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OSCILLATION PROPERTIES FOR CERTAIN HYPERBOLIC
EQUATIONS WITH DISTRIBUTED ARGUMENTS

1. Introduction

Recently, it has been an increasing interest in oscillation theory of hyper-
bolic partial functional differential equations. We can refer to [1-6] and their
cited references. However, it seems that very little is known about the work
of the case with continuous distributed deviating arguments. The purpose
of this paper is to extend some of the known in the literature results to the
more general equations, with continuous distributed deviating arguments.
Namely we obtain some oscillatory criteria for the boundary value problem
of the form

2 n =
(E) 56?2_ [u + Z Ai(t)u(z, Ti(t))] = a(t)Au + Z a;j(t)Au(z, p;(t))
i=1 i=l1
b

—-C(:E, t,u, U[IL‘, U(t)]) - S Q(z, L f)u[z’ g(t) E)]da(é.) + f(za t)

a
and

(B) % = ¢(z,t) on (z,t) € 9N x Ry,
where Au is a Laplace operator in R®, (z,t) €  x Ry = G, Ry = [0, 4+00),
u = u(z, t). Q is a bounded domain in R™ with a piecewise smooth boundary
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09, ¢(z,t) is a continuous function on 9Q x R, and n denotes the unit
exterior normal vector to 990.

It is easy to see that Eq.(E) includes the following delay hyperbolic
equations

2 n m
(E') % [u + 3" Mt)u(z,t - T,-)] = a()Du+ Y a;()Dulz, pi(t))
=1

=1

—-C(:IJ, ta u, 'u,[:l:, ﬂ(t)]) - qu(za t)u[z)gj(t)] + f(xi t)'

i=1

Our results extend some of the known in the literature theorems. For exam-
ple, Kreith, Kusano and Yoshida in [2}; Chen and Yu in [3] concerned the
following equations

(E1) —2 = Au - ¢(z,t,u) + f(z,t)
9t2 tAg] V)
02

(E2) 3

fu+ Au(z,t — 7)) = Au — ¢(z,t,u) + f(z,t)

respectively. Those equa}:ions all are special case of Eq.(E’).

Suppose that the following conditions (H) hold:

(H1)  a(t),a;(t), \i(t), m:(t), pi(t),n(t) € C(Ry,Ry), a(z,t,€) € CQ x
Ry x[a,b),Ry); mit) <t pi(t) <t, i=1,2...,n; 5=1,2,...m;
and limt_.,+°° T (t) = limt_.+°o Pj (t) = limt.,+°° n(t) = 400,

(H2) g(t,§) € C(Ry x [a,b], R); 9(t,€) < ¢, € [a,b];9(2,£) are nonde-
creasing with to ¢, £; and lim;_, ;o minge(a 4 {9(¢,€)} = +o0,

(Hs) c(z,t,u,v) € C(Qx Ry x Rx R, R);c(z,t,u,v) > p(t)p(v), in
which p(t) € C(R4, Ry), o(v) € C([a, b}, R); ¢(v) is a positive and
convex function in (0,+00), and ¢(z,t, —u, —v) = —c(z, t,u,v),

(Hg) f(z,t) € C( x Ry, R);0(¢) € ([a,b], R) is nondecreasing, integral
of Eq.(E) is Stieltjes integral.

A solution u(z,t) of Eq.(E) is called oscillatory in the domain G if for
each positive number p there exists a point (zg,tg) € % [i, +00) such that
the condition u(zg,%9) = 0 holds.



Oscillation properties for hyperbolic equations 85

2. Oscillation criteria

LEMMA 1. Suppose that (Hy)-(Hs) hold. If u is a positive solution of the
Eq.(E), (B) in Q x [u,+00), u = 0, then the function

fqu(z, t)dz
2.1 =227
(21) U =
satisfies the following differential inequality

d? -
22) Z[U®+ MOUE®)]
i=1

b

+p(t)e(U () + § Q(t, OULg(t, ©)ldo(€) < H(2)

a

in which Q(ta 6) = minzeQ{Q(m,ta 6)})
-1 m
H(t)= [S dx] {1 a8+ X avia (o) awt | (o.1) ds}.
N an 7j=1 N

Proof. Let u(z,t) be a positive solution of the Eq.(E), (B) in 2 x [u, +00),
for 4 > 0. Note that by (H>), there exist a ¢; > u such that u(z, g(t,£)) > 0,
(z,t,€) € Q x [t1,+00) x [a,b], and u(z, 7:(t)) > 0,u(z, p;(t)) > 0, u(z, n(t))
>0, (z,t) € N x [t1, +0)

Using Green’s formula, we have

(2.3) | Audz = g ———dw— Swdw, t>t
Q
and
04 [ouep@)de= | 22O 4y - {y(a,p @) do, 21
Q an Q

Integrating Eq.(E) with respect to z over the domain 2, we have

(2.5) %- Sudz+2)\ t)§ (z,7:(t)) dz| = a(t) | ¥ dw

i=1 a0

Za_,(t) S (z,p;(t)) dw Sc(m,t,u,u[x,n(t)]) dz

0

q(z,t,&)ulz, g(t, )ldo(€)dz + | f(z,t)dz, t>t1.
9]

0 Gy O

)
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Using the condition (H3) and Jensen’s inequality, we have

26)  [elat,u,ulz,n(t)]) do 2 p(t) | o(u(z, (1)) do
Q Q

> p(t) (SQ—""?—(t)—dfMd t>t.

