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CESARO CONULL FK-SPACES

Abstract. The purpose of this paper is to study the (strongly) Ceséro conull FK-
spaces and to give some characterizations.

1. Introduction

The classification of conservative matrices as conull or coregular, due to
Wilansky [14], has been extended by Yurimyae [17] and Snyder [13] to all
FK-spaces. Bennett [2] continued work on conull FK-spaces; and improved
some results of Sember [10]-[12].

Motivating by Bennett’s paper [2] and his talks at the Ankara University
during the summer of 1996 we study the (strongly) Cesdro conull FK-spaces.

In Section 2 we introduce the notation and terminology while in Sec-
tion 3 we study the Cesaro conull FK-spaces and provide some examples to
illustrate the differences between the conull and Cesaro conull FK-spaces.
Section 4 deals with the strongly Cesaro conull FK-spaces; and gives a re-
lationship between the (Cesiro wedge) weak Cesiro wedge and (strongly)
Ceséro conull FK-spaces. In Section 5 we obtain some results for a summa-
bility domain E4 to be (strongly) Ceséro conull. Section 6 presents some
applications to summability domains.

2. Notation and preliminary results

Let w denote the space of all real or complex-valued sequences. It can
be topologized with the seminorms p;(z) = |zi|, (: = 1,2,...), and any
vector subspace of w is called a sequence space. A sequence space X, with a
vector space topology T, is a K-space provided that the inclusion mapping
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I:(X,7) » w, I(z) = z, is continuous. If, in addition, 7 is complete,
metrizable and locally convex then (X, ) is called an FK-space. So an FK-
space is a complete, metrizable locally convex topological vector space of
sequences for which the coordinate functionals are continuous. An FK-space
whose topology is normable is called a BK-space. The basic properties of
such spaces may be found in [15], [16] and {19].

By m,c,co we denote the spaces of all bounded sequences, convergent
sequences and null sequences, respectively. These are FK-spaces under ||z} =
supy, |zx|. By €°,(1 < p < o), and cs we shall denote the space of all
absolutely p-summable sequences, and convergent series, respectively. As
usual £! is replaced by £. The sequence spaces

h={m€w:li§nxj=0 and ij|A:zj|<oo},
j=1

oo
qg= {x € w:suplz;| < oo and Zj |A2:z:j| < oo},
i o
and
1 n k
os = {:1: Ew: 11111115 ZZ:{:] ex1sts}
k=1 j=1
are BK-spaces with the norms

oo
lzll, = D d1Az;| +supz;],
j

j=1
oo
lzll, = Y |A%;] +sup ;]
=1 !
and
1 n k
el =sup| =303 =

k=1j=1
respectively, where Az; = z; — 241, A%z = Az;— Azjyy. Let o := gNey,
and bv = {z € w: 3, |z; — ;11| < 0o}, bug == bvNco (see (2], [4] and [6]).

Troughout the paper e denotes the sequence of ones, (1,1,...,1,...); &,
(7 = 1,2,...), the sequence (0,0,...,0,1,0,...) with the one in the j-th
position. Let ¢ := L.hull {6" :k € N} and ¢; := ¢ U {e€}. The topological
dual of X is denoted by X’.

A sequence x in a locally convex sequence space X is said to have the
property AK (respectively oK) if z(®) — z (respectively ;1; Y ko1 z®) - 1)
in X where (™ = S"7_, 2£6* = (21,...,%4,0,0,...).
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The subspace of a locally convex sequence space X consisting of the
sequences with the property AK (respectively 0 K) is denoted by X ax (re-
spectively X, k). Every AK-space is a o K-space, [4]. For example w, h, £, ¢y
are AK-spaces while g, 0s are o K-spaces (see [4], [6]).

Let z = (2x) € w be such that z; # 0 for every k =1,2,... Then

[o o]
Vo(z) = {z €cp: Z |2k| |Dzk| < oo}
k=1
is an FK-AK space with the norm ||zfly, .y = 252y |2kl [Azkl, [7].

Finally, s = {sn}ff=l always denotes a strictly increasing sequence of
non-negative integers with s; = 0. We shall also be interested in spaces of
the form

Sn+41
cls| = {:1: €w:limz; =0 and sup Z JjlAz | < oo}
’ " j=sn+l

which becomes an FK-space with the norm ||z||¢jsj=sup, ;2% 1 j1Az;], [8].

