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CESARO CONULL FK-SPACES 

Abstract. The purpose of this paper is to study the (strongly) Cesaro conull FK-
spaces and to give some characterizations. 

1. Introduction 
The classification of conservative matrices as conull or coregular, due to 

Wilansky [14], has been extended by Yurimyae [17] and Snyder [13] to all 
FK-spaces. Bennett [2] continued work on conull FK-spaces; and improved 
some results of Sember [10]—[12]. 

Motivating by Bennett's paper [2] and his talks at the Ankara University 
during the summer of 1996 we study the (strongly) Cesaro conull FK-spaces. 

In Section 2 we introduce the notation and terminology while in Sec-
tion 3 we study the Cesaro conull FK-spaces and provide some examples to 
illustrate the differences between the conull and Cesaro conull FK-spaces. 
Section 4 deals with the strongly Cesaro conull FK-spaces; and gives a re-
lationship between the (Cesaro wedge) weak Cesaro wedge and (strongly) 
Cesaro conull FK-spaces. In Section 5 we obtain some results for a summa-
bility domain EA to be (strongly) Cesaro conull. Section 6 presents some 
applications to summability domains. 

2. Notation and preliminary results 
Let w denote the space of all real or complex-valued sequences. It can 

be topologized with the seminorms Pi(x) = |xi|, (i = 1,2,. . .) , and any 
vector subspace of w is called a sequence space. A sequence space X, with a 
vector space topology T, is a K-space provided that the inclusion mapping 
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I : (X,r) —> w, I(x) = x, is continuous. If, in addition, r is complete, 
metrizable and locally convex then (X, r ) is called an FK-space. So an FK-
space is a complete, metrizable locally convex topological vector space of 
sequences for which the coordinate functionals are continuous. An FK-space 
whose topology is normable is called a BK-space. The basic properties of 
such spaces may be found in [15], [16] and [19]. 

By m,c, Co we denote the spaces of all bounded sequences, convergent 
sequences and null sequences, respectively. These are FK-spaces under ||a:|| = 
supfc By £p, (1 < p < oo), and cs we shall denote the space of all 
absolutely p-summable sequences, and convergent series, respectively. As 
usual i 1 is replaced by I. The sequence spaces 

oo 
h = 6 w : l imxj = 0 and ^ j |Axj | < ooj , 

3 j=i 
oo 

q = € w : s u p < oo a n d ^ j | A 2 X j \ < o o j , 
3 

and 
, ^ n k 

crs = < x G w : lim — ^^ x j € 

n n fc=l j=1 
are BK-spaces with the norms 

oo 

IMU = + s u p I : c j 
3=1 
oo 

3 

3=1 3 

and 

F l U = sup 
k 

n S 5 > 
n - k=ij=i 

respectively, where A Xj = Xj — Xj+i, A 2Xj = Axj —Axj+\. Let qo := qOcQ, 
and bv = {x ew \ x j ~ < oo}, bv0 := bvD c0 (see [2], [4] and [6]). 

Troughout the paper e denotes the sequence of ones, (1 ,1 , . . . , 1,. . .); 
(j = 1,2,. . .) , the sequence (0,0, . . . ,0 ,1,0, . . . ) with the one in the j-th 
position. Let <p := ¿.hull {¿^ : k € N} and <f>i := <f>U {e}. The topological 
dual of X is denoted by X'. 

A sequence x in a locally convex sequence space X is said to have the 
property AK (respectively c?K) if (respectively - x ) 
in X where x ( n ) = = (®i> • • • > ® n , 0 , 0 , . . . ) . 
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The subspace of a locally convex sequence space X consisting of the 
sequences with the property AK (respectively oK) is denoted by XAK (re-
spectively X a x ) . Every AK-space is a oK-space, [4]. For example w,h,£,co 

axe AK-spaces while qo, as are cr/i-spaces (see [4], [6]). 
Let z = (2*) € to be such that zk ^ 0 for every fc = 1,2, . . . Then 

oo 
VQ{z) := G co : ^ \zk\|A®fc| < o o j 

fc=l 
is an FK-AK space with the norm ||x||y0(z) = YlkLi [?]• 

Finally, s = {sn}^Li always denotes a strictly increasing sequence of 
non-negative integers with si = 0. We shall also be interested in spaces of 
the form 

SN+L 

c|s| := |a; G w : l i m i j = 0 and sup ^ j | A a ; j | < o o | 
J n J=»n+1 

which becomes an FK-space with the norm ||x||c|s| = j |Axj | , [8]. 
If X is any sequence space then, 

f 1 n k 

X" — < x G w : lim — ^ ^ X j y j exists for all y G X 

^ n n fc=i j=l 
= {x G w : x.y G as for all y G X} 

where x.y = (xnyn), [6]. For example as" = q, [3]. 
Using the fact that the space z~x.X := {x : z.x G X} is an FK-space 

(see [16], Theorem 4.3.6) one can get immediately the following: 

PROPOSITION 2 . 1 . Let ( X , u ) be an FK-aK space and z G w, then z~1.Xis 
also a aK-space. 

