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Suyalatu 

ON SOME GENERALIZATION OF LOCAL UNIFORM 
SMOOTHNESS A N D DUAL CONCEPTS 

Abstract. In this paper, the conception of local k-uniform smoothness (LkUS) is in-
troduced on the base of the concept of fc-uniform smoothness that introduced by Suyalatu 
and Wu Congxin. It is proved that the local ¿-uniform smoothness and Sullivan's lo-
cal k-uniform rotundity (LkUR) are the dual notions. X is a LkUS space, then X is a 
L(k + 1 )US space. However, the converse need not be true. In addition, we also obtain 
two important results about LkUS space. 

Throughout this paper, X will denote a real Banach space and X* will 
denote its conjugate space. Set S(X) = {x : x € X, ||a;|| = 1}, U(X) = 
{ x : x e X , | |x|| < 1} , Sx = {x* : x* <= S(X*), x*(x) = 1} , X 6 S{X). Wu 
Congxin and Li Yongjin defined the notion of local uniform smoothness in 
[1], which is the dual notion of local uniform convexity introduced by Lo-
vaglia in [2]. In this paper, we introduce the notion of locally A;-uniformly 
smooth space (LkUS), which is the extension of notion of locally uniformly 
smooth space and dual of locally /c-uniformly rotund space that introduced 
by Sullivan in [3]. 

In [3], Sullivan defined the A;-uniformly rotund space.By "fixing" one 
variable he defined the notion of a locally /c-uniformly rotund space, k-
uniformly rotund space is dual notion of /c-uniformly smooth space that 
introduced by us in [4]. Corresponding to the A;-uniformly smooth space, 
by "fixing" one variable we can define the notion of a locally /c-uniformly 
smooth space. 

DEFINITION 1 [3]. A Banach space X is said to be a LkUR space if for any 
e > 0, x € S(X), there is a <5 = S(x,e) > 0 such that for xi,...,xk € S(X), 
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if ||x + X! + ... + xk\\ > (k + 1) - 6, then 

A(x,xi,...,xk) 
1 1 . . . 1 

xj(x) x j (x i ) . . . x l(xk) 
= sup < :xl...,xt€S(X') < e. 

**(*) Xk(xl) ••• xk(xk) 
DEFINITION 2 [4]. A Banach space X is said to be a k-uniformly smooth 
space if for each e > 0, there is a ¿(e) > 0 such that for x j , . . . , x£+ 1 G S(X*), 
if + . . . + x*k+1\\ > (k + I) — 5, then 

B(x\,... , x£+ 1) 
1 1 . . . 1 

x j ( s i ) x$(®i) . . . x j + 1 ( x i ) 
= sup < :x1,...,xk£ S{X) < e. 

x\(xk) x%(xk) ... X*k+1(xk) 
By "fixing" one variable we define the notion of locally /c-uniformly 

smooth space (LkUS). i.e. The definition of LkJJS is as follows: 

DEFINITION 3. A Banach space X is said to be a LkUS space if for any e > 0, 
x e S(X), x* G Sx, there is a <5 = S(x, x*, e) > 0 such that for x j , . . . , x*k G 
S(X*), if | | X * + ® ; + . . . + XFC|| >(k + l)-6, then j3(x* ,x{,... ,x*k) < e. 

THEOREM 1 (Dual Theorem): 

(a) If X* is LkUS space, then X is LkUR space, 
(b) If X* is LkUR space, then X is LkUS space. 

P r o o f , (a) If for any e > 0, x G S(X), there is a S = S(x, e) > 0 such that 
for xi,x2,. •. ,xk G S(X), if ||x + xi + . . . + Zfc|| > (k + 1) - S, then, by 
Hahn-Banach Theorem, we can choose x* G S(X*) such that x*(x) = 1, so 
x(x*) = 1 and x G Sx',xi,x2, • • • ,xk G S(X**). Choose 5'(x*,x,e) = 8 > 0, 
then ||x + xi + . . . + xk || > (k +1) — 5'. By the assumption that X* is LkUS, 
we have B(x, Xi , . . . ,xk) < e, hence A(x,xi,... ,xk) = B(x,xi,... ,xk) < e. 
This shows that X is LkUR space. 

(b) If for any e > 0, x G S(X), x* G Sx, there is a 6 = S(x, x*,e) > 0 such 
that for x\,...,xk G S{X*), if | |x*+x! + .. .+x£| | > (k + l)-6, then we can 
choose <S'(x*,e) = <5 > 0, such that | |x*+x; + .. . + > (fc + 1) — <5'. By the 
assumption that X* is LkUR, we have A(x*,x{,..., xk) < e. Since, for any 
x i , . . . ,Xfc G S(X), we have x i , . . . ,xk G S(X**), hence B(x*,x{,... ,x£) < 
A{x*,x\,... ,x£) < e. This shows that X is LkUS space. 