If X is any sequence space then,

1 n k
o __ Clim — 2 i
X —{xew.h'x;nn;z;zjyj ex1stsforally€X}
=J=

={rew:zy€os foralye X}
where 2.y = (Zp¥n), [6]. For example 0s” = g, [3].

Using the fact that the space 271. X := {z: 2.2z € X} is an FK-space
(see [16]), Theorem 4.3.6) one can get immediately the following:

PROPOSITION 2.1. Let (X, u) be an FK-0K space and z € w, then z=. Xiis
also a oK -space.

Taking X = os in Proposition 2.1. we get

n k
-1 . 1 . -
27 .os={z:z2zx €05} = {m.hm— E E Z;T; ex1sts}=z .
nn
k=1 j=1

So we have
THEOREM 2.2. If z € w, then 27 is a 0 K -space.

Following Yurimyae [17] and Snyder [13] we say that an F K-space (X, 7)
containing ¢; is a conull space if e—e(™ = (0,0,...,0,1,1,...) — 0 (weakly)
in X. It is strongly conull space if e — e(® — 0 in X, [2].

A relationship between (strongly) conull and (wedge) weak wedge FK-
spaces is given by Bennett in [2] . Recall that if (X, 7) is a K-space containing
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¢, and §* — 0 in X then (X,7) is called a wedge space; and if 6¥ — 0
(weakly) in X then (X, 7) is called a weak wedge space [2].

In 8] we have introduced the concept of a Cesdro wedge F K-space and
given some characterizations.

We recall that if £ = 13" gk = (11 .) = 0in a K-

space (X,7) containing ¢ then (X,7) is caﬁecil a Ces?iro Wedge space; and
if <2 0 (weakly) in X then (X, 7) is called a weak Cesiro wedge space.
In [8] some examples are also provided to illustrate the differences between
(weak) wedge and (weak) Cesdro wedge F K-spaces.

3. Cesdro conull FK-spaces

In a seminar held at the Ankara University during the summer of 1996,
Prof. G. Bennett of Indiana University (USA) introduced the concept of
Cesaro conullity for an F K-space X containing ¢;; and suggested the related
topic to work on.

DEFINITION 3.1. Let X be an F K-space containing ¢;. If

n

(1) _e——z(kz ;;...,;,1,...)—»0111)(

then X is called strongly C;-conull FK-space, where e(*) := ELI §7. If the
convergence holds in the weak topology in (1) then X is called C;-conull.
Hence X is C1-conull iff

f(e—hm EZf&J), Vfe X'

kl]l

We shall now present two examples of C1-conull F K-spaces which are
not conull. First we need some further notations.

Let A = (a;;) be an infinite matrix. The matrix A may be considered
as a linear transformation of sequences z = (zx) by the formula y = Az,
where y; = Z;’;l aijzj, (1=1,2,...). Ais called conservative if Az € c for
allz ec.

For an F K-space (E, u) we consider the summability domain E4 := {z €
w: Az € E}. Then E4 is an FK-space under the seminorms p;(z) = |z;|,
(t=12,.. )h(m)—sumeZJ 12izil, (1 = 1,2,...) and (uo A)(z) =

u(Az) (see{16] and [18]).
Now we present the examples promised in this section.

ExXAMPLE 3.2. Define the seqeunce Az by (Az); = z; — z;j_1,(zo = 0) if j
is a square, and O otherwise. Then £4 is C;-conull.
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To see this, consider an f € £,. Since A is triangular, it follows from
([16], p. 66) that f(z) = t(Az) for some t € m, and for all z € £4. Then
u™ — 0 (weakly) in £4 if and only if, for every f € £/, we have

(2) ) =3t (Zaﬂeu ) = 0,(n— o)
j=1
(n)

for every t € m. Now define the matrix B = (b,;) by b,; = E}i=1 Qjkly -
Then (2) holds if and only if B maps m into cg, which, is equivalent to
lim, z;”l |brj| = 0. On the other hand we have Y7 _ la]kufc") = 1 if

n
j =m? < n, and 0 otherwise. Since the set M = {m? : m € N} has density
zero, we get
J

Z ajkll';cn)

k=1

(e o)

2

Jj=1

1o ,
i=1

where x s is the characteristic function of M.
In order to show that £, is not conull we first observe that if

Y :=e—e™ =(0,0,...,0,1,1,...)
then

Zaju/;,’: =1, ifj=m?=n,and 0 otherwise.