Taking X = as in Proposition 2.1. we get 
^ n k 

: lim — ^ ^^ z j x j exists| = z". 

So we have 
THEOREM 2 . 2 . If z e w , then z" is a oK-space. 

Following Yurimyae [17] and Snyder [13] we say that an FK-space (X, r ) 
containing <f>\ is a conull space 

i f e - e W = (0 ,0 , . . . ,0 ,1 ,1 , . . . ) (weakly) 
in X. It is strongly conull space if e — e^ —» 0 in X, [2]. 

A relationship between (strongly) conull and (wedge) weak wedge FK-
spaces is given by Bennett in [2]. Recall that if ( X , r ) is a /i-space containing 

. as = {x : z.x G crs} = j 
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(f>, and 6k —• 0 in X then (X , r ) is called a wedge space; and if Sk —» 0 
(weakly) in X then (X, r ) is called a weak wedge space [2]. 

In [8] we have introduced the concept of a Cesaro wedge FK-space and 
given some characterizations. 

We recall that if ^ = ± Sk = ( I 1 , . . . , i 0, . . .) 0 in a K-
space (X, T) containing (F> then (X, r ) is called a Cesaro wedge space; and 
if sLL 0 (weakly) in X then (X, r ) is called a weak Cesaro wedge space. 
In [8] some examples are also provided to illustrate the differences between 
(weak) wedge and (weak) Cesaro wedge FK-spaces. 

3. Cesaro conull FK-spaces 
In a seminar held at the Ankara University during the summer of 1996, 

Prof. G. Bennett of Indiana University (USA) introduced the concept of 
Cesaro conullity for an FK-space X containing <f>\; and suggested the related 
topic to work on. 

D e f i n i t i o n 3.1. Let X be an FK-space containing fa. If 

(1) = ' • • • > - ' 1 ' - ) - 0 i n X 
n n n n k=i 

then X is called strongly Ci-conull FK-space, where e<fc) := & • I f t h e 

convergence holds in the weak topology in (1) then X is called Ci-conull. 
Hence X is C\-conull iff 

/(e) = £/(«$>•), V f e X ' . 
fc=1 j=1 

We shall now present two examples of Ci-conull FK-spaces which are 
not conull. First we need some further notations. 

Let A = (a,ij) be an infinite matrix. The matrix A may be considered 
as a linear transformation of sequences x = (xk) by the formula y — Ax, 
where yi = Y^jLi aijxj> (i = 1,2,.. .). A is called conservative if Ax € c for 
all x € c. 

For an FK-space (E, u) we consider the summability domain EA •'= {x € 
w : Ax G E}. Then EA is an FK-space under the seminorms Pi(x) = |x;| , 
(i = 1,2,.. .) hi(x) = supm |52jiO»j®ili (» = 1,2,. . .) and {u o A)(x) = 
u(Ax) (see [16] and [18]). 

Now we present the examples promised in this section. 

E x a m p l e 3.2. Define the seqeunce Ax by (Ax)j = XJ — Z j - i , (XQ = 0) if j 
is a square, and 0 otherwise. Then £A is Ci-conull. 
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To see this, consider an / G l'A. Since A is triangular, it follows from 
([16], p. 66) that f(x) = t(Ax) for some t G m, and for all x G £a• Then 
Hn —* 0 (weakly) in ¿a if and only if, for every f € ¿'A, we have 

oo j 
(2) f{yT) = Y , ( E W * 0 ) - 0, (n - oo) 

j=l fc=i 

for every t £ m . Now define the matrix B = (6nj) by bnj = 
Then (2) holds if and only if B maps m into cq, which, is equivalent to 
lim„ XIJLi I bnj | = 0. On the other hand we have XJUI Gj'fcMfĉ  = if 
j = m2 < n, and 0 otherwise. Since the set M = {m2 : m G N} has density 
zero, we get 

j 

£ 
j=l fc= 1 

(n) 1 . \ 
= -Y]xmU) ( " - » o o ) , n i—' i=i 

where XM is the characteristic function of M. 
In order to show that £a is not conull we first observe that if 

xPn : = e - e ( " ) = (0 ,0 , . . . ,0 ,1 ,1 , . . . ) 
then 

j 
J 2 a j k W = 1, if j = m2 = n, and 0 otherwise. 
fc=i 

Hence limn V* •_, I a # o, which proves the claim. 
The next example is provided by G. Bennett: 

