Christoph Schmoeger

ON A CLASS OF GENERALIZED FREDHOLM OPERATORS, VII

This note is a continuation of our previous papers [2]–[7]. Our aim is to obtain some perturbation results concerning operators in the class $\Phi_g(X)$. Notations and definitions not explicitly given are taken from [2] and [3]. X always denotes an infinite-dimensional complex Banach space and A denotes a complex algebra with identity $e \neq 0$. If B is a complex Banach algebra with identity $e \neq 0$ and $t \in B$ then we write $\sigma(t)$ and $\sigma(t)$ for the spectrum and the spectral radius of t, respectively. As in [2] and [3] we use the following notations:

$$\mathcal{L}(X) = \{T: X \to X: T \text{ is linear and bounded}\},$$

$$\mathcal{F}(X) = \{T \in \mathcal{L}(X): \dim T(X) < \infty\},$$

$$\mathcal{K}(X) = \{T \in \mathcal{L}(X): T \text{ is compact}\},$$

$$\Phi(X) = \{T \in \mathcal{L}(X): T \text{ is Fredholm}\},$$

$$\Phi_g(X) = \{T \in \mathcal{L}(X): T \text{ is generalized Fredholm}\},$$

$$\widehat{\mathcal{L}} = \mathcal{L}(X)/\mathcal{F}(X), \widetilde{\mathcal{L}} = \mathcal{L}(X)/\mathcal{K}(X),$$

$$\mathcal{A}^{-1} = \{r \in \mathcal{A}: r \text{ is invertible}\},$$

$$\mathcal{A}^g = \{r \in \mathcal{A}: r \text{ is generalized invertible}\}.$$

Let $T \in \mathcal{L}(X)$. We write \widehat{T} for the coset $T + \mathcal{F}(X)$ of T in $\widehat{\mathcal{L}}$ and \widetilde{T} for the coset $T + \mathcal{K}(X)$ of T in $\widetilde{\mathcal{L}}$.

Recall from [2], Proposition 3.9 that

(1) $t \in \mathcal{A}^g \Leftrightarrow \text{ there is } s \in \mathcal{A} \text{ with } tst = t, sts = s \text{ and } ts = st.$

¹⁹⁹¹ Mathematics Subject Classification: 47 A 11.

Key words and phrases: generalized Fredholm operators.

If \mathcal{J} is a Φ -ideal in $\mathcal{L}(X)$, then it is well-known that

$$T \in \Phi(X) \Leftrightarrow T + \mathcal{J} \in (\mathcal{L}(X)/\mathcal{J})^{-1}$$
.

Observe that $\mathcal{F}(X)$ and $\mathcal{K}(X)$ are Φ -ideals in $\mathcal{L}(X)$. Theorem 2.3 in [2] shows that

$$T \in \Phi_q(X) \Leftrightarrow \widehat{T} \in \widehat{\mathcal{L}}^g$$
.

The starting point of our investigations in this note is the following

PROPOSITION 1. Let $t \in A^g$ and take a pseudo-inverse of t with $e-st-ts \in A^{-1}$. If $a \in At \cap tA$ and $e-as \in A^{-1}$ then

- (i) $t-a \in \mathcal{A}^g$,
- (ii) $s(e-as)^{-1}$ is a pseudo-inverse of t-a and

(iii)
$$e - s(e - as)^{-1}(t - a) - (t - a)s(e - as)^{-1} = e - st - ts \in A^{-1}$$
.

Proof. Since $e-as \in \mathcal{A}^{-1}$, we get $e-sa \in \mathcal{A}^{-1}$. Put $b=(e-as)^{-1}$ and $c=(e-sa)^{-1}$. Since $t\mathcal{A}=ts\mathcal{A}$, $\mathcal{A}t=\mathcal{A}st$ and $a\in \mathcal{A}t\cap t\mathcal{A}$, we derive

$$(2) tsa = a = ast.$$

It follows from $c^{-1}s = (e - sa)s = s(e - as) = sb^{-1}$ that

$$(3) cs = sb.$$

Use (2) to obtain

$$(t-a)s = ts - as = ts - tsas = ts(e-as) = tsb^{-1},$$

thus

$$(4) (t-a)sb = ts.$$

Use again (2) to derive

$$s(t-a) = st - sa = st - sast = (e - sa)st = c^{-1}st,$$

hence

$$st = cs(t-a).$$

From (3) we get

$$(5) st = sb(t-a).$$

By (4) and (2),

$$(t-a)sb(t-a) = ts(t-a) = tst - tsa = t-a,$$

hence $sb = s(e-as)^{-1}$ is a pseudo-inverse of t-a. Considering (4) and (5), we obtain

$$e - sb(t - a) - (t - a)sb = e - st - ts \in \mathcal{A}^{-1},$$

thus $t-a \in \mathcal{A}^g$.