Hence lim,, Z;‘;l | Ei=1 ajkw,b,(cn)| # 0, which proves the claim.
The next example is provided by G. Bennett:
ExAMPLE 3.3. Define the sequence Az by (Az), = /nz, — V/nZTp_1

(zo = 0). Then (£3)4 is also C;-conull but not conull. The proof uses the
same technique as in Example 1, so, is therefore omitted.

Unexpectedly we have the following

THEOREM 3.4. Let A be a conservative matriz. Then c4 is conull if and only
if it is C1-conull.

Proof. Only the sufficiency part needs to be proved. Assume c4 is C)-
conull. It follows from the Banach-Steinhaus theorem that f:=lim4 € ¢/,.
A few calculation yields that

(3) hme - = ZthJ’ = x(4) + Z z hmJJ

Ic 1j=1 k 1j=k+1
where x(A4) = limgye — z]"il limg 67. Since A is conservative we have
(limy 67)€ cs, so, the second term on the right hand side in (3) tends to
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zero as n — 00. The left hand side must also tend to zero as n — oo because
of Cy-conullity of c4. This implies that x(A) = 0, i.e, A is conull. Now a
result due to Snyder [13] gives the conclusion.

Our next result follows immediately from Theorem 3.4.

COROLLARY 3.5. Let X be a C;-conull FK -space but not conull space. Then,
for any conservative matriz B, cg # X.

4. Strongly C;-conull FK-spaces
First note that we have the following implications:
C1-conull

/ N
Strongly C;-conull Weak C-wedge

N /
C1-wedge

None of the above implications can be reversed.

We, however, establish a relationship between (strongly) Cesdro conull
and (Cesdro wedge) weak Cesdro wedge F K-spaces. To see this, consider the
one-to-one and onto mapping T : w —w, TZ=(21,Z1+T2, . -, I g1 Thy - - -
and T~z = (21,23 — Z1,...,%n — Tn-1,.--), [2] . Now we have

LEMMA 4.1. Let (X, 7) be an FK-space. Then’

(i) X is strongly Cy-conull if and only if T~1X is C-wedge space;

(ii) X is C1-conull if and only if T~ X is weak C1-wedge space.
Proof. Note that the FK-topology of X can be given by a sequence of
seminorms {d,}, say. Then T~1(X) can be topologized by d,(z) = dn(Tz),
(n=1,2,...), so that it too becomes an F'K-space as well, ([9], p. 253).

We just prove (ii) and leave (i) to the reader. Observe that

T:(T7HX),m") = (X,7)
is a topological isormophism (see [9], p. 2564). If X is C;-conull, then p"™ — 0
(weakly) in X. Since T~ : (X, 7) — (T~}(X), ') is continuous, it is weakly
continuous. Hence T} (u") = T~ (e~ 1Y 7_,e®)) = %r) — 0 (weakly)
in T-1(X), and so T~1(X) is weak C;-wedge space.
To prove the sufficiency it is enough to observe that
T:(THX),7") - (X,7)

is weakly continuous and T(e—(:)—) =e— 137 _ e

THEOREM 4.2. Let (X,7) be an FK-space. Then the following conditions
are equivalent:
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(i) X is strongly C;-conull;
(il) for some z € w such that z, = o(n),

T(Vo(z))={z €w: lmAzn 1=0 nd Y [2a]|A%20-1] < 00,50=0} C X;
n=1

(iil) for some sequence s,
Sn+1

T(c|s])= {:c € w :lim Az,_; = 0 and sup Z JlD% ;| < oo,x0=0} cX
" " i=sn+1

and the inclusion mapping I : T(c|s|) — X is compact;

(iv) ¢ C X and the inclusion mapping I : ¢ — X is compact.

