \ B ( X 2 , ( l + for i G [A, A + ' 

. . [ B f n . n + f ) for t G [0, i] 
M ) I r j ) fo r i G [Ô,X + S] ' 
f3(t) = B (s ( t ) , r ( t ) ) , where r (t) = r1 + t - ¿ j , s (t) = + j ^ x 2 . 

The metric segments A j 1 {B\, B2), A/2 (Si, £2), and A f 3 (B\, B2) are pre-
sented in Fig. 2, 3 and 4, respectively. 

Fig. 2 

Notice that Ah(Bi,B2) = A ( B I , B 2 ) . 
Example 3.1 can be generalized as follows. 

3.2 Example. Let B' = B ( x ,t') and B" = B(x",i") with x ^ x" and / // t < t . 
Let, further, 7r: Rn x M+ —• Rn be the projection, TC(X, t) = x, and let h 

be defined by (2.3). 
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Fig. 4 

Consider an arc L C R" x 1 + with endpoints (x , t ) , (x",t"), satisfying 
the following conditions: 
(i) 7 r ( L ) = A(x',x"), 
(ii) L = U£Li Li, where Li is an arc with endpoints (Xj,ij), (x l +i , t i+i), for 
i = 1,..., m — 1, Xi = x , xm = x , t\ = t , tm = t , t\ ^ ¿2 • • • ^ tm and 
each Li is either the graph of weakly increasing function or xx = xljr\. 

Then L is a metric segment in (Kn x R+ , p), and the set h~l{L) is a 
metric segment in Bn with endpoints B , B (see Fig. 5). 

By 1.1, the union of all metric segments in BN with endpoints B\, B^ 
coincides with the set of balls lying between B\ and B2 in (BU,ph)'-

( 3 . 1 ) ( J A f (BUB2) = {X e Bn
]BPH(B1,X,B2)}, 

feF 

where F is the set of all isometric embeddings of [0, PN {B\, B2)] into BN. 
We can describe this set as follows: 

3.3. A ball B(x,r ) lies between B\ and B2 in ( B n , p j j ) if and only if x G 
A ( x i , x 2 ) and r € [n,̂ ]. 
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Fig. 5 

The set of all balls lying between S i and B2 in (B2, pn) is presented 
in Fig. 6. 

Let us now consider some examples of metric segments in (Cn, pn)- The 
first example is provided by the following result of Jongmans. 
3.4 (see [5], p. 241). Let A,B,C G Cn. If C lies between A and B in 

then the set A(A,C) U A ( C , B ) is a metric segment joining A 
and B. 
3.5 Example. Let A = Bi, B — B2 as in Example 3.1, and let C be a 
midpoint of the pair {A,B}. The metric segment joining A and B described 
in 3.4 is presented in Fig. 7. 

3.6 L e m m a . Let A,BG Cn, pn(A,B) — a, and let 

(3.2) M(t) -.= (A) t n (B)a_ t 

for every t G [0,a]. Then pH(A,M(t)) = t and pH(M(t),B) = a - t . 
P r o o f . Since A, B are compact and pu is continuous, there exist points 
a G A and b G B such that p(a,b) = PH{A,B). It is easy to see that 
^ a + £6 6 M(t). Thus M(t) ± 0. 
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Fig. 7 

Let us show that PH(A, M(t)) = t and p//(M(£), B) = A — t. 
By (3.2) 

(3.3) M(t) c (A)t. 
We shall prove the inclusion 

(3.4) A C (M(t))t. 
Let x £ A. Since B is compact, there is y € B such that p(x, B) = p(x,y). 
By the assumption p(x,y) ^ a. Take s G bdB(x,t)r\A(x,y). Thus s € M(t) 
and x € B(s, t) which implies x € (M(t))t. 

By (1.4), (3.3) and (3.4) 
(3.5) pH(A,M(t))^t. 
Analogously we obtain 
(3.6) pH(M(t),B)^a-t. 
By (3.5), (3.6), and triangle inequality, 

pH(A,M(t)) + pH(M(t),B) = PH(A,B). 

Finally pH(A, M(t)) = t and pH(M(t), B) = a-t. • 
3.7 Lemma. Let A,B € Cn, pu {A, B) = a, and let 0 < ti ^ t2 < a. Then 
(3-7) M(t\) = (A)H n (M(t2))t2.tl 
and 
(3.8) M(t2) = (B)a-i2 D (M(i!)) t2_ t l, 
where M(t\), M(t2) are defined by (3.2). 
Proof . The inclusions 

(A)tl n (M(t2))h.ti C M(ti) 
and 

M{h) C (A)tl 

are obvious. We shall prove the inclusion 
(3.9) M ( i 0 c ( M ( i 2 ) ) t 2 _ t l . 
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Let x (E M(t\). Then there exist a £ A and b G B such that 
x G B(a, ti) fl B(6,a — ti). 

