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ON A CLASS
OF GENERALIZED FREDHOLM OPERATORS, VII

This note is a continuation of our previous papers {2}-{7]. Our aim is to
obtain some perturbation results concerning operators in the class $,(X).
Notations and definitions not explicitly given are taken from [2] and [3]. X
always denotes an infinite-dimensional complex Banach space and A denotes
a complex algebra with identity e # 0. If B is a complex Banach algebra with
identity e # 0 and t € B then we write o(t) and r(t) for the spectrum and
the spectral radius of ¢, respectively. As in {2] and [3] we use the following
notations:

L(X)={T: X — X : T is linear and bounded},
F(X)={T € £L(X) : dimT(X) < o0},
K(X)={T € L(X) : T is compact},

&(X) ={T € L(X) : T is Fredholm},
$4(X) ={T € L(X) : T is generalized Fredholm},

L= L(X)/F(X),L = £(X)/K(X),
A~! = {r € A:r is invertible},
A% = {r € A :r is generalized invertible}.

Let T € £(X). We write T for the coset T + F(X) of Tin £ and T for the
coset T + K(X) of T in L.
Recall from [2], Proposition 3.9 that

(1) t € A% & there is s € A with tst = t,sts = s and ts = st.
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If J is a $-ideal in £(X), then it is well-known that
TedX)oT+J e (LX)/T)
Observe that F(X) and K(X) are J-ideals in £(X). Theorem 2.3 in [2]
shows that
Ted,(X)eTell
The starting point of our investigations in this note is the following

PROPOSITION 1. Let t € A9 and take a pseudo-inverse of t with e—st—ts €
Al If ac AtNtA and e — as € A~! then

(i)t—a€ A9,
(ii) s(e — as)™?! is a pseudo-inverse of t —a and
(iii) e— s(e —as)"H(t—a) — (t —a)s(e—as) 1 =e—st—ts € A7L.
Proof. Sincee —as € A™! , we get e —sa € A~}. Put b= (e — as)~! and
c=(e—sa)~!. Since tA = tsA, At = Ast and a € At NtA, we derive

(2) tsa = a = ast.
It follows from ¢™!s = (e — sa)s = s(e — as) = sb~! that
3) cs = sb.

Use (2) to obtain
(t —a)s = ts — as = ts — tsas = ts(e — as) = tsb™!,
thus
(4) (t — a)sb =ts.
Use again (2) to derive

1

s(t — a) = st — sa = st — sast = (e — sa)st = ¢~ st,

hence
st = cs(t — a).

From (3) we get
(5) st = sb(t — a).
By (4) and (2),

(t—a)sb(t —a) =ts(t—a) =tst —~tsa=1t—a,
hence sb = s(e —as) ™! is a pseudo-inverse of t — a. Considering (4) and (5),
we obtain

e—sht—a)—(t—a)sb=e—st—ts € A7,
thust—a € A9. =
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COROLLARY 1. Let t,s and a as in Proposition 1. If t € A™1 then t — a
€ AL
Proof Ift € A~! then s = ¢t~1. It follows from (4) and (5) that
(t—a)sb=ts=e=st=sb(t—a). m
PROPOSITION 2. Let t € A9 and s € A with the properties in (1). If a € A
and ta = at then sa = as.
Proof. Since sta = sat = satst = sat’s = st?as = tstas = tas, it follows
that
s%(ta) = s(sta) = s(tas) = (sta)s = (tas)s = (ta)s’,
thus
sa = stsa = s’ta = tas® = ats® = asts = as. »
COROLLARY 2. Suppose that t and s are as in Proposition 2. If a € AtUtA,
ta = at and e — as € A™! then
a€ AtNtA

and

t—ae€ A9,
Proof. Let a € tA = tsA. Then a = tsa = ats, by Proposition 2. Thus
a = ats = ast € At. Similar arguments show that if a € At then a € tA.
Since (e — st — ts)? = (e — 2st)? = e, we have e — st —ts € A~!. Proposition
1 shows now that t —a € A9. m

Now we turn to the operator situation. Recall from [3], (3.6) that if
T € $,(X) then there is S € L(X) such that

TST =T, STS = S and TS — ST € F(X).