Proof. (i) =(ii). If X is strongly Ci-conull, then by Lemma 4.1,(i), T~!(X)

is C;-wedge space. So, by Theorem 3.3. of [8], Vo(2) C T~1(X) for some 2z

such that z, = o(n). It follows that T'(Vy(2)) C T(T~}(X)) = X. On the

other hand one can easily show that

. [= o]
T(Vo(z)) = {:z: €w:lim Azy_1 = 0 and Zl |2n| [A220_1| < oo},
n=
what gives (ii).

(i)=(iii) Let T(Vo(2)) C X for some z € w such that z, = o(n). Then
Vo(z) € T7Y(X). By Theorem 3.6 of [8], Vo(2) is a C;-wedge space. Now
Theorem 3.8,(i), of [8] implies that T-1(X) is C;-wedge space. It follows
from Theorem 3.3 of [8] that c|s] € T7!(X) and the inclusion mapping
I: c|s| » T7Y(X) is compact. Hence T'(c|s|) C X, and the mapping
Tol:c|s| — X is compact. Since T'~! is continuous, the inclusion mapping
I=ToIoT™!:T(c|s|) = X is also compact. The first part of the claim
is even more clear.

(ili)=>(iv). It is known that h C c|s|, hence T'(h) C T(c|s|). We now
claim that T'(h) = q. First observe that

o0
T(h) = {z : Ii'I;n Az,_1 =0 and Zn |A2xn_1| < 00, Tg = 0}.
n=1

It follows from a result of Buntinas [4] that ¢ C bv C ¢, thus ¢ C T'(h). We
now prove the reverse inclusion. If z € T'(h), then

[o <]
|Az,| < Z |A2$k—1| < 00,

k=n

o0 o0
Z |Az,| < Zn|A2mn| < 00,
n=1 n=1

and
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which yields that z € bv and hence z € m. So we have T'(h) C ¢ and therefore
T'(h) = q. Hence the inclusion mapping I : ¢ — T'(c|s|)is continuous. So,
by (iii), the inclusion mapping I : ¢ — X is compact.

(iv)=>(i). First observe that U := {e - 1Y} _,e®) :n=1,2,.. }isa
bounded subset of ¢ and so must be relatively compact in X. Thus, it is
easy to see that, for each ¢, p;(u") = ﬁ if 4 <n,and 1ifi > n. Hence
we have, for each i, that p;(u™) — 0 as n — co. Now Theorem 2.3.11 of [9]
implies that u™ — 0 in (X, 1), giving (i).

THEOREM 4.3. If z € os, then 27 is a strongly C}-conull FK-space.

Proof. If z € os, then e € z71.0s = 2°, which is by Theorem 2.2 a
oK-space. So we must have that e — 237 _, e} — 0,(n — 00), whence
the result.

The next result deals with C;-conullity.

THEOREM 4.4. An FK-space X is Cy-conull if and only if ¢ C X and the
inclusion mapping I : ¢ — X is weakly compact.

Proof. Assume that X is Cj-conull. Then by Lemma 4.1(ii), T-}(X) is
weak C)-wedge. It follows from Theorem 4.2 of [8] that h C T~1(X) and the
inclusion mapping I : h — T~1(X)is weakly compact. Hence T(h) = ¢ C X.
Furthermore I = T oI o T~! : T(h) — X is an inclusion mapping where
hS T-1X) 5 X and T-! : T(h) — h is continuous. It follows that
T-1:T(h) — h is weakly continuous; and since I : b — T~1(X) is weakly
compact, the inclusion mapping I = ToIoT™! : T(h) — X is weakly
compact, that proves the necessity.

Conversely assume that ¢ C X and I : ¢ — X is weakly compact. Hence
the unit ball B = {z € ¢ : ||lzf|, < 1} in g is o(X, X')-realtively compact.
Observe that p;(u™) = £ if i < n. Hence, for each i, p;(u™) — 0 as n — oco.
The same is also true in ¢(X, X') by Theorem 2.3.11 of [9]. This proves the
theorem.

Now we have the following
COROLLARY 4.5. The intersection of all (strongly) Cy-conull FK-spaces is q.