COROLLARY 1. Let t, s and a as in Proposition 1. If $t \in A^{-1}$ then $t - a \in A^{-1}$.

Proof. If $t \in \mathcal{A}^{-1}$ then $s = t^{-1}$. It follows from (4) and (5) that

$$(t-a)sb = ts = e = st = sb(t-a). \blacksquare$$

PROPOSITION 2. Let $t \in \mathcal{A}^g$ and $s \in \mathcal{A}$ with the properties in (1). If $a \in \mathcal{A}$ and ta = at then sa = as.

Proof. Since $sta = sat = satst = sat^2s = st^2as = tstas = tas$, it follows that

$$s^2(ta) = s(sta) = s(tas) = (sta)s = (tas)s = (ta)s^2,$$

thus

$$sa = stsa = s^2ta = tas^2 = ats^2 = asts = as$$
.

COROLLARY 2. Suppose that t and s are as in Proposition 2. If $a \in At \cup tA$, ta = at and $e - as \in A^{-1}$ then

$$a \in \mathcal{A}t \cap t\mathcal{A}$$

and

$$t-a\in\mathcal{A}^g$$
.

Proof. Let $a \in tA = tsA$. Then a = tsa = ats, by Proposition 2. Thus $a = ats = ast \in At$. Similar arguments show that if $a \in At$ then $a \in tA$. Since $(e - st - ts)^2 = (e - 2st)^2 = e$, we have $e - st - ts \in A^{-1}$. Proposition 1 shows now that $t - a \in A^g$.

Now we turn to the operator situation. Recall from [3], (3.6) that if $T \in \Phi_g(X)$ then there is $S \in \mathcal{L}(X)$ such that

$$TST = T$$
, $STS = S$ and $TS - ST \in \mathcal{F}(X)$.

In this case we call S a \mathcal{F} -pseudo-inverse of T. If $T \in \Phi_g(X)$ and S is a pseudo-inverse of T with $I - ST - TS \in \Phi(X)$ then S is called a Φ -pseudo-inverse of T. If S is a \mathcal{F} -pseudo-inverse of T, then there is $F \in \mathcal{F}(X)$ with TS = ST + F. Thus I - ST - TS = I - 2ST - F. Since $(I - 2ST)^2 = I$, I - 2ST is invertible in $\mathcal{L}(X)$ thus $I - ST - TS \in \Phi(X)$. This shows that each \mathcal{F} -pseudo-inverse is a Φ -pseudo-inverse.

COROLLARY 3. Suppose that $T \in \Phi_g(X)$ and S is a Φ -pseudo-inverse of T. If $A \in \mathcal{L}(X)$, $I - AS \in \Phi(X)$, $(I - TS)A \in \mathcal{F}(X)$ and $A(I - ST) \in \mathcal{F}(X)$ then

$$T-A\in \Phi_g(X).$$

Proof. Since $\widehat{T} \in \widehat{\mathcal{L}}^g$, $\widehat{I} - \widehat{A}\widehat{S} \in \widehat{\mathcal{L}}^{-1}$, $\widehat{A} = \widehat{T}\widehat{S}\widehat{A} = \widehat{A}\widehat{S}\widehat{T} \in \widehat{T}\widehat{\mathcal{L}} \cap \widehat{\mathcal{L}}\widehat{T}$, we get from Proposition 1 that $\widehat{T} - \widehat{A} \in \widehat{\mathcal{L}}^g$, hence $T - A \in \Phi_g(X)$.

Remark. If $A, S \in \mathcal{L}(X)$ then it is well-known that

$$I - AS \in \Phi(X) \Leftrightarrow I - SA \in \Phi(X)$$
.

COROLLARY 4. Suppose that $T \in \Phi_g(X)$ and $S \in \mathcal{L}(X)$ is a \mathcal{F} -pseudo-inverse of T. If $A \in \mathcal{L}(X)$, $I - AS \in \Phi(X)$, $TA - AT \in \mathcal{F}(X)$ and $A(I - ST) \in \mathcal{F}(X)$ then

$$T-A \in \Phi_g(X)$$
.