Take s G bdB(x, t2 — h) fl A(x, b). Thus p(a, s) < t2 and p(s, b) ^ a — t2. 
Hence s € M(t2) and x € B(s, ¿2 - h)- Therefore x G (M(£2))i2-ti-

Analogously we prove 

(3.10) M ^ C i M f o ) ) ^ . 

This together with obvious inclusions 

(£)Q_ t2 D (M(ii)) t a_ t l C M(t2) 

and 
M ( i 2 ) C (B)A-T2 

completes the proof of (3.8). • 

3.8 Proposition. Let A,B G Cn, pH {A,B) = a, and let M : [0,a] -<• Cn 

be defined by (3.2). Then A M { A , B ) is a metric segment in CN. 

Proof . Let 0 ^ h ^ t2 ^ a. Then M(tx) ( A ) h D ( B ) a - h and M{t2) := 
(A)t2 n (B)a-t2• To prove that M is an isometry we have to verify the 
condition 

(3.11) PH(M(tl),M(t2)) = t 2 - t 1 . 

By (1.4), (3,7) and (3.8) 

(3.12) P H i M i h ^ M i t ^ ^ h - h . 

By Lemma 3.6 

(3.13) pH(A,M(ti)) = ti 

for i = 1,2. 

B 

Fig. 8 
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The triangle inequality, combined with (3.12) and (3.13) yields 

PH(A, M(t2)) ^ pH{A, M(h)) + pH{M{ti), Af (i2)) < t2. 
Hence, by (3.16), pH{M(h), M(i2)) = t2 - ¿1- • 
3.9 Example. Let B\, be two balls in R2 with equal radii. The segment 
A m ( 5 i , 5 2 ) is presented in Fig. 8. 

4. A partial order in the set of metric segments 
We introduce the following relation < in the set of metric segments with 

given endpoints. 
4.1. Definition. Let X, y be metric segments with endpoints A,B € Cn 

and a := pn(A,B) > 0. Then X < y if and only if there exist isometric 
embeddings f,g : [0,a] Cn such that /([0,a]) = X, $([0,a]) = y, /(0) = 

= 5(0), / ( a ) — B — g(a), and f(t) C g(t) for every t G [0,a]. 
4.2 Proposition. The relation is a partial order but is not a linear order. 
Proof . It is easy to check that •< is a partial order. We shall show that 
is not connected (see Fig. 9). 

Let A = B(x,r), B = B(y,r), x = (xi, • • -xn_i,0), y = (j/i, • • • yn_i, 0), 
and a := p{x,y) > 0 (then a := pn(A,B)). Using Proposition 3.8 we 
construct two metric segments, AM+(A,B) and AM_ (A, B), as follows. 

Let M : [0,a] Cn be defined by (3.2). 
We define M+, M_ : [0, a] —> Cn by the formulae 

M+(t) = {(21, • • • zn) € M(i); zn ^ - r } 
Af_(i) = {(zi, •••zn)e M(t); zn ^ r}. 

Then M+ and M_ are isometric embeddings. Moreover, 
neither A M + (A ,B) < AM_(A,B) nor A M_(A,B) < A M + (A,B) . U 
4.3 Proposition. The relation ^ restricted to K,n or Bn is a partial order 
but is not a linear order. 
Proof . We shall show that •< is not connected. 

Notice that if A,B € JCn, then M+(t), Af_(t) € Kn for every 
t G [0,pH(A,B)}. Hence 

Am +(A,B), &m_(A, B) C Kn. 
Now we shall show that ^ restricted to Bn is disconnected. 

Let A,B € Bn, A = B(z,r) , B = B (y,R), R>r>0 and r + R< p(x,y). 
Let s := £±r, 

L = A ((*, r), (x, a)) U A ((i, s), (y, s)) U A ((y, s), (y, R)), 
and let h be defined by (2.3). 
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M(af,2) 

Fig. 9 

Then, by 3.2, the set h~x (L) is a metric segment joining A and B. 
Let us take isometric embedding fa from Example 3.1. 

It is easy to see that neither A f 3 ( A , B) -< h~l(L) nor /i_1(L) Af3(A, B). 
• 

4.4 Proposition. Let M be defined by (3.2). For every A,B €Cn the metric 
segment AM(A, B) is the greatest in the sense of relation 
Proof . Let A> B € Cn, a := ph(A, B) > 0 and let A g {A , B) be an arbitrary 
metric segment with the endpoints A, B. We shall prove, that g(t) C M{t) 
for every t € [0,a]. 