EXAMPLE 3.3. Define the sequence Ax by ( A x ) n = y/nxn — %Jnxn_i 
(xo = 0). Then (£2)a is also Ci-conull but not conull. The proof uses the 
same technique as in Example 1, so, is therefore omitted. 

Unexpectedly we have the following 
THEOREM 3 .4 . Let A be a conservative matrix. Then ca is conull if and only 
if it is C\-conull. 

Proof. Only the sufficiency part needs to be proved. Assume ca is Ci-
conull. It follows from the Banach-Steinhaus theorem that /:= lim^ G c'A. 
A few calculation yields that 

1 n k 1 n 00 

k=lj=l k=lj=k+l 

where x{A) = lim^e — Yl^Li & • Since A is conservative we have 
(limyiiJ)G cs, so, the second term on the right hand side in (3) tends to 
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zero as n —> oo. The left hand side must also tend to zero as n —> oo because 
of Ci-conullity of CA- This implies that x(-A) = 0, i.e, A is conull. Now a 
result due to Snyder [13] gives the conclusion. 

Our next result follows immediately from Theorem 3.4. 

COROLLARY 3.5. Let X be a Ci-conull FK-space but not conull space. Then, 
for any conservative matrix B, CB ^ X. 

4. Strongly Ci-conull FK-spaces 
First note that we have the following implications: 

Ci-conull 
/ \ 

Strongly Ci-conull Weak Ci-wedge 
\ / 

Ci-wedge 
None of the above implications can be reversed. 
We, however, establish a relationship between (strongly) Cesaro conull 

and (Cesaro wedge) weak Cesaro wedge FK-spaces. To see this, consider the 
one-to-one and onto mapping T : w —>w, Tx = (xi,xi+x2,..., xfc> • • •)> 
and T_1x = (xi,x2 — xi, ...,xn— xn-i» • • •)> [2] • Now we have 

LEMMA 4.1. Let (X,r) be an FK-space. Then 
(i) X is strongly C\-conull if and only if T~lX is C\-wedge space; 
(ii) X is Ci-conull if and only ifT~lX is weak wedge space. 

P r o o f . Note that the FK-topology of X can be given by a sequence of 
seminorms {d n } , say. Then T~1(X) can be topologized by d'n(x) = dn(Tx), 
(n = 1,2,. . .) , so that it too becomes an FK-space as well, ([9], p. 253). 

We just prove (ii) and leave (i) to the reader. Observe that 
T:(T-1(X),r')^(X,r) 

is a topological isormophism (see [9], p. 254). If X is Ci-conull, then FJ.R —> 0 
(weakly) in X . Since T - 1 : ( X , T) —• ( T ~ L ( X ) , T') is continuous, it is weakly 
continuous. Hence T- 1 ( / i r ) = T " 1 ( e - ^ L i e(fc)) = ^ 0 (weakly) 
in T~x(X), and so T~1(X) is weak Ci-wedge space. 

To prove the sufficiency it is enough to observe that 

R A R ^ p a O - I X . T ) 

is weakly continuous and T(^r - ) = e — ^ Ylk=i • 

THEOREM 4.2. Let (X,T) be an FK-space. Then the following conditions 
are equivalent: 
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(i) X is strongly Ci-conull; 
(ii) for some z £w such that zn = o(n), 

oo 
r(Vb(z)) = |a; G w : lim Ax„_i = 0 and ^ |z n | |A 2x n_x| < oo,x0 = o } c X ; 

" n = l 

(iii) for some sequence s, 
Sn+l 

T(c|s|) = {x G w : l imAx„_i = 0 and sup ^ j |A 2 Xj_ i | < oo,x0 = 
n j=«„+i 

and the inclusion mapping I: T(c |s|) —> X is compact; 

(iv) q C X and the inclusion mapping I: q—* X is compact. 