Theorem 1 shows that LkUR and LkUS are dual notions. 
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COROLLARY 1 [1], 
(a) If X* is L1US space, then X is L1UR space, 
(b) If X* is L1UR space, then X is L1US space. 

In fact, the L1UR and LIUS space are, clearly, nothing else but the usual 
LUR[2] and LUS[l] space, resp. Hence, the LkUS space is a generalization 
of the locally smooth space. 

DEFINITION 4 [5]. A Banach space X is said to be a fc-strictly convex if and 
only if for any (k + 1) elements x l y x2 , . . . of S(X) with || Yli~i x»ll = 

ll̂ i'll implies that x i ,x2 , . . . , Xk+i are linearly dependent. 

DEFINITION 5 [4]. A Banach space X is said to be a k-smooth space if and 
only if for any x € S(X), dim5x < k. 

DEFINITION 6 [4]. A Banach space X is said to be a /c-strongly smooth 
space if X is a fc-smooth space. And for each x G S(X), if x* £ S(Xm) 
x*(x) —> 1, then (x*) is relatively compact. 

LEMMA 1 [6]. If X* is k-smooth space, then X is k-strictly convex space; if 
X* is k-strictly convex space, then X is k-smooth space. 

LEMMA 2. We have 
1 1 . 1 

• • al,k+2 
«2,2 «2,3 • • • 0,2,k+2 

Ok,2 Ok,3 . . . Ok,k+2 
1 1 1 1 1 

k+2 Ol.l Ol,2 • • G l j - l Oi,j+l . • Ol.fc+2 

= 
02,1 02,2 • • a2,j~ i 02j+i • • 02,k+2 

j=2 

Ofe, 1 Ofc,2 ak,j-1 ak,j+1 Ofc,fc+2 
P r o o f . Consider the determinant (this determinant is equal to zero) 

1 1 . . . 1 
1 1 . . . 1 

^1,1 o 1,2 • • • ai,fc+2 
^2,1 0.2,2 • • • 02,fc+2 

Ofc, 1 Ok, 2 • • • Ofc,fc+2 
Expanding in minors along the first row, we obtain the desired result. 
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In [4], we have proved that fc-uniformly smooth space implies /c-strongly 
smooth space (Theorem 4 in [4]). Using the similar method which is used in 
proof of Theorem 4 in [4], we can prove the following lemma. 

LEMMA 3. If X is a locally k-uniformly smooth space, then X is a k-strongly 
smooth space. 

LEMMA 4 [7]. Let (xn) be a bounded sequence in X and e be a positive real 
number. If (xn) has no finite e-net, then for any positive integers no, k and 
any x € X, there exist n\,... ,rik > no, such that d(xni,span{x}) > | and 
d(zn i + 1 , span{x ,x n i , . . . ,x n i }) > § fori = 1 , 2 , . . . , k - 1. 

THEOREM 2. If X is a LkUS space, then X is a L(k + 1 )US space. 

P r o o f . If X is a LkUS space, then for any e > 0, x € S(X),x* € Sx, there is 
a J = <5(x,x*,e) > 0 such that for x j , . . . , xk € S(X*), if | |x*+x!+.. .+x£|| > 
(A: + 1) - S, then 

Suppose xl,...,x*k+1 G S(X*) and ||x* + x j + .. . + x*k+1\\ > (k + 2)-6, 
then for eachj we have | |x*+xj + .. + .. .+x|J+1 | | > (fc+l)— S. 

Using (*), we can deduce 

(**) B(x*,x{,..., . . . , x£+1) < J) ' 

By Lemma 2, we have 

(***) B{x\,x*2,...,x*k+1) < 

Combining (**) and (***), we have 

B ( x * . . . ,x*k+x) < e. 
This completes the proof that X is a L(k + 1 )US space. 

The converse to Theorem 2 is not true. 

EXAMPLE. There exists an infinite-dimensional LkUS space X which is not 
L(k — 1)US space. 

Let fe > 2 be an integer, and let h < ¿2 < . . . < ik- For each x = 
(a 1 ,o 2 , . . . ) G ¿2, define 

Ml ifc = (EM)2+ E "I 
The 

space Xilt,.,tik — (¿2, || • ||ii,...,»fc) is fc-uniformly rotund space' and 
reflexive. Hence, X " Xk is /c-uniformly rotund space. Obviously, X** <ik 
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is LkUR space, by Theorem 1, we know that X^ ik is LkUS space. But, 
Xt* ifc is not L(k — 1 )US space. In fact, take eij — (0, . . . , 0,1,0, . . . ) , j = 

i) 

1,2 then ||eij|ilv..iifc = 1 ,j = 1,2, . . . , k and {e^ is linearly 

independent. But || ^ ¿ l l n , ~ this shows that Xi lt,,, j lk is not 
(k-l)-strictly convex space. By Lemma 1, we know that X*t Xk is not 
(k-l)-smooth space. By Definition 6 and Lemma 3, we know that X*x 4 

is not L(k — 1 )US space. 