Evidently, 

(4-1) pH(A,g(t)) = t, 
and 
(4.2) PH(g(t),B) = a - t . 
By (1.4) and (4.1) we obtain 

9(t) C (A)t; 
by (1.4) and (4.2) we obtain 

g(t) C (B)a-t. 
Thus g(t) C (¿ ) t n (B)a-t = M(t). • 

Restricting our consideration to the subspace of convex bodies we obtain 
analogous result: 
4.5 Proposition. Let M be defined by (3.2). For every A,B € K.n the metric 
segment AM(A, B) is the greatest in the sense of relation ^ restricted to JCn. 
Proof. If A,B € ICn, then (A)t, (B)a-t G K,n, whence (A)t n ( B ) a - t € Kn. 
Thus the proof is analogous to that of Proposition 4.4. • 
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4.6 Proposition. For every B i , B 2 € Bn the metric segment A / , ( B i , B 2 ) 
from Example 3.1 is the least in the sense of relation < restricted to Bn. 

Proof. Let B\ = B(xi,r! ) , B 2 = B(x2,r2), A := p(xi,x2) > 0. We can 
assume that ri < r2. Let 8 := r2 — n > 0. 

We shall prove that, for any isometry g : [0,ph(B\,B2)] —* A 9 ( B i , B 2 ) 
with ^(0) = B i and g(a) = B 2 , 

fi(t) C g(t) 

for every t € [0, pH(Bu B2)]. 

Notice that if g(t) = B(x,r), then 

(4.3) x € A ( x i , x 2 ) and r € [ri,r2]. 

Let a and 5 be the center and the radius of the ball fi(t). Then 

(4.4) a € A ( s i , x 2 ) and s e [ri,r2]. 

Notice also that, for t € [0, A + 

(4.5) PH(Bi,fi(t)) = PH(Bi,g(t)) = t 

and 

( 4 .6 ) PH(h(t), B2) = pH(g(t), B2) = A + S - t . 

We shall consider two cases. 
Case 1: t € [0,A]. Then, by (4.5), we obtain 

p(xi,a) = p(x i ,x ) + | r - rx|, 

whence the balls fi(t) and g(t) are internally tangent and from (4.3) it 
follows that r^ri. Thus fi(t) C g(t). 

Case 2: t € [A, A + <$]. Then, by (4.3), (4.4) and (4.6) we obtain 

¿>(x,a) = p(x,x2) = r - s . 

Hence the balls f\(t) and g(t) are internally tangent and r > s. Thus fi(t) C 
g(t). • 

Analogously we prove the following: 

4.7 Proposition. For every B\,B2 € B", the metric segment Aj2(Bi,B2) 
from Example 3.1 is the greatest in the sense of relation < restricted to B71. 

As a direct consequence of Propositions 4.6 and 4.7 we obtain 

4.8 Corollary. For every Bi,B2eBn 

(i) there exists the greatest metric segment in B™ with endpoints B\,B2; 
(ii) there exists the least metric segment in Bn with endpoints B\,B2. 

By Propositions 4.4 and 4.5, the statement 4.8 (i) remains valid if B" is 
replaced by either Cn or Kn. We shall now prove that for 4.8 (ii) the situation 
is opposite. 
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4.9 Theorem. There exist A,Bç.Cn such that the least metric segment in 
Cn with endpoints A, B does not exist. 

Proof . Let A = B(x ,r ) , B = B ( y , R ) , 0 < r < R and p(x,y) > r + R. Let 
a:=p„{A,B)> 0 . 

Suppose that Ag(A, B) is the least metric segment joining A and B, and 
g(0) = A, g(a) = B. Then, by Definition 4.1, for every isometric embeddings 
h\,h,2 : [0,a] —> Cn with hi(0) = A and hi(a) = B, where ¿ = 1,2, 
( 4 . 7 ) g(t) C h1(t)nh2(t) 

for every t G [0, a]. Since every midpoint of {A,B} in Cn is the value /i(f) 
of an isometric embedding h, : [0, o:] —> Cn, it follows that g(^) is contained 
in the intersection of arbitrary two midpoints of {A,B}. 

On the other hand, there exist a, b, c G Rn such that 
p(x,a) = f -2R + r, p(y,o) = f + r, 
p(x,6) = f - r , p(y,b) = %-R + 2 r , 

p(x,c) = f + r, p(y,c) = %-R. 

Then the sets {a, c} and {6, c} are midpoints of {^4, B}, and the set {c} = 
{a, c} H {a, c} does not contain any midpoint of {A, B}, so, in particular, it 
does not contain 3 ( f ) . • 
4.10 Theorem. There exist A,B G Kn such that the least metric segment 
in K,n with endpoints A, B does not exist. 

Proof . We follow the idea of proof of Theorem 4.9. 
Let A, B, and a be as above. Let o, b, c G Rn and 

p(x, a) - f - 2R + r, p(y, a) = f + r, 
p(®,6) = f - r , P(v,b) = % + R, 

p(x,c) = f + r, p(y,c) = %-R. 

Then the sets A (a, c) and A(6, c) are midpoints of {A,B}, and the set 
{c} = A (a, c) H A (b,c) does not contain any midpoint of {A , B ) . • 
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