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DUAL REFLEXIVITY THEOREM IN C*-MODULES 

Introduction 
Suppose A is a unital C*-algebra and m : A —* L(X) is unital bounded 

algebra homomorphism where L(X) is the algebra of all continuous linear 
operators on a Banach space X. Our main result is that whenever A is a 
separable GCR C*-algebra and X is a reflexive Banach space, then m*(A) 
is weak*-reflexive. It is a dual version of Theorem 6 in [1]. For unexplained 
notion and terminology we refer to [2] or [3]. 

Suppose A is a unital C*-algebra. We say that a Banach space X is 
a Banach C*-module if there is a bilinear mapping from A x X into X, 
(a, x) —* a.x, satisfying the following conditions: 
(i) 1.x = x\ 
(ii) (ab).x = a.(b.x); 
(iii) ||a.x|| < ||a||||x|| for each a,b € A, and x € X,1 € A. 

We let X' denote the dual of a Banach space X. We denote by X" the 
second dual of X. Throughout this paper we assume that X is a reflexive 
Banach space. 

THEOREM 1 [1, Theorem 6]. Suppose X is a reflexive Banach space and A 
is a separable GCR C*-algebra and m : A —+ L(X) is bounded unital. Then 

SOT AlgLat{m(A)) = m(A) 
where SOT is the strong operator topology. 

By the assumption in Theorem 1 we can represent A" as a von Neumann 
algebra on a separable Hilbert space so that the weak operator topology 
and the weak * topology coincide. Hence, it is accomplished in the following 
bilinear mappings: 
(A) XxX' ^ A', (x, x') -» (x.x')(a) = x'(a.x), a € A; 
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(B) A" xX'-> X', (a, x') -> (a.x')(x) = a(x.x'), x G X. 

Furthermore, (B) defines a Banach .¿"-module structure on X'. The bilinear 
map A x X X,(a,x) a.x, gives the bounded unital algebra homomor-
phism m : A —* L(X). Also, the bilinear map (B) gives a homomorphism 
m* : A" L(X') defined by m*(a)x' = a.x'. 
LEMMA 2. The following assertions are true: 

(i) For each a G A, m*(a) is the adjoint in L(X') of the operator m(a) 
in L(X). 

(ii) m* is w* — w* operator continuous. 
(iii) For each x' in X' the linear map from A" into X' that sends a to 

a.x' is w* — w* continuous. 
Suppose S is a unital subalgebra of L(X) and Y is a subspace of X, then 

Y is an invariant subspace of S if TY C Y for every T in S. The set of all 
invariant subspaces of S is LatS, and 

AlgLatS = {T : LatS C LatT}. 
PROPOSITION 3. T e AlgLatm*(A) T' E AlgLatm(A) where T' is the 
adjoint ofT. 

P r o o f . Suppose T £ AlgLatm*(A). Let Y be a closed subspace of X, and 
m(a)Y C y for all a € A. Taking polar both sides we have m*(a)Y° C Y°, 
(Y° is the polar oiY). By the hypothesis, TY° C Y°. If we take polar of both 
sides, we obtain T'Y C V, (bipolar theorem). Hence, T' € AlgLat(m(A)). 
THEOREM 4. Suppose X is a reflexive Banach space and A is a separable 
GCR C*-algebra and m : A —» L(X) is bounded unital. Then 

w'.O.T 

AlgLatm* (A) = m*{A) 
where w*.O.T. is the weak * operator topology. 
P r o o f . Suppose that T G m*(A), Y is a closed subspace in X', and 
m*(a)Y C Y for all a G A. Then TY C Y, i.e., T G AlgLatm*{A). Let 
us take T G m*{A) and Y be a closed subspace in X' such that 
m*(a)Y C y for all a £ A. Then there exists a net (aa) in A such that 
xm*(aa)x' —> xTx' for all x' G X' and x G X. Since m*(aa)Y C Y for 
each a and Y is closed, it follows that Tx' G y,i.e., TY C Y. Therefore, 
T G AlgLatm*(A). 

Let T G AlgLatm*(A). By Proposition 3, we have T' G AlgLatm(A). By 
Theorem 1 there exists a net (aa) in A such that m(aa) —• T" in the strong 
operator topology. Hence, x'm(aa)x —> x'T'x for all x' G X' and x £ X. 
x'm(aa)x = (m*(aa)x')x implies that T G m*{A) 
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