P r o o f , (i) =Kii). If X is strongly Ci-conull, then by Lemma4.1,(i), T~l(X) 
is Ci-wedge space. So, by Theorem 3.3. of [8], Vo(z) C T~1(X) for some z 
such that zn = o(n). It follows that T(V0(z)) C T ( r _ 1 ( X ) ) = X. On the 
other hand one can easily show that 

oo 

T(V0(z)) = j x G w : lim A x n _ i = 0 and \zn\ | A 2 x n _ i | < oo j , 
n n = l 

what gives (ii). 

(ii)=i»(iii) Let T(V0(z)) C X for some z G w such that zn — o(n). Then 
VQ(z) C T~1(X). By Theorem 3.6 of [8], V0(z) is a Ci-wedge space. Now 
Theorem 3.8,(i), of [8] implies that T - 1 ( X ) 

is Ci-wedge space. It follows 
from Theorem 3.3 of [8] that c | s | C T~1(X) and the inclusion mapping 
I : c |s | —> T _ 1 ( X ) is compact. Hence T(c |s | ) C X, and the mapping 
To I: c | s | —• X is compact. Since T _ 1 is continuous, the inclusion mapping 
I = T o I o T - 1 : T(c |s|) —> X is also compact. The first part of the claim 
is even more clear. 

(iii)=»(iv). It is known that h C c | s | , hence T(h) C T(c|s | ) . We now 
claim that T(h) = q. First observe that 

oo 
T(h) - | x : lim A x n _ i = 0 and ^ n | A 2 x n _ i | < oo, xo = o | . 

" n = l 

It follows from a result of Buntinas [4] that q C bv C c, thus q C T(h). We 
now prove the reverse inclusion. If x G T(h), then 

oo 

|Ax n | < 5 ^ | A 2 x f c _ i | <oo , 
k=n 

and oo oo 

5 ^ | A x n | < J ^ n | A 2 x „ | < 0 0 , 
n = l n = l 
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which yields that x € bv and hence x € m. So we have T(h) C q and therefore 
T(h) = q. Hence the inclusion mapping I : q —> T(c |s|) is continuous. So, 
by (iii), the inclusion mapping I: q —• X is compact. 

(iv)=>(i). First observe that U := {e - £ £ 2 = 1 e ^ : n = 1 , 2 , . . . } is a 
bounded subset of q and so must be relatively compact in X. Thus, it is 
easy to see that, for each i, Pi{nn) = ^ if i < n, and 1 if i > n. Hence 
we have, for each i, that Pi(nn) —» 0 as n —» oo. Now Theorem 2.3.11 of [9] 
implies that /¿n —• 0 in (X,T), giving (i). 

THEOREM 4.3. If z E as, then za is a strongly C\-conull FK-space. 

P r o o f . If z € <TS, then e € z - 1 . a s = z", which is by Theorem 2.2 a 
cK-space. So we must have that e — £ e ^ —> 0, (n —> oo), whence 
the result. 

The next result deals with Ci-conullity. 

THEOREM 4.4. An FK-space X is C\-conull if and only if q C X and the 
inclusion mapping I: q —• X is weakly compact. 

P r o o f . Assume that X is Ci-conull. Then by Lemma 4.1(ii), T~l(X) is 
weak Ci-wedge. It follows from Theorem 4.2 of [8] that h C T~1(X) and the 
inclusion mapping I: h—> T~ 1 (X) is weakly compact. Hence T(h) = q C X. 
Furthermore J = T o J o T ' ~ 1 : T(h) —> X is an inclusion mapping where 
h T~1(X) X and T"1 : T(h) -> h is continuous. It follows that 
T~x : T(h) —> h is weakly continuous; and since I: h —* T~1(X) is weakly 
compact, the inclusion mapping I = T o I o T~x : T(h) —> X is weakly 
compact, that proves the necessity. 

Conversely assume that q C X and I: q —> X is weakly compact. Hence 
the unit ball B = {x G q : ||x||9 < 1} in q is <r(X, X')-realtively compact. 
Observe that Pi(lin) = ^ if i < n. Hence, for each i, pi(fin) —> 0 as n —» oo. 
The same is also true in cr(X, X') by Theorem 2.3.11 of [9]. This proves the 
theorem. 

Now we have the following 

COROLLARY 4.5. The intersection of all (strongly) Ci-conull FK-spaces is q. 

