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ON CERTAIN MODIFIED SZASZ-MIRAKYAN OPERATORS
FOR FUNCTIONS OF TWO VARIABLES

Abstract. We introduce certain modified Szdsz-Mirakyan operators in polynomial
weighted spaces of functions of two variables and we study approximation properties of
these operators. The similar theorems for function of one variable are given in [2].

1. Preliminaries

1.1. Let as in [1], for p € Ny := {0, 1,2,...},

(1) wolz):=1, wp(z):=(1+2P)"t if p>1, z€Ry:=[0,+00).
Next, for fixed p, g € Ny, we define the weighted function

() wpe(ew) = wp(@)wey),  (2,y) € B 1= Ro x Ro,

and the weighted space Cjp, g of all real-valued functions f continuous on R3
for which wpqf is uniformly continuous and bounded on R3 and the norm
is defined by the formula

3) Iflpg=If ()l == sup wpe(z,y)|f(z,y)l.
(z,y)ER]
The modulus of continuity of f € Cp , we define as usual

(4) w(f, Cp,q;t, s) = sup lAn,sf( ')“p,q ) t,s >0,
0<h<t,0<d<s

where Ay 5f(z,y) := f(z + h,y +3) — f(z,y). Moreover, for fixed p,q € Ny
and m € N := {1,2,...}, let C7", denote the set of all functions f € Cp

with the partial derivatives fif)y,‘_ i» k=1,...,m, belonging also to Cp 4.
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1.2. For f € Cp 4, p,q € Ny, we define operators Sp, »(f; @m, bm, Cn, dn; T, y)
= Sm,n(f;z,y)

() Smnl(f;z,9) =3 05(amz) or(car) f (bi di) . (@) € R,
j=0 k=0 m n
’ m,n € N,

where
i

(6) pi(t) := e_t% for t € Ry, 1€ Ny,

and (an){°, (bn)$°, (cn)$°, (d,)§° are given increasing and unbounded se-
quences of positive numbers and such that

an 1 Cn 1
7 — =1 — — =1 — .
) b, +°(b,,)’ a, +°(dn)
Write
(8) M := sup a—", M* := sup Cn
neN bn neN dn

Ifap, = by = ¢, = d, = n for all n € N, then S, , defined by (5)
is classical Szdsz-Mirakyan operator examined for continuous and bounded
functions in {3].

In the paper [2] there were considered modified Szdsz-Mirakyan operators
Sn(f;an,bn; ) = Sn(f; ) for functions of one variable

®  Si9=Y e (5), sk nen,
k=0 "

with given sequences (a,) and (b,) as above. The classical Szdsz-Mirakyan
operators, i.e. S, with a, = b, = n were examined in [1].

From (5)-(9) we deduce that Sy, »(f) are well-defined in every space
Cp,q» P,q € Ny. Moreover we have

(10) Smn(l; @my bm,cnydn;z,y) =1 for (z,y) € R2, m,n€ N,
and if f € Cpq and f(z,y) = f1(z)f2(y) for all (z,y) € R}, then
(11) Sm,n(l;amybm’cnadn;xay) = Sm(fl;amybm;x)sn(f2;cnadn;y)

for all (z,y) € R2 and m,n € N.

In Section 2 we give some auxiliary results. In Section 3 we prove main
results.

In this paper by M (e, ) we shall denote suitable positive constants
depending only on indicated parameters ¢, (.
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2. Auxiliary results
From (9) and (6) we get forx € Rpand n € N
(12) Sn(1;an,bn;z) =1,
Sn(t = z;an,bp;z) = <%—71 - 1) z,

(13)

2
2, . _ an 2 anT
Sntlt = o) 0, bni) = (a'l) T

In the paper [2] the following two lemmas for S, defined by (9) were proved.

LEMMA 1. For every fized p € Ny there erist positive constants M; =
M;(p,b1, M), i = 1,2, such that for allz € Ry andn € N

wp(T) Sn (ﬁw) < My,

wrs (Se) <l (20) 4]

LEMMA 2. For every z € Ry

(14)

' ko [0 if k=1,
Jlim b, 5,((t - 2)%2) = {:1: if k=2,

. 2 Nk [z if k=3,
Jm b, Sn((t —2)5 ) = {332 if k= 4.
Applying Lemma 1 we shall prove two lemmas on S, , defined by (5).