Proof. We have $\widehat{T} \in \widehat{\mathcal{L}}^g$, $\widehat{T}\widehat{S}\widehat{T} = \widehat{T}$, $\widehat{S}\widehat{T}\widehat{S} = \widehat{S}$, $\widehat{T}\widehat{S} = \widehat{S}\widehat{T}$, $\widehat{I} - \widehat{A}\widehat{S} \in \widehat{\mathcal{L}}^{-1}$, $\widehat{T}\widehat{A} = \widehat{A}\widehat{T}$ and $\widehat{A} = \widehat{A}\widehat{S}\widehat{T} \in \widehat{\mathcal{L}}\widehat{T}$. Corollary 2 gives $\widehat{T} - \widehat{A} \in \widehat{\mathcal{L}}^g$, thus $T - A \in \Phi_g(X)$.

Although Proposition 1, Corollary 1, Corollary 3 and Corollary 4 seem rather special, they contain the classical perturbation results for Fredholm operators. We look at the following two corollaries.

COROLLARY 5. Suppose that $T \in \Phi(X)$ and S is a pseudo-inverse of T. If $A \in \mathcal{L}(X)$ and $||A|| < ||S||^{-1}$ then

$$T-A \in \Phi(X)$$
.

Proof. Proposition 1.3 in [2] shows that S is a Φ -pseudo-inverse of T. From $||A|| < ||S||^{-1}$ we get

$$I - AS \in \mathcal{L}(X)^{-1} \subseteq \Phi(X)$$
.

Since I - ST and I - TS are finite-dimensional projections, we get A(I - ST), $(I - TS)A \in \mathcal{F}(X)$. Therefore we have $\widehat{T} \in \widehat{\mathcal{L}}^{-1}$, $\widehat{I} - \widehat{A}\widehat{S} \in \widehat{\mathcal{L}}^{-1}$, $\widehat{A} \in \widehat{\mathcal{L}}\widehat{T} \cap \widehat{T}\widehat{\mathcal{L}}$. Corollary 1 gives therefore that $\widehat{T} - \widehat{A} \in \widehat{\mathcal{L}}^{-1}$, thus $T - A \in \Phi(X)$.

COROLLARY 6. If \mathcal{J} is a Φ -ideal in $\mathcal{L}(X)$ then

$$T-A \in \Phi(X)$$
 for each $T \in \Phi(X)$ and each $A \in \mathcal{J}$.

Proof. Take $T \in \Phi(X)$, $A \in \mathcal{J}$ and $S \in \mathcal{L}(X)$ with TST = T. Then $AS \in \mathcal{J}$, hence $I - AS \in \Phi(X)$. Now proceed as in the proof of Corollary 5.

We have seen in [2] that $\Phi_g(X) + \mathcal{K}(X) \not\subseteq \Phi_g(X)$. The next corollary contains a perturbation result for compact operators.

COROLLARY 7. Let $T \in \Phi_g(X)$ with Φ -pseudo-inverse S. If \mathcal{J} is a Φ -ideal in $\mathcal{L}(X)$, $A \in \mathcal{J}$, $(I - TS)A \in \mathcal{F}(X)$ and $A(I - ST) \in \mathcal{F}(X)$ then

$$T-A\in\Phi_a(X)$$
.

Proof. Since $AS \in \mathcal{J}$, $I - AS \in \Phi(X)$. Corollary 3 gives $T - A \in \Phi_g(X)$.

COROLLARY 8. Let T and S as in Corollary 7. If $A \in \mathcal{L}(X)$, $I-AS \in \Phi(X)$, $N(T) \subseteq N(A)$ and $A(X) \subseteq T(X)$ then

$$T-A\in \Phi_g(X)$$
.

Proof. Since $(I - ST)(X) = N(T) \subseteq N(A)$, we get A(I - ST) = 0. From $A(X) \subseteq T(X) = TS(X)$ we derive TSA = A, thus (I - TS)A = 0. Corollary 3 gives then $T - A \in \Phi_q(X)$.

COROLLARY 9. Let $T \in \Phi_g(X)$ and S a \mathcal{F} -pseudo-inverse of T. If $A \in \mathcal{L}(X)$, $I - AS \in \Phi(X)$, $TA - AT \in \mathcal{F}(X)$ and $N(T) \subseteq N(A)$ or $A(X) \subseteq T(X)$ then

$$T-A\in\Phi_q(X)$$
.