In this case we call § a F-pseudo-inverse of T. If T € $,(X) and S is a
pseudo-inverse of T with I — ST — T'S € #(X) then S is called a $-pseudo-
inverse of T. If S is a F-pseudo-inverse of T, then there is F' € F(X) with
TS =ST+F. Thus I — ST — TS = I — 28T — F. Since (I — 28T)% =1,
I — 25T is invertible in £(X) thus I — ST — TS € #(X). This shows that
each F-pseudo-inverse is a P-pseudo-inverse.

COROLLARY 3. Suppose that T € $,(X) and S is a $-pseudo-inverse of T'.
IfAe L(X),I-ASe®(X), (I-TS)A € F(X) and A(I - ST) € F(X)
then

T—-Acd,(X).
Proof. Since T € Eg, I :A\S'le E:l, A=TSA=AST e TLn Ef, we get
from Proposition 1 that T'— A € £9, hence T — A € $4(X).
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Remark. If 4,5 € £(X) then it is well-known that

I-ASe&(X) o I—SAedX).

COROLLARY 4. Suppose that T € $4(X) and S € L(X) is a F-pseudo-
inverse of T. If A € L(X), I — AS € &(X), TA - AT € F(X) and
A(I — ST) € F(X) then

T — A e d,(X).

o~ A~

Proof We have T € L9, TST =T, 57§ = 5,78 = 5T, - AS e £,

PO

TA = AT and A = AST e ZT. Corollary 2 gives T — A € L9 thus
T-Acd,(X) n

Although Proposition 1, Corollary 1, Corollary 3 and Corollary 4 seem
rather special, they contain the classical perturbation results for Fredholm
operators. We look at the following two corollaries.

COROLLARY 5. Suppose that T € $(X) and S is a pseudo-inverse of T. If
A€ L(X) and ||A]| < ||S||~? then

T — A € &(X).

Proof. Proposition 1.3 in [2] shows that S is a $-pseudo-inverse of T. From
IA)} < §S|I7* we get

I—-AS e L(X)™' C &(X).

Since I — ST and I — T'S are finite-dimensional prOJectlons we get A(I —
ST),(I - TS)A € F(X). Therefore we have Tel Y\, [-AS5el Ac
LTNTL. Corollary 1 gives therefore that T—A4 € £} thus T-Ace€ 45(X ). m

COROLLARY 6. If J is a ®-ideal in L(X) then
T—Ae®(X) for eachT € $(X) and each A€ J.

Proof Take T € #(X), A € J and S € L(X) with TST = T. Then
AS € J,hence I—AS € $(X). Now proceed as in the proof of Corollary 5. m

We have seen in {2] that $4(X) + K(X) € $4(X). The next corollary
contains a perturbation result for compact operators.

COROLLARY 7. Let T € $,(X) with $-pseudo-inverse S. If J is a $-ideal
in L(X), Ae J, I -TS8)A € F(X) and A(I - ST) € F(X) then

T - A€ dy(X).
Proof. Since AS € J, I - AS € &(X). Corollary 3 gives T — A € $,(X). m
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COROLLARY 8. Let T and S as in Corollary 7. If A € L(X), I-AS € $(X),
N(T) C N(A) and A(X) C T(X) then

T — A € &y(X).

Proof. Since (I — ST)(X) = N(T) C N(A), we get A(I — ST) = 0.
From A(X) C T(X) = TS(X) we derive TSA = A, thus (I - TS)A = 0.
Corollary 3 gives then T — A € $,(X). »

COROLLARY 9. Let T € $4(X) and S a F-pseudo-inverse of T. If A
L(X), I — AS € $(X), TA— AT € F(X) and N(T) C N(A) or A(X)
T(X) then

€
c

T — A€ &,(X).