LEMMA 3. For every p,q € Ny there exists a positive constant My =
M4(p)Qab1)d1) M, M*) such that

1
(16) Sm,n (—————) <My for m,neN.
wP»Q(t’ Z) P9
Moreover for every f € Cp 4 we have
(17) 1Smn (D, , < Malifll,, for mneN.

The formulas (5)—(8) and the inegquality (17) show that S; ., m,n € N,
defined by (5) are linear positive operators from the space Cp g into Cpq.

Proof. The inequality (16) follows immediately from (2), (11) and (14).
From (5) and (3) we get for f € Cpq

1
1Sm,n(Fllpg SN fllpq {|Smim (m)

which by (16) implies (17).

, m,n €N,
P4
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LEMMA 4. Let f € Cpq, p,q € No. Then there exists a positive constant
Ms = Ms(p,q,b1,dy, M, M*) such that for allm,ne N

(18) (Smn (el < MslIfll, 4@

(19) [Smn (Ol , < Ms Il f llp,q

Proof. We shall prove only (18) because the proof of (19) is identical. From
(5) and (6) we get

(Sm,n{f))s(z,y)
o st S (32.5)

7=0 k=0
for all (z,y) € RZ and m,n € N. Thus

(20)  [1(Smn(FNzll,

1
< am{”Sm,n(f)“p,q + I fllp.q || Sran (w,,,q(t ¥ 1/bm, 2) P )

P:q}

By (1), (2) and (5) we have
(wp,g(t + 1/bm, 2))F < 2P(1 + b1 P) (wpq(t, )7,
which implies the inequality
|Sm,n{(wp,q(t + 1/bm, Z))-lup,q S 2°(1 + b P)|Smn(1/wp,g(t, 2)llp,e-
Now, using (16) and (17), we obtain (18) from (20).

3. Theorems

3.1. First we shall give two theorems on the degree of approximation of
functions by Sy, defined by (5).

THEOREM 1. Suppose that f € 01 with fized p,q € Ny. Then there exists a
positive constant Mg = Me(p,q,bl,dl,M M*) such that for all (z,y) € R2
andm,n €N

(21)  wpg(2, Y)|Smnl(f; z,9) — f(z,9)|

< 36 {2l [ + Wil 2}

Proof. Let (z,y) € RZ be a fixed point. Then for f € C;_q we have the
formula

f(t,2) = f(=z,y) = | fulw, 2) du+ | fy(z,v) dv, (t,2) € R},

z Yy
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Thus, by (10), we obtain
(22) Sm,‘n(f(tv Z); Z, y) - f(z) y)

t z
= Sm,n (S f:;(u» Z)du;m,y) + Sm,n <S f:,(x,v)dv;z,y) .

v
But, by (1)-(3), we have

t
| fulu,2) du

gw (u,2)

, 1
< "fz“P,q ( P.q(t ) wp’q(m’ Z)) ’t - :EI,
which implies by, (1), (2), (5) and (9)-(12), that

)
< ||fa’:"p.q Wp,q(T,Y)

e (=) + 5o (m70))

< 14l wa (%) ( i )

< fzllpia

wP:Q(x! y)

t
Sy (§ fulu, 2)du; 2,y

t
< wP’Q(zr y)Sm,n ( S ft"(U, Z) du

.{wp(m)Sm (It I,am,bm;x) + Sm (|t—z|;am,bm:z:)}.
wp(t)
Applying the Holder inequality and (12)-(15), we get the inequalities

S (It = 20; Gy bm; ) < {Sm((E = 2)% @y bm; ©)Sm(1; Gy b3 2) }

< M7(M)\/;i:,

t—
wp(x)sm (l—zl', Qm, bm;z)
Wp(t)

2 3 3
< {wp(x)Sm ((t z) ;am,bm;z)} {wp(a:)Sm (—I—-;am,bm;:v)}
Wp(t) Wp(t)

T
SM8(p)b1,M) 'b—
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for ¢ € Ry and m € N. Consequently

t
wP,Q(z7y) Sm,'n (S f‘l’l,(u’ z)du;:z:,y) S MQ(p’ bl,M)V bia m € N.
T m
Analogously we obtain
va‘I(xvy) Sm,n (S le;(l',v)dv;x,y) S MlO(qa dlaM*)‘w ziy"a ne€ N.
v (13

Combining the last two inequalities, we derive from (22)

wP»q(m7 ) ISm,n(f§-'L',y) — f(z,y)| £ Mn {”fal.-“p,q \/g'i' ”f;“p,q \/g} !

for all m,n € N, My; = Mii(p,q,b1,d1, M, M*) = const. > 0. Thus the
proof of (21) is completed.