DEFINITION 7. A Banach space X is said to be LkS (resp. CLkS) if and 
only if for any x € S(X), if for any sequence (x* ) in U(X*) and x* G SX) 

lim ||x* + x*ni + . . . + x*nh\\ = k + 1, then \\x*n - x*\\ 0 (resp. (x*n) 

ni,...,nk-> oo 

is relatively compact). LkS (resp. CLkS) and LkR [7] (resp. CLkR) [9] are 
dual notions. 

THEOREM 3. If X is LkUS space, then X is CLkS space. 

P r o o f . Let x € S(X), x* £ Sx, (x* ) be a sequence in U(X*) and 
suppose 

lim + . . . + < J | = fc + l . 
ni,...,nk —> oo 

We prove that (x^) is relatively compact. 

If (x* ) is not relatively compact in X*, then (x * ) has no finite eo-
net, for some eo > 0. By Lemma 4, for any positive integer no and any 
x* £ X*, there exist n i , . . . ,nfc > no, such that ¿ (x *^ span {a;*}) > ^ and 
d « i + 1 , s p a n { a ; ' , x ; i , . . . , x ; . } ) > f , for i = 1 ,2, . . . , k - 1. 

Therefore, there exist r4 m \ . . . , n ^ such that —> oo and 

such that for any . . . , n j ^ we have d (x* ( m ) , span {x* } ) > and 

d(x* (m ) , span{x*, X* ( m ) , . . . , x * ( m ) } ) > f , for i = 1 ,2, . . . , k - 1. By Hahn-
n«+i n i nk 

Banach Theorem, we choose x*Tmi ,x*Tm) , . . . ,x**lrn~. G S(X**) such that 
ni n2 nk 

x*Jm)(x*(m)) > f,x*Jm)(y*) = 0 for all y* € s p a n { x * } and x**lm){x* ln)) > 
n j i l i ni 

f > z *U> ( y * ) = 0 f o r a11 V* e span {x * , x * ( m ) , . . . , x * ( m ) } for i = 2 
n> ni ni~i 

Then 

A (x%x;<m ) , . . . ,x*<m ) ) > ( y ) > 0 . 

From the definition of A(x*,x*(m),... ,x* ( m ) ) , we know that there are 

G i , . . . , Gk e S (X * * ) such that 
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1 1 . . . 1 
Gi (*•) Gi(®; (m)) . . . G i ( * \ m ) ) 

> 

Gfe(x*) Gk(x\m)) ... Gfc(®«(m)) n i nfc 
By Goldstine-Weston Theorem, there are ( i") , (xf), • • •, C 5(X) such 
that xf ^ G i , . . . , x% G&. So we have 

1 1 . . . 1 
x*(xi) x*,m)(xi) . . . s* ( m )(xi) 

sup < : Xi,X2, • • • ,Xk € 

x*(xjk) ®*(m,(afc) . . . i* (m)(x fc) n i nk 
1 1 . . . 1 

xf(x*) xf(x*(m)) ... xi(x*(m)) 
> lim a 

Xk(X*) Xk(X*<.™)) ••• Xk(X*l.n>)) 

1 1 . . . 1 
Gi(x*) G1(x\m)) ... G1(x\m}) n l nfc 

Gk(z') Gk(x\m)) . . . G f c(x' ( m )) 

Hence, 
(*) 

On the other hand 

n l nk ¿> 

k + l,m oo. 

By the assumption that X is LkUS space, we have B(x*,x*im),... ,x*(m)) n, nk 
—> 0, (m —> oo). This contridicts inequality (•), so (x*) is relatively compact. 

THEOREM 4. / / X is LkUS space and X* is strictly convex space, then X 
is LkS space. 
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P r o o f . Let x G S(X),x* € Sx, (x*) be a sequence in U(X*) and suppose 

lim 
ni ,...,nk —• oo 

Since X is LkUS space, it follows from Theorem 3 that (x*) is relatively 
compact in X*.Consequently there exist y* € X* and a subsequence (x*^) 
of (x*) such that x* —• y*, obviously y* £ S(X*). 

On the other hand, we have 

k+ 1 = lim 
i i nk —• oo 

|x* + < + . . . + < J 

lim x* + ky* + YVx* - y*) 
m,...,n f c-» oo i—' 3 

J=1 
k 

< ||x* + ky*\\ + lim ^ H x ^ - y ' l l 
j = i 

< ||x* + <k + 1. 

So ||x* + fcy*|| = A; + 1, hence ||x* + y*\\ = 2. By the assumption that X* is 
strictly convex space, we have x* = y*. Hence x*^ —> x*. This shows that 
X is LkS space. 
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