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OSCILLATION P R O P E R T I E S F O R CERTAIN H Y P E R B O L I C 
EQUATIONS W I T H DISTRIBUTED ARGUMENTS 

1. Introduction 
Recently, it has been an increasing interest in oscillation theory of hyper-

bolic partial functional differential equations. We can refer to [1-6] and their 
cited references. However, it seems that very little is known about the work 
of the case with continuous distributed deviating arguments. The purpose 
of this paper is to extend some of the known in the literature results to the 
more general equations, with continuous distributed deviating arguments. 
Namely we obtain some oscillatory criteria for the boundary value problem 
of the form 

q2 n Tn 
(E) + <(*)«(*, Ti(i))] = a ( t ) A u + 5^a j ( i )Au(x ,p i ( t ) ) 

¿=i j = i 
b 

-c(x, t, u, u[x, 7?(£)]) - j q(x, t, £ )u[x , g(t, 0 1 ^ ( 0 + /(*> 
a 

and 

du 
(B) — = ip(x,t) on (x,t) €ddx R+> 

on 

where Au is a Laplace operator in Rn, (x, t) € fl x R+ = G, R+ = [0, +oo), 
u = u(x, t). f2 is a bounded domain in Rn with a piecewise smooth boundary 
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dQ, Tp(x, t) is a continuous function on dCl x R+ and n denotes the unit 
exterior normal vector to dil. 

It is easy to see that Eq.(E) includes the following delay hyperbolic 
equations 

d2 r " 1 m 

(E') [U + Y1 t ~ Ti)j = o(i)Att + ^ aj(t)Au(x, Pi{t)) 
»=i j=l 

m 
-c(x, t,u,u[x,77(t)]) - qj(x, t)u[x,^-(t)] + / (x , i ) . 

i=i 

Our results extend some of the known in the literature theorems. For exam-
ple, Kreith, Kusano and Yoshida in [2]; Chen and Yu in [3] concerned the 
following equations 

d2u 

(Ei) = Au-c(x,t,u) + f{x,t), 

d2 
(E2) —{u + Xu(x>t-r)} = Au-c{x,t,u) + f(x,t) 

respectively. Those equations all axe special case of Eq.(E'). 
Suppose that the following conditions (H) hold: 

(tfx) ait^ajM^iit^TiWiP^Mt) G C(R+,R+), q(x,t,£) G C{U x 
R+ x [a,6],i?+); Tj(i) < t,pj(t) < t, i = l , 2 . . . , n ; j = 1,2, . . .m; 
and limt_»+00 Tj(i) = lim t_ t+00 pj(t) = limt_++00 i](t) = +oo, 

(H2) g(t,£) G C(R+ x [a,6],i?);5(i ,0 < G [a,&];5(i,£) are nonde-
creasing with to t, and lim^+oo mini£[a)6] = +oo, 

(H3) c(x,t,u,v) G C(fl x R+x R x R,R)-,c(x,t,u,v) > p(t)(p(v), in 
which p(t) G C(R+,R+), <p(v) G C([a, 6], ¿2); (p(v) is a positive and 
convex function in (0,-foo), and c(x, t, —u, —v) = — c(x, t, u, v), 

(H4) f(x,t) G C(fi x R+,R)~, cr(£) G ([o, 6],i?) is nondecreasing, integral 
of Eq.(E) is Stieltjes integral. 

