

Ömer Gök

DUAL REFLEXIVITY THEOREM IN C^* -MODULES

Introduction

Suppose A is a unital C^* -algebra and $m : A \rightarrow L(X)$ is unital bounded algebra homomorphism where $L(X)$ is the algebra of all continuous linear operators on a Banach space X . Our main result is that whenever A is a separable GCR C^* -algebra and X is a reflexive Banach space, then $m^*(A)$ is weak*-reflexive. It is a dual version of Theorem 6 in [1]. For unexplained notion and terminology we refer to [2] or [3].

Suppose A is a unital C^* -algebra. We say that a Banach space X is a Banach C^* -module if there is a bilinear mapping from $A \times X$ into X , $(a, x) \rightarrow a.x$, satisfying the following conditions:

- (i) $1.x = x$;
- (ii) $(ab).x = a.(b.x)$;
- (iii) $\|a.x\| \leq \|a\|\|x\|$ for each $a, b \in A$, and $x \in X, 1 \in A$.

We let X' denote the dual of a Banach space X . We denote by X'' the second dual of X . Throughout this paper we assume that X is a reflexive Banach space.

THEOREM 1 [1, Theorem 6]. *Suppose X is a reflexive Banach space and A is a separable GCR C^* -algebra and $m : A \rightarrow L(X)$ is bounded unital. Then*

$$\text{AlgLat}(m(A)) = \overline{m(A)}^{\text{SOT}}$$

where SOT is the strong operator topology.

By the assumption in Theorem 1 we can represent A'' as a von Neumann algebra on a separable Hilbert space so that the weak operator topology and the weak * topology coincide. Hence, it is accomplished in the following bilinear mappings:

$$(A) \quad X \times X' \rightarrow A', (x, x') \rightarrow (x.x')(a) = x'(a.x), \quad a \in A;$$

$$(B) \quad A'' \times X' \rightarrow X', (a, x') \rightarrow (a \cdot x')(x) = a(x \cdot x'), \quad x \in X.$$

Furthermore, (B) defines a Banach A'' -module structure on X' . The bilinear map $A \times X \rightarrow X, (a, x) \rightarrow a \cdot x$, gives the bounded unital algebra homomorphism $m : A \rightarrow L(X)$. Also, the bilinear map (B) gives a homomorphism $m^* : A'' \rightarrow L(X')$ defined by $m^*(a)x' = a \cdot x'$.

LEMMA 2. *The following assertions are true:*

- (i) *For each $a \in A$, $m^*(a)$ is the adjoint in $L(X')$ of the operator $m(a)$ in $L(X)$.*
- (ii) *m^* is $w^* - w^*$ operator continuous.*
- (iii) *For each x' in X' the linear map from A'' into X' that sends a to $a \cdot x'$ is $w^* - w^*$ continuous.*

Suppose S is a unital subalgebra of $L(X)$ and Y is a subspace of X , then Y is an invariant subspace of S if $TY \subseteq Y$ for every T in S . The set of all invariant subspaces of S is $LatS$, and

$$AlgLatS = \{T : LatS \subseteq LatT\}.$$

PROPOSITION 3. $T \in AlgLatm^*(A) \Rightarrow T' \in AlgLatm(A)$ where T' is the adjoint of T .

Proof. Suppose $T \in AlgLatm^*(A)$. Let Y be a closed subspace of X , and $m(a)Y \subseteq Y$ for all $a \in A$. Taking polar both sides we have $m^*(a)Y^\circ \subseteq Y^\circ$, (Y° is the polar of Y). By the hypothesis, $TY^\circ \subseteq Y^\circ$. If we take polar of both sides, we obtain $T'Y \subseteq Y$, (bipolar theorem). Hence, $T' \in AlgLat(m(A))$.

THEOREM 4. *Suppose X is a reflexive Banach space and A is a separable GCR C^* -algebra and $m : A \rightarrow L(X)$ is bounded unital. Then*

$$AlgLatm^*(A) = \overline{m^*(A)}^{w^* \cdot O.T}$$

where $w^* \cdot O.T$ is the weak * operator topology.

Proof. Suppose that $T \in m^*(A)$, Y is a closed subspace in X' , and $m^*(a)Y \subseteq Y$ for all $a \in A$. Then $TY \subseteq Y$, i.e., $T \in AlgLatm^*(A)$. Let us take $T \in \overline{m^*(A)}^{w^* \cdot OT}$ and Y be a closed subspace in X' such that $m^*(a)Y \subseteq Y$ for all $a \in A$. Then there exists a net (a_α) in A such that $xm^*(a_\alpha)x' \rightarrow xTx'$ for all $x' \in X'$ and $x \in X$. Since $m^*(a_\alpha)Y \subseteq Y$ for each α and Y is closed, it follows that $Tx' \in Y$, i.e., $TY \subseteq Y$. Therefore, $T \in AlgLatm^*(A)$.

Let $T \in AlgLatm^*(A)$. By Proposition 3, we have $T' \in AlgLatm(A)$. By Theorem 1 there exists a net (a_α) in A such that $m(a_\alpha) \rightarrow T'$ in the strong operator topology. Hence, $x'm(a_\alpha)x \rightarrow x'T'x$ for all $x' \in X'$ and $x \in X$. $x'm(a_\alpha)x = (m^*(a_\alpha)x')x$ implies that $T \in \overline{m^*(A)}^{w^* \cdot OT}$.

References

- [1] D. Hadwin and M. Orhon, *Reflexive representations and Banach C^* -modules*, Canad. Math. Bull. 40 (4) (1997), 443–447.
- [2] G. J. Murphy, *C^* -Algebras and Operator Theory*, Academic Press, Tokyo, New York, 1990.
- [3] A. E. Taylor and D. C. Lay, *Introduction to Functional Analysis*, Robert E. Krieger Publishing Company, Florida, 1979.

YILDIZ TECHNICAL UNIVERSITY
FACULTY OF ARTS AND SCIENCES
DEPARTMENT OF MATHEMATICS
80270, ŞİŞLİ, İSTANBUL, TURKEY

Received June 24, 1998.