THEOREM 2. Suppose that f € Cp q, p,q € Ng. Then there exists a positive
constant My = My2(p,q,b1,d1, M, M*) such that

(23) wpq(z,9) |1Smn(fi2,9) — flz,y)| < Migw (f, Cp.q5 \/5_{,,:’ \/ ay: ) ,

for all (z,y) € R% and m,n € N.
Proof. We shall apply the Stieklov function f, s for f € Cp 4

h é
1
(29 fagley) =gz \duf flz +uy+o)dv, (z,9) € BG b6 >0.
0 0

From (24) it follows that

h )
s (@9) = £(2,) = 1 [ du] Auf(z,9) v,
0 0

and therefore

é
(Fna)a(@:9) = 2= § (Do f(2,) = Do (z,9)) dv,
0
h
(Fnsly(@,9) = 2 § (Busf(@9) = Buof(@,9)) du.
0
Thus we have
(2) s = Fllpg < w(f, Crgi ),
(26) 1(Fn)ellng < 250 (F, Cp .,

(27) [1(Fr.8)yllpa < 267 w(f, Cp,qi by ),
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for all h,é > 0, which show that f, 5 € C;,q if f € Cp,q and h,d > 0. Now,
for Sp, » defined by (5), we can write

Wp,g(€,Y) [Smn (f32,9) — f(=,9)]
< Wp,g(2,Y) {|Sm.n (f(t,2) = frs(t, 2);2,9)]
+ |Smn (frs(t 2);2,y) — fas(z, )
+|frs(@y) — f(2, )} =T1 + T2 + T3,

By (3), (17) and (25) we get
Iy < ”Sm,n(f — fhs5 ')”p,q < Myl f - fh,&“p,q
$ M4 w(fa Cp,q; ha 6)a
I3 < w(fa Cp,q;h’é)‘

Applying Theorem 1 and (26) and (27), we get

o < s {{Unali o + [0l 2}
< 2Mgw (f, Cp,q; b, 6) {h‘l\/bz+ 6-1\/;@} :

Consequently there exists M3 = M;3(p, q,b1,dy, M, M*) such that
(28)  wp,g(2,9) |Smn(fi 2, y) — flz, )l

< Myaw (f,Cp,q; b, ) {1 +h‘1,/§- +671, /di},

for (z,y) € R%, m,n € N and h,é > 0. Now, for fixed z,y > 0 and m,n € N
setting h =, /¢ and § = , /#- to (28), we obtain (23).

If £ = 0 =y, then by (5) we get Sm.»(f;0,0) = £(0,0), m,n € N which
implies (23). If z = 0, y > 0 or z > 0, y = 0, we obtain (23) similarly as
in [2].

From Theorem 2 follows

COROLLARY. Let f € Cp g, p,q € Ny. Then

(29) olim  Sma(fiz,9) = f(@,y) for all (z,y) € Ry

Moreover (29) holds uniformly on every rectangle 0 < z < z9, 0 < y < yo.
3.2. In this part we give the Voronovskaya type theorem for the operators

(B0 Sunlf(tb2imy) =33 05(anz)pr(eas) (L)

3=0 k=0
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(z,y) € R3, n € N, where (a,)$°, (b,)$° and (c,)$° are given sequences of
positive numbers such that

an 1 Cn _ 1
(31) E——1+o(bn) and bn—1+o(bn>.

THEOREM 3. Suppose that f € ngq, D,q € Ny. Then for every (z,y) €
R? :={(z,y): = > 0,y > 0}

(2 lim b {Sanlfizy) ~ f(@,9)} = 5 faley) + 3 £, (2.0).
Proof. Choosing (z,y) € R%, by the Taylor formula for f € C2 , we have
f(t,2) = f(z,9) + fo(2,9)(t — 2) + fu(z, ) (2 — )

+ U@ ) (-0 4212 (@ ) (e~ 2) 2 =9) + £y (@ 9)(z ~ 1))

+ 51(t’2;xay)\/(t - 2)4 +(z - y)4, (t,z) € R(z),

where €;1(t,2) = e1(t, z; 2, y) is a function form C, 4 and £1(z,y) = 0. From
this and by (30), (5),(9)-(12) we get