A solution u(xtt) of Eq.(E) is called oscillatory in the domain G if for 
each positive number p there exists a point (xo, t$) £ 0.x [p, +oc) such that 
the condition u(xo,to) = 0 holds. 
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2. Oscillation criteria 

85 

LEMMA 1. Suppose that (H\)-(H±) hold. If u is a positive solution of the 
Eq.(E), (B) infix [/x, +oo) , fi > 0, then the function 

(2.1) _ \nu(x,t)dx 

satisfies the following differential inequality 

d2 

¿=1 
(2.2) ^ [ t f W + ^ M W T i W ) ] 

6 

+p(t)<p{U( v(t))) + s Q{t, OU[9(t, o] <M0 < H{t) 

in which Q(i,0 = mmxeçi{q(x,t,Ç)}, 

H(t) = S d x I J a{t)xp(x,t) + jrai(t)ip(x,pj{t)) dw + \f(x,t)dx\. 
dCl L j = 1 fi ' 

P r o o f . Let u(x,t) be a positive solution of the Eq.(E), ( B ) in i2 x [/¿, -foo), 
for ¡x> 0. Note that by ( # 2 ) , there exist a i i > /i such that u(x, g(t, £)) > 0, 
(x,t,£) € ft x [ t i , + o o ) x [a, 6], and u(x,Ti(t)) > 0 , u ( x , p j ( t ) ) > 0 , u ( x , 77(f)) 
> 0, (x,t) G Q x [ i i , + o o ) 

Using Green's formula, we have 

du 
J Audx= J —duj=^ipdui, t>ti 
n afi n 

(2.3) 

and 

(2.4) \ A u(x,Pj(t)) dx = \ (*)) du = j ^fap^t)) dw, t >t\. 
n an n fi 

Integrating Eq.(E) with respect to x over the domain fi, we have 

< 2 - 5 > è 
^ udx + ^ Aj(i) J u(x, Ti(t)) dx 

L f i i-1 
m 

fi 
= a(t) ^ ìpdhj 

an 

+ ^aj(i) J ip(x,pj(t)) du — J c(x,t,u,u[x,ri(t)}) dx 
i = i an fi 

b 

- J J g(z> O " ^ . 0]d<r(t)dx + J /(x, t ) dx, t>tx. 
n a n 
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Using the condition (#3) and Jensen's inequality, we have 

(2.6) j c(x, t, u, u[x, T]{t)]) dx > p(t) J ¡p(u(x, rj(t))) dx 
n n 

\ u d x / n 

Notice that 
(2.7) j q(x, i, 0n[®, g(t, £)] dx > Q(t, 0 \ u[x, g(t, 0 ] dx 

n n 
and 

6 6 

(2.8) j \q(x,t,0u[®,g(t,0]dx=SS t,0«[x,g(t,0]dxda{£). 
no on 

So we have 

<-> £ J note + ^^Ai(t) J u(x,Ti(t)) dx 
.n i-1 n 

b 
+ p(t)<p{U{ri(t))) \udx + \Q(t,0\ U[x, g(t, 0 ] dx 

n 

< a(t) j if>dw + 'Y^aj(t) \ ip(x,pj(t))duj+\f(x,t)dx, t > t 1 
an j=1 an n 

and therefore U(t) is a solution of the inequality (2.2). 
THEOREM 1. Suppose that (Hi)-(Hi) hold. If both the differential inequali-
ties 

(2.10) 
dt2 

(2.11) 
dt2 

¡=1 

+p(tMU(n(t)) + S Q(t, 0U[g(t, 0]dr(i) < H(t). 

n 

u ( t ) + j 2 w ) u ( T i ( t ) ) 
i=1 

+p(t)<pmvm + \Q(t,Z)U\g(t,Z)}dv(t) < -H(t) 

have no eventually positive solution, then every solution of Eq.(E) with (B) 
is oscillatory in G. 
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Proof. Assume to a contrary that there exists a nonoscillatory solution 
u(x,t) of the Eq.(E), (B). If u{x,t) > 0, (x,t) ettx [/x,+oo), n > 0, then 
from Lemma 1 it follows that U(t) defined by (2.1) is an eventually positive 
solution of the inequality (2.10), which is a contradiction. 

If u(x,t) < 0, (x,t) € fi x [/x,+oo), fi > 0, then v(x,t) = —u(x,t) is a 
positive solution of the problem 

d2 r 

<=1 
m 

= a(t)Au+ ^2aj(t)Au(x, pj(t)) — c(x,t,u,u[x,r}(t)]) 
3=1 

- 5 q(x, t, £)u[®, g(t, 0 ] dcr(0 + /(*» *). 
a 

du 
— = —tp(x,t), on (x,t) G dQ x R+. 