Proof. Case 1: Suppose that N(T) C N(A), then, as above, A(I — ST) =
0 € F(X), hence A € LT. Corollary 2 gives T — A € $,(X).

Case 2: If A(X) C T(X), then (I — TS)A = 0 € F(X), thus A € TL.
Use again Corollary 2 to get T — A € $,(X). =

COROLLARY 10. If T € $,(X) and if S is a F-pseudo-inverse of T then
T~ AS € ®,(X) for|A < |IS?L.

Proof. Since TS = 8T, wehave § = ST8 = 52T € LT and S =TS2 €

TL. Thus

(6) AS e TENLT for all A e C.

If |\ < ||S2%)}=! then I — AS? € L(X)™! C $(X), thus

(7) I—(A8)S € L1 for |A| < ||S?||72.

By Corollary 2, (6) and (7) we get T — AS € £9, thus T — AS € P,(X) if
A< IS%)7. -

Our next result in this paper is a mapping property for operators in
P4(X). Recall that if T € $4(X) then, by 2], Proposition 1.3,

dist(0,04(T)\{0}) > 0.

Furthermore, by [3], Theorem 3.10, if T € $,(X)\F(X) and S is a F-
pseudo-inverse of T then

(8) dist(0, 06 (T)\{0}) = r(5) 1.
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COROLLARY 11. Let T € $,(X) and S a F-pseudo-inverse of T. Suppose
that D C C is a Cauchy-domain, 0 € o(T) C D, h: D — C is holomorphic,
h{0) =0 and

(9) a2 |A = R(A)] < dist(0, 04(T)\{0})-

Then h(T) € $4(X).

Proof If T € F(X), then dist(0,04(T)\{0}) = oo. Since h(0) = 0,
h(X) = Ak(\) for some holomorphic k : D — C. Thus h(T) = Tk(T) €
F(X) C $4(X). Now consider the case where T' € $,(X)\F(X). Define
f:D — Chby f(A) = A= h()). Then f(0) = 0, thus f(A) = Ag(A)
for some holomorphic g : D — C. This gives f(T) = Tg(T) = ¢(T)T,
thus

(10) F(T) = Tg(T) = g(T)T € TLn £T.
Furthermore we have

(1) Tf(T) = f(T)T.

Since T8 = ST and f(T) = f(T), it follows that

(12) r(F(D)8) < r(FM)r(5) = r(f(T))r(3).
From [1] we get

r(f(T)) = ma%cT)If(A)l— max [A = h(A)]-

Thus by (8), (9) and (12), r(f(T)) < 1, hence I — f(T)S € L1, therefore
I- f(T)S € 45(X) and so [ — f(T)S € £-1. Corollary 2 and (11) show now
that T — f(T) € £9, thus h(T) = T — f(T) € 8,(X). u

PROPOSITION 3. For t;,t; € A we have

e—tits € A & e — tot; € A9.
Proof. Let e — t1t2 € A9 and s € A such that
(13) (e — tita)s(e — tita) = e — taty
and

(14) (e -~ t1t2)s = s(e —_ t1t2).
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From (13) and (14) we get

(15) e —tity = s — stito — titas + t1tastits
and
(16) tltgs = Stltz.

Put r = e + tyst;. Then we obtain
(e — tat1)r(e — tat1) == e — t2(2e — s + stits — tita + titas — titastity)ts.
Hence, by (15),
(e — taty)r(e — toty) == e — t2(2e — t1ty — (€ — t1ta))ty = e — tat1,
thus r is a pseudo-inverse of e — ¢5t;. (16) shows that

totyr = tztl(e + tgstl) = tal1 + t2(t1t28)t1
= taty + tz(stltz)tl =tst; + tzstltz(tztl)
= (e + tast )tat1 = riaty.

Therefore (e — tat1)r = r(e — tat1). Theorem 3.3 in 2] gives then e — tat;
€A =

COROLLARY 12. Let Ty, Ty € L(X). Then
I-T1Ty € ¢g(X) s I-TT € @_q(X)
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