P r o o f . Let the intersection of all Ci-conull FK-spaces be Y. By Theo-
rems 4.3 and 4 4 we have 

q C Y C D {za : z G CRS} = as" = q, 

hence the result. 
Considering Theorem 4.2 one can get the same result for strongly C\-

conull FK-spaces. 
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We recall in that the intersection of all (strongly) conull FK-spaces is 
bv, (see [2]) ; and observe that q C bv; [4]. 

THEOREM 4.6. (i) An FK-space that contains a (strongly) C\-conull FK-
space must be a (strongly) Ci-conull FK-space. 

(ii) A closed subspace, containing 4>\, of a {strongly)C\-conull FK-space 
is a (strongly) Ci-conull FK-space. 

(iii) A countable intersection of (strongly) Ci-conull FK-spaces is a 
(strongly) Ci-conull FK-space. 

The proof is easily obtained from the elementary properties of FK-spaces 
(see, e.g, [16]). 

We note that q is not a (strongly) Ci-conull space. Hence it follows from 
Corollary 4.5 that there is no smallest (strongly) Ci-conull space. 

We now show that if X is Ci-conull, then X contains a summable se-
quence which is not of bounded variation; and also it contains a summable 
sequence which is not absolutely p-summable. 

THEOREM 4 . 7 . (i) If X is C\-conull, then X f](cs\ bv) is non-empty. 
(ii) If X is Ci-conull, then X fl (cs \ lp), (p > 1), is non-empty. 

P r o o f , (i). Since bv is not Ci-conull, then by Theorem 4.6,(i), bv fl X is 
not Ci-conull either. Theorem 4.6(ii), implies that bv fl X is not closed in 
X, and the desired result follows from Theorem 2 of [1]. 

(ii) The proof uses same technique, so we omit the details. 

Bennett, in [1], has shown that if X is a conull space, then mOX is non-
separable in m. We show that the same conclusion remains true if conullity 
is replaced by Ci-conullity. More precisely we have 

THEOREM 4 . 8 . If X is C\-conull, then mil X is a non-seperable subspace 
of m. 

P r o o f . It is clear that c is not a Ci-conull space, and hence, by Theo-
rem 4.6(i), nor is cDX. Theorem 4.6(ii), implies that cDX is not closed in 
X. Now Theorem 8 of [1] yields the result. 

5. Summability domains 

In this section we give simple conditions for a summability domain 
to be (strongly) Cesáro conull. The conditions will depend on the choice of 
the FK-space E and the matrix A. 

The sequence {atjjJLx is called the z-th row of A and is denoted by r l , 
(z = 1, 2, . . . ) ; similarly, the j-th column of the matrix A, { a i j } ^ is denoted 
b y ^ ' , ( j = 1,2, . . . ) . 
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THEOREM 5.1. Let E be an FK-space and A be a matrix such that <pi C EA-
Then EA is a C\ -conull space if and only if 

A(e~~YleW) °(weakly) i n E -

^ r k=1 ' 

Proof . Necessity: Let EA be Ci-conull space. Then for all / G EA, 

(4) f(Mr) —* 0, (r —• oo). 
Let f(x) = g(Ax), for g G E', so f G E'A by Theorem 4.4.2 of [16]. Since 

/ ( / / ) = g(A/j,r), the result follows from (4). 
Sufficiency: Let / G EA. By Theorem 4.4.2 of [16] / € E'A, if and only if 

f ( x ) = E QfcXfc + 

k 

for all x € EA, where A G WA = {x : xnyn convergent for all y € WA}, 
and g € E . Thus we get the following 

(5) = E a t + g W ) -
k=lj=k+l 

By hypothesis e 6 EA C WA• Then A G wA C e13 — cs which implies 
limr £ ^fc=i Y^TLk+i a i = By hypothesis, the second term on the right 
hand side of (5) tends to zero too, whence the result. 

THEOREM 5.2. Let (E,u) be an FK-space and A be a matrix such that 
<t>L C EA- Then EA is strongly Ci-conull space if and only if 

A ( e - - ¿ E ( F C ) ) I N E -
^ R FC=I ' 

P r o o f . The necessity follows at once from observing that the matrix map-
ping A : EA —* E is continuous ([15], Corollary 11.3). 
Sufficiency: By Theorem 4.3.8 of [16] (10,4,p\Jh) is an AK-space, hence it is 
a aK-spa.ce. Hence, for each n, pn (/xr) —» 0 and hn (/xr) —> 0. By hypothesis 
(uoA)(fir) = u(Afir) —> 0, which proves the theorem. 