- on 
Using the above-mentioned method, we can conclude that 

= M r f d x 

\nd x 

is an eventually positive solution of the inequality (2.11), which is a contra-
diction. This completes the proof of Theorem 1. 

THEOREM 2. Suppose that (Hi)-(H^) hold and moreover 

(2.12) limmf \ ~ H ( s ) d s = -00 

and 

(2.13) lim sup 
t-»+oo Î H ) H(s)ds = +00 

for sufficiently large Then every solution of the Eq.(E) with (B) is os-
cillatory in G. 

Proof. Assume to a contrary that there exists a nonoscillatory solution. If 
u(x,t) > 0, (x,t) £ ft x [/x, +00), for fx > 0, then from Lemma 1 it follows 
that the function U(t) defined in (2.1) is an eventually positive solution of 
the inequality (2.1). Then 

j2 n 

(2.14) ^ [U(t) + £ A^Ot/fr^i))] < H(t), t > tx > /x. 
»=1 
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Integrating the above inequality twice in the segment [ii,i], we get 
n 

(2.15) tf(i) + 2 > ( i ) t f ( T i ( i ) ) 
t=i 

t V 

<Ci + c 2 ( t - t i ) + \ \ H ( s ) d s d u j , t > t ! > n 

h ti 

in which ci, C2 are constants. Notice that 
t 7] t 

\ \ H ( s ) dsdq = \{t — s ) H ( s ) ds. 

tj ti 

Therefore from (2.15) we have 

(2.16) ^ [ ^ ( O + ^ A ^ i W T - K i ) ) ] < T + ^ C 1 " ^ ) 4 " ^ ( l - f ) ^ ) ^ -

Now we get 

1 r n 

lhnmf - U(t) + ^ * i ( t ) U ( T i ( t ) ) 

L ¿=i 
which contradicts with the assumption that U(t) > 0. 

If u ( x , t ) < 0, ( x , t ) G fi x [fi, +oo), n > 0, let v ( x , t ) = - u ( x , t ) . Then 

_ \ n v ( x , t ) d x 

{ ) ~ S o * 

is an eventually positive solution of the inequality (2.11). 
Using (2.13), we get 

liminM ( l - - \ - H ( s ) ) d s = - l i m s u p \ ( l - - } h ( s ) ds = - o o 
t - > + 0 0 t l \ tJ 

thus, by using the above-mentioned similar arguments we have a contradic-
tion. This completes the proof of Theorem 2. 

EXAMPLE. Consider the following equation 

( E * ) ^ [ u + u ( x , t - i r ) } 

1 1 ° 
= - A u — - u —4 J u(x,t + f )d£ + e 4 c o s i s i n i + e* w cosxcos t 

= —oo 
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with the boundary condition 
du 

m 

where n = 1, Q = (0, §), a(t) = q(x,t,Ç) = 4, c(x,t,u) = g(t,Ç) = 
t + g(t,£,) — t + f ( x , t ) = é cos x sini + et~'r cos x cos i, -0(0, t) = 0, 
V>(f ,i) = —e4 sini. 

It is to easy see that the condition (H) holds, and 

S ( l - 7 ) i \ a(s)ip{x,s) + ^ a j ( s ) i p ( x , p j ( s ) ) d u j + \ f ( x , s ) d x i d s 
j=l -I n J 

1 

2 

t i a n L 

= e 
1 \ ( I e~~7 

+ cos £ > 4-
t y j t ' 

where c is a constant. Hence all the conditions of Theorem 2 hold. It follows 
from Theorem 2 that every solution of the problem (E*), (B*) is oscillatory 
in (0, x [0,+oo). For example u(x,t) = et cosxsini is oscillatory. 
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