Proof. Let the intersection of all Cj-conull FK-spaces be Y. By Theo-
rems 4.3 and 4.4 we have
gCcYcn{z?:z€0s} =05 =g,

hence the result.
Considering Theorem 4.2 one can get the same result for strongly C;-
conull FK-spaces.
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We recall in that the intersection of all (strongly) conull FK-spaces is
bv, (see [2]) ; and observe that g C bv; [4].

THEOREM 4.6. (i) An FK-space that contains a (strongly) Ci-conull FK-
space must be a (strongly) Ci-conull FK-space.

(ii) A closed subspace, containing @1, of a (strongly)Ci-conull FK-space
is a (strongly) C;-conull FK-space.

(i) A countable intersection of (strongly) Ci-conull FK-spaces is a
(strongly) Ci-conull FK-space.

The proof is easily obtained from the elementary properties of FK-spaces
(see, e.g, [16]).

We note that q is not a (strongly) Cy-conull space. Hence it follows from
Corollary 4.5 that there is no smallest (strongly) C;-conull space.

We now show that if X is Ci-conull, then X contains a summable se-
quence which is not of bounded variation; and also it contains a summable
sequence which is not absolutely p-summable.

THEOREM 4.7. (i) If X is Cy-conull, then X N (cs\ bv) is non-empty.
(ii) If X is Cy-conull, then X N (cs\ £7), (p > 1), is non-empty.

Proof. (i). Since bv is not Cy-conull, then by Theorem 4.6,(i), bv N X is
not Cj-conull either. Theorem 4.6(ii), implies that bv N X is not closed in
X, and the desired result follows from Theorem 2 of [1].

(ii) The proof uses same technique, so we omit the details.

Bennett, in {1], has shown that if X is a conull space, then mN X is non-
separable in m. We show that the same conclusion remains true if conullity
is replaced by C;-conullity. More precisely we have

THEOREM 4.8. If X is Cy-conull, then m N X is a non-seperable subspace
of m.

Proof. It is clear that ¢ is not a Ci-conull space, and hence, by Theo-
rem 4.6(1), nor is ¢N X. Theorem 4.6(ii), implies that ¢N X is not closed in
X. Now Theorem 8 of [1] yields the result.

5. Summability domains

In this section we give simple conditions for a summability domain E4
to be (strongly) Ceséro conull. The conditions will depend on the choice of
the FK-space F and the matrix A.

The sequence {a;; }‘;‘;1 is called the i-th row of A and is denoted by 77,
(¢=1,2,...); similarly, the j-th column of the matrix 4, {a;;};2, is denoted
by k7, (=1,2,...).
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THEOREM 5.1. Let E be an F K -space and A be a matriz such that ¢; C E4.
Then E4 is a Cy-conull space if and only if

A(e _1 Z e(k)> — O(weakly) in E.

T
k=1

Proof. Necessity: Let E4 be C;-conull space. Then for all f € E:A,
(4) f") = 0,(r — ).
Let f(z) = g(Az),forge E ,so f € E:,; by Theorem 4.4.2 of [16]. Since
f(u") = g(Ap"), the result follows from (4).
Sufficiency: Let f € E:4. By Theorem 4.4.2 of [16] f € E;x, if and only if

f(@) = 3 awai + g(As),
k

for all x € E4, where o € wﬁ = {z:), Tayn convergent for all y € wa},
and g € E'. Thus we get the following

6 FW) =23 Y o+ g(An),

k=1 j=k+1

By hypothesis e € E4 C wa. Then a € wﬁ C e? = cs which implies

lim, 2 30, 552 1105 = 0. By hypothesis, the second term on the right
hand side of (55 tends to zero too, whence the result.

THEOREM 5.2. Let (E,u) be an FK-space and A be a matriz such that
¢1 C E4. Then E4 is strongly Cy-conull space if and only if

1 T
__E: (k) :
A(e Tk:le ) —0 inE.

Proof. The necessity follows at once from observing that the matrix map-
ping A: E4 — E is continuous ([15], Corollary 11.3).

Sufficiency: By Theorem 4.3.8 of [16] (w4, pUh) is an AK-space, hence it is
a o K-space. Hence, for each n, p,(u") — 0 and h,(u") — 0. By hypothesis
(uoA)(u") = u(Ap") — 0, which proves the theorem.