6. Applications 
In this section we apply some of our previous results, to summability 

domains. 
The following theorem is an application of Theorem 4.2 to summability 

domains. 
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THEOREM 6.1. Let E be an FK-space and A be a matrix. Then the following 
conditions are equivalent: 

(i) EA is a strongly C\-conull space; 
(ii) q C EA and the mapping A : q —• E is compact; 
(iii) G E, for all j, and the sequence {(Ae - £ J2j=i 1 : 

r > 1} converges to zero in E. 

P r o o f . (i)=»(ii). From Theorem 4.2, (i)<=>(iv), q C EA and the inclusion 
mapping I: h —• EA is compact. Also by Corollary 11.3 of [15] A : EA E 
is continuous. Then A : q —> E, which may be regarded as a composition of 
I: q —> EA with A : EA —> E, must be compact. 

(ii)=»(iii). Observe that 6J G q, for all j, and q C EA, we get = 
j4(iJ) e E, for all j. Since e G q C EA C WA and is a aK-space, fiT —• 0 in 
WA• The fact that A : WA —> W is continous, implies A(FXR) —> 0 in W. On the 
other hand U = {/zr : r = 1 ,2, . . .} is bounded subset in q and A : q —> E 
is compact then A(U) = {A(FJ,R) : r = 1 ,2, . . .} is relatively compact in E. 
Thus, by Theorem 2.3.11 of [9] A(^R) 0 in w implies that A(FJ,R) -> 0 
in E. 

(iii)=Ki). T h i s i s Theorem 5.2. 
The following theorem is an application of Theorem 4.4 to summability 

domains. 
THEOREM 6.2. Let E be an FK-space and A be a matrix. Then the following 
conditions are equivalent: 

(i) EA is a C\-conull space; 
(ii) q C EA and the mapping A: q—> E is weakly compact; 
(iii) & G E, for all j, and the sequence {(Ae — \ Y^k=i J2j=i aij)i^i '• 

r > 1} converges weakly to zero in E. 

P r o o f . (i)=4>(ii). Prom Theorem 4.4, q C EA and the inclusion mapping 
I : q —> EA is weakly compact. Also A : EA —• E is weakly continuous. 
Thus A: q —> E, where A = A o I, is weakly compact. 

(ii)=i>(iii). As in the proof of (ii)=^(iii) of Theorem 6.1, & G E, for all j; 
and A(/j,r) —> 0 in w. Combining this with A(U) = {A(nT) : r = 1 ,2 , . . . } 
is weakly relatively compact in E we get, by Theorem 2.3.11 of [9] that 
A(fxr) -» 0 (weakly) in E. 

(iii)=*(i). This is Theorem 5.1. 

COROLLARY 6.3. M ^ is Ci-conull if and only if the following conditions 
hold: 

(i) supi>n Ep=i £ j = i <*y | < 
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(ii) for any given e > 0 and an increasing sequence {nfc}^=1 positive 
integers, there exists L such that 

j nkr OO 
sup min V > an < e. 

i l<r<L Tlk ^ x - ~ p= l j=p+i 

P r o o f . This follows by putting E = m in Theorem 6.2, the equivalence 
(i)<=>(iii), and using the characterization of weak sequential convergence in 
m given in [5], IV, 6.31, p. 281. 

Our next result follows immediately from Theorems 6.1 and 6.2. 

THEOREM 6.4. Let E be an FK-space such that weakly convergent sequences 
are convergent in the FK-topology and let A be a matrix. Then EA is C\-
conull space if and only if it is strongly C\-conull space. 

In particular Theorem 6.4 holds when E = i, and E = bv. 
COROLLARY 6.5 . The following conditions are equivalent for any matrix A: 

(i) I A is (strongly) Ci-conull, 
(ii) limn^oo Z Z i E L i T,?=k+i a i j \ = 

P r o o f . This is just Theorem 6.1, (i)<»(iii) and Theorem 6.4 with E = t. 
COROLLARY 6.6 . The following conditions are equivalent for any matrix A: 

(i) bvA is (strongly) C\-conull, 

{oo ^ n oo ^ n o o n 

E ; E E K - O i + 1 , ; ) - E E f = 0 -
i=1 fc=lj=k+l fc=lj=fc+l } 

P r o o f . This follows at once from Theorem 6.1, and Theorem 6.4 
with E = bv. 

Acknowledgement. The author express her thanks to Prof. G. Bennett 
of Indiana University (USA) for suggesting the subject. 
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