Proof. Case 1: Suppose that $N(T) \subseteq N(A)$, then, as above, $A(I - ST) = 0 \in \mathcal{F}(X)$, hence $\widehat{A} \in \widehat{\mathcal{L}}\widehat{T}$. Corollary 2 gives $T - A \in \Phi_g(X)$.

Case 2: If $A(X) \subseteq T(X)$, then $(I - TS)A = 0 \in \mathcal{F}(X)$, thus $\widehat{A} \in \widehat{TL}$. Use again Corollary 2 to get $T - A \in \Phi_q(X)$.

COROLLARY 10. If $T \in \Phi_g(X)$ and if S is a F-pseudo-inverse of T then

$$T - \lambda S \in \Phi_g(X)$$
 for $|\lambda| < ||S^2||^{-1}$.

Proof. Since $\widehat{T}\widehat{S} = \widehat{S}\widehat{T}$, we have $\widehat{S} = \widehat{S}\widehat{T}\widehat{S} = \widehat{S}^2\widehat{T} \in \widehat{\mathcal{L}}\widehat{T}$ and $\widehat{S} = \widehat{T}\widehat{S}^2 \in \widehat{T}\widehat{\mathcal{L}}$. Thus

(6)
$$\lambda \widehat{S} \in \widehat{T}\widehat{\mathcal{L}} \cap \widehat{\mathcal{L}}\widehat{T} \text{ for all } \lambda \in \mathbb{C}.$$

If $|\lambda| < ||S^2||^{-1}$ then $I - \lambda S^2 \in \mathcal{L}(X)^{-1} \subseteq \Phi(X)$, thus

(7)
$$\hat{I} - (\lambda \widehat{S})\widehat{S} \in \widehat{\mathcal{L}}^{-1} \text{ for } |\lambda| < ||S^2||^{-1}.$$

By Corollary 2, (6) and (7) we get $\widehat{T} - \lambda \widehat{S} \in \widehat{\mathcal{L}}^g$, thus $T - \lambda S \in \Phi_g(X)$ if $|\lambda| < ||S^2||^{-1}$.

Our next result in this paper is a mapping property for operators in $\Phi_q(X)$. Recall that if $T \in \Phi_q(X)$ then, by [2], Proposition 1.3,

$$\operatorname{dist}(0, \sigma_{\Phi}(T) \setminus \{0\}) > 0.$$

Furthermore, by [3], Theorem 3.10, if $T \in \Phi_g(X) \backslash \mathcal{F}(X)$ and S is a \mathcal{F} -pseudo-inverse of T then

(8)
$$\operatorname{dist}(0, \sigma_{\Phi}(T) \setminus \{0\}) = r(\tilde{S})^{-1}.$$

COROLLARY 11. Let $T \in \Phi_g(X)$ and S a \mathcal{F} -pseudo-inverse of T. Suppose that $D \subseteq \mathbb{C}$ is a Cauchy-domain, $0 \in \sigma(T) \subseteq D$, $h: D \to \mathbb{C}$ is holomorphic, h(0) = 0 and

(9)
$$\max_{\lambda \in \sigma_{\Phi}(T)} |\lambda - h(\lambda)| < \operatorname{dist}(0, \sigma_{\Phi}(T) \setminus \{0\}).$$

Then $h(T) \in \Phi_g(X)$.

Proof. If $T \in \mathcal{F}(X)$, then $\operatorname{dist}(0, \sigma_{\varPhi}(T) \setminus \{0\}) = \infty$. Since h(0) = 0, $h(\lambda) = \lambda k(\lambda)$ for some holomorphic $k : D \to \mathbb{C}$. Thus $h(T) = Tk(T) \in \mathcal{F}(X) \subseteq \varPhi_g(X)$. Now consider the case where $T \in \varPhi_g(X) \setminus \mathcal{F}(X)$. Define $f : D \to \mathbb{C}$ by $f(\lambda) = \lambda - h(\lambda)$. Then f(0) = 0, thus $f(\lambda) = \lambda g(\lambda)$ for some holomorphic $g : D \to \mathbb{C}$. This gives f(T) = Tg(T) = g(T)T, thus

(10)
$$\widehat{f(T)} = \widehat{T}\widehat{g(T)} = \widehat{g(T)}\widehat{T} \in \widehat{T}\widehat{\mathcal{L}} \cap \widehat{\mathcal{L}}\widehat{T}.$$