6. Applications

In this section we apply some of our previous results, to summability
domains.

The following theorem is an application of Theorem 4.2 to summability
domains.
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THEOREM 6.1. Let E be an FK -space and A be a matriz. Then the following
conditions are equivalent:

(i) E4 is a strongly Cy-conull space;

(ii) ¢ C E4 and the mapping A : ¢ — E is compact;

(ili) k7 € E, for all j, and the sequence {(Ae — L 37, E?___l @i )32,
r > 1} converges to zero in E.

Proof. (i)=(ii). From Theorem 4.2, (i)<(iv), ¢ C E4 and the inclusion
mapping I : h — E4 is compact. Also by Corollary 11.3of [15] A: E4 — E
is continuous. Then A : ¢ — E, which may be regarded as a composition of
I:q— E4 with A: E4 — E, must be compact.

(ii)=>(iii). Observe that 6’ € g, for all j, and ¢ C E4, we get k¥ =
A(87) € E, for all j. Since e € q C E4 C w4 and is a 0 K-space, u™ — 0 in
w4. The fact that A : wq — w is continous, implies A(u") — 0 in w. On the
other hand U = {u" : r = 1,2,...} is bounded subset in qand A:q —» FE
is compact then A(U) = {A(y") : v =1,2,...} is relatively compact in E.
Thus, by Theorem 2.3.11 of [9] A(x") — 0 in w implies that A(y") — 0
in E.

(iii)=(i). This is Theorem 5.2.

The following theorem is an application of Theorem 4.4 to summability
domains.

THEOREM 6.2. Let E be an FK -space and A be a matriz. Then the following
conditions are equivalent:

(i) Ea is a Cy-conull space;

(ii) ¢ C E4 and the mapping A : ¢ — E is weakly compact;

(ili) k' € E, for all j, and the sequence {(Ae — 13" 7_, ELI ai;)2; ¢
r > 1} converges weakly to zero in E.

Proof. (i)=(ii). From Theorem 4.4, ¢ C E4 and the inclusion mapping
I:q — E4is weakly compact. Also A : E4 — E is weakly continuous.
Thus A:q — F, where A = Ao I, is weakly compact.

(ii)=>(iii). As in the proof of (ii)=>(iii) of Theorem 6.1, k’ € E, for all j;
and A(y") — 0 in w. Combining this with A(U) = {A(x"): r=1,2,...}
is weakly relatively compact in E we get, by Theorem 2.3.11 of [9] that
A(p") — 0 (weakly) in E.

(ili)=(i). This is Theorem 5.1.

COROLLARY 6.3. my4 is Cq-conull if and only if the following conditions
hold:

(i) sup; » |71{ E;=1 Z?:l aijl < 00,
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(ii) for any given € > 0 and an increasing sequence {ny},., positive
inlegers, there exists L such that

Proof. This follows by putting E = m in Theorem 6.2, the equivalence
(i)<(iii), and using the characterization of weak sequential convergence in
m given in [5], IV, 6.31, p. 281.

Our next result follows immediately from Theorems 6.1 and 6.2.

THEOREM 6.4. Let E be an F K -space such that weakly convergent sequences
are convergent in the F K -topology and let A be a matriz. Then E4 is C;-
conull space if and only if it is strongly C}-conull space.

In particular Theorem 6.4 holds when E = £, and E = bv.
COROLLARY 6.5. The following conditions are equivalent for any matriz A:
(1) £4 s (strongly) C)-conull,
(if) limp oo 350, l;li Dk=1 E;ikﬂ a’ijl =0.
Proof. This is just Theorem 6.1, (i)«<(iii) and Theorem 6.4 with E = £.
COROLLARY 6.6. The following conditions are equivalent for any matriz A:

(i) bua s (strongly) C-conull,
b-o

oo 1 n [e o]
@ tim { ]330 3 @-0iy)
i=1 " k=1j=k+1
Proof. This follows at once from Theorem 6.1, (i)<(iii) and Theorem 6.4
with E = bv.
Acknowledgement. The author express her thanks to Prof. G. Bennett
of Indiana University (USA) for suggesting the subject.

1 n o0
135

k=1 j=k+1

+lim
1
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