Sn,n (f(ta z); z, y) = f(z,y) + f:::(x1y)sn(t —~ T} Qn, bp; :I:)
+ f{;(w’y)Sn(z ~ Y;Cnybniy)

1
+ 5 {fal:,z(z» y)sn((t - 1)2; Gn,bn; :I:)
+2fa,:,y(way)sn(t ~ Z;Qn, bn; z)Sn(z — Y;Cnybn; y)
+f;'y(:z:,y),5'n((z - y)z;cmbn;y)}
+ S (el(t,z) Vit - :1:)4+(z——y)4;:c,y) for neN,
which, by (13), (31) and Lemma 2, implies that
. z
(33)  lim ba{Sna(fiz,v) ~ f@0)} = S (@ 9) + 25 (2,0)
+ lim 0,5, (El(t, 2)V/(t — x)* + (2 — y)%; =, y) .
By the Holder inequality and by (9)-(12) we have
(39)  [Snn (16,2) VE= 2V + - 9)%,0) |
< {Snnled(t,2)i2, )} {Sn((t — 2% an,bni2) + Su((z = )% cn, br;y)}H.
The properties of £; and Corollary imply that
(35) JBim S (2(t, 2);7,y) = €2(z,y) = 0.
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Using (35) and Lemma 2, we obtain from (34)

(36)  lim by Spn (er(ti2) VE= ) + (2= )5 2,0) =0,
From (36) and (33) follows (32).

3.3. Now, we shall prove certain analogue of (29) for derivatives of operators
Sn,n defined in (30).

THEOREM 4. Let f € C} | with some p,q € Ny. Then for every (z,y) € R%
we have

(37) nli_’ngo(sn.n(f)); = f,',.(m,y),
(38) nl_l__)n;o(sn.n(f)); = f;(:l?,y),

Proof. We shall prove only (37) because the proof of (38) is identical.
Similarly as in the proof of Lemma 4, we get, for S, , defined by (30), the
relations

(Sn)e(@,) = = anSnn(1(6,2)2,8) + 2 Snn (8,2 2,)

(bn - an)Sn,n(f(t) Z); :c,y)

+ 28,0t 2)f(12) s 29), mEN.

]

For fixed (z,y) € R2, we have, by the Taylor formula for f € C’;

f(t,2) = flz,y) + fo(z,y)(t — z) + fo(z,v)(z — v)
+ext,z2,9) Vit - 22+ (z—y)%,  (t,2) € R,

where €3(t, 2) = €2(t, z; z,y) is a function with Cp 4 and e2(z,y) = 0. From
this and by (9)-(12) it follows that

(39)  (Smal£)Vi(z,)
= (bn — an){ £(2,9) + £4(2,4) Sa(t - 73 an, bai )

+ f,’,(:c,y) Sa(z = yin, bniy)

+ Sn,n (52(t7 Z) \/(t - x)2 + (Z - y)z;m’ y) }

+ b?"{f(z,y)sn(t; anybn; ) + f(2,9) Sa((t — )% an, ba; 7)
+ f{,(:c,y) Sn(t — T,0Qn, bn;I)Sn(Z - Y Cmbn;y)

+ Sun (2t )t - 2)VE=2P + - y%ay) }, neN.

g’
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The properties of €2 and Corollary imply that

(40) Jim Snn (e2(t,2)v/E—2P + (2= y)i,y) =0
and
(41) nlilr;o Snon (e2(, 2);2,9) = eg(z, y) = 0.

By the Holder inequality and by (9)-(12) we get the inequality
|Snn (e2(t, 2)(t = D)V E =22 + (2 — 9} 2,9
< {Snn (€5052):2,9)} {Sn (¢~ )% an,bui)
+5n (6= 2% 0n,bri ) Sn (2 = 9)% n,bmi9) }
which, by Lemma 2 and (41), implies that
(42) nlirrgo bnSnn (Eg(t, 2)(t—z)V/(t — )2 + (2 — y)?; z,y) =0.
Using (40), (42) and Lemma 2 to (39), we obtain the desired assertion (37).

The above theorems extend some results obtained for classical Szdsz-
Mirakyan operators, i.e. Sy, defined by (5) with ap = b, = ¢, =d, =n
for all n € N.
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