Furthermore we have

(11)
$$\widehat{T}\widehat{f(T)} = \widehat{f(T)}\widehat{T}.$$

Since $\tilde{T}\tilde{S} = \tilde{S}\tilde{T}$ and $\widetilde{f(T)} = f(\tilde{T})$, it follows that

(12)
$$r(\widetilde{f(T)}\widetilde{S}) \le r(\widetilde{f(T)})r(\widetilde{S}) = r(f(\widetilde{T}))r(\widetilde{S}).$$

From [1] we get

$$r(f(\tilde{T})) = \max_{\lambda \in \sigma_{\Phi}(T)} |f(\lambda)| = \max_{\lambda \in \sigma_{\Phi}(T)} |\lambda - h(\lambda)|.$$

Thus by (8), (9) and (12), $r(f(\tilde{T})) < 1$, hence $\tilde{I} - \widetilde{f(T)}\tilde{S} \in \widetilde{\mathcal{L}}^{-1}$, therefore $I - f(T)S \in \Phi(X)$ and so $\hat{I} - \widehat{f(T)}\widehat{S} \in \widehat{\mathcal{L}}^{-1}$. Corollary 2 and (11) show now that $\widehat{T} - \widehat{f(T)} \in \widehat{\mathcal{L}}^g$, thus $h(T) = T - f(T) \in \Phi_g(X)$.

PROPOSITION 3. For $t_1, t_2 \in A$ we have

$$e - t_1 t_2 \in \mathcal{A}^g \Leftrightarrow e - t_2 t_1 \in \mathcal{A}^g$$
.

Proof. Let $e - t_1 t_2 \in \mathcal{A}^g$ and $s \in \mathcal{A}$ such that

(13)
$$(e - t_1 t_2) s(e - t_1 t_2) = e - t_1 t_2$$

and

(14)
$$(e-t_1t_2)s = s(e-t_1t_2).$$

From (13) and (14) we get

$$(15) e - t_1 t_2 = s - s t_1 t_2 - t_1 t_2 s + t_1 t_2 s t_1 t_2$$

and

$$(16) t_1 t_2 s = s t_1 t_2.$$

Put $r = e + t_2 s t_1$. Then we obtain

$$(e-t_2t_1)r(e-t_2t_1) == e-t_2(2e-s+st_1t_2-t_1t_2+t_1t_2s-t_1t_2st_1t_2)t_1.$$

Hence, by (15),

$$(e-t_2t_1)r(e-t_2t_1) == e-t_2(2e-t_1t_2-(e-t_1t_2))t_1 = e-t_2t_1,$$

thus r is a pseudo-inverse of $e - t_2 t_1$. (16) shows that

$$t_2t_1r = t_2t_1(e + t_2st_1) = t_2t_1 + t_2(t_1t_2s)t_1$$

= $t_2t_1 + t_2(st_1t_2)t_1 = t_2t_1 + t_2st_1t_2(t_2t_1)$
= $(e + t_2st_1)t_2t_1 = rt_2t_1$.

Therefore $(e - t_2t_1)r = r(e - t_2t_1)$. Theorem 3.3 in [2] gives then $e - t_2t_1 \in \mathcal{A}^g$.

COROLLARY 12. Let $T_1, T_2 \in \mathcal{L}(X)$. Then

$$I - T_1 T_2 \in \Phi_g(X) \Leftrightarrow I - T_2 T_1 \in \Phi_g(X).$$

References

- [1] H. Heuser, Funktionalanalysis, 2nd ed., Teubner (1986).
- [2] Ch. Schmoeger, On a class of generalized Fredholm operators I, Demonstratio Math. 30 (1997), 829-842.
- [3] Ch. Schmoeger, On a class of generalized Fredholm operators II, Demonstratio Math. 31 (1998), 705-722.
- [4] Ch. Schmoeger, On a class of generalized Fredholm operators III, Demonstratio Math. 31 (1998), 723-733.
- [5] Ch. Schmoeger, On a class of generalized Fredholm operators IV, Demonstratio Math. 32 (1999), 581-594.
- [6] Ch. Schmoeger, On a class of generalized Fredholm operators V, Demonstratio Math. 32 (1999), 595-604.

[7] Ch. Schmoeger, On a class of generalized Fredholm operators VI, Demonstratio Math. 32 (1999), 811-822.

MATHEMATISCHES INSTITUT I UNIVERSITÄT KARLSRUHE D-76128 KARLSRUHE, GERMANY

E-mail: christoph.schmoeger@math.uni-karlsruhe.de

Received December 4, 1997.