Notice that

(2.7) { a(z,t, )ulz, g(t, &) dz > Q(t,€) | ulz, 9(2,6)) dz
Q Q
and
b b
28)  [{a(=,t,&)ulz, g(t,€) do(€) dz = | | g(z,t, €)ulz, g(t, €)] dz do(£).
Qa afl
So we have
(2.9) dt2 g udz + ZA @® | u(z, n(t) dz
i=1 Q

+p()eU(n(t)) | udz + § Q(t,¢) | ulz, g(t,€) dz
Q a Q

<af(t) | ¢dw+Za, ) | ¢, p,(t))dw+§ flz,t)dz, t>t;
an j=1 an

and therefore U(t) is a solution of the inequality (2.2).

THEOREM 1. Suppose that (Hy)-(Hy) hold. If both the differential inequali-
ties

(2.10) Ed; [U(t) +3 MU (t))]
i=1
b
+p(t)e(U(n(t)) + | Q(t, &)U[g(t, &))do (€) < H(2).

(2.11) % [U(t) + Z AU ('r.-(t))]

b
+p()e(U(n(t))) + | Q(¢, )Ug(t, £) do () < ~H(2)

have no eventually positive solution, then every solution of Eq.(E) with (B)
ts oscillatory in G.
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Proof. Assume to a contrary that there exists a nonoscillatory solution
u(z,t) of the Eq.(E), (B). If u(z,t) > 0, (z,t) € Q x [p,+00), x> 0, then
from Lemma 1 it follows that U(t) defined by (2.1) is an eventually positive
solution of the inequality (2.10), which is a contradiction.

If u(z,t) < 0, (z,t) € @ x [u,+00), u > 0, then v(z,t) = —u(z,t) is a
positive solution of the problem

2 n
2 [t Y Miute m(»)
=1

(

= a(t)Au+ Z a;(t) Au(z, p;(t)) — c(z, t, u, ulz, (t)])

< i=1
b

- Va(z,t,&)ulz, g(t, )] do (&) + f(z,1),

a

ou
\ On
Using the above-mentioned method, we can conclude that
fov(z, t)dx

{qdr
is an eventually positive solution of the inequality (2.11), which is a contra-
diction. This completes the proof of Theorem 1.

= —y(z,t), on (z,t) € N X R,.

Vit) =

THEOREM 2. Suppose that (H;)-(Hy) hold and moreover

t
.. S
(2.12) ltlln._ggft (1 - ;) H(s)ds = —o0
1
and
; 8
(2.13) lim sup S (l - —)H(s)ds = +00
t—+oo o t

Jor sufficiently large t;. Then every solution of the Eq.(E) with (B) is os-
cillatory in G.

Proof. Assume to a contrary that there exists a nonoscillatory solution. If
u(z,t) > 0, (z,t) € Q x [y, +00), for u > 0, then from Lemma 1 it follows
that the function U(t) defined in (2.1) is an eventually positive solution of
the inequality (2.1). Then

el Slvo+ S rovem] <o, t2uza
i=1
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Integrating the above inequality twice in the segment [ti,t], we get

(215) U®)+ ) MOU(T(E)
i=1

tn
<atelt-t)+ | |H)dsdw, t>t>p
t1 t1
in which ¢, ¢2 are constants. Notice that
tn : t
S § H(s)dsdn = S(t — s)H(s)ds.
t1 1 t1

Therefore from (2.15) we have

(2.16) %[U(t) +iz:;/\i(t)U(Ti(t))] <%ig (1 - t—tl-) + § (1 - %)H(s)ds.

t o

Now we get

1 .
ltlgl_:{.lof < U(t) + ; )\z(t)U(‘T,(t)):I = —00
which contradicts with the assumption that U(¢t) > 0.
If u(z,t) < 0, (z,t) € @ x [p, +00), p > 0, let v(z,t) = —u(z,t). Then
V(t) = fqu(z,t)dz
Jods

is an eventually positive solution of the inequality (2.11).
Using (2.13), we get

lim inf § (1 - -:-) (~H(s))ds = ~limsup § (1 -~ ;)H(s)ds = -0

t—+o00
t1 t— t1

thus, by using the above-mentioned similar arguments we have a contradic-
tion. This completes the proof of Theorem 2.

ExAMPLE. Consider the following equation

2
[u+u(z,t — )]

0
= -;-Au— %u—4 S u(z,t + £)d¢ + ef coszsint + €'~ ™ cosx cos t

(E*) pre)

-
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with the boundary condition

Ou Ou(fm
* —(0,t) = — | =,t) = —e tsint,
(B*) 8n(O, ) =0, 8n<2 ) e”"sin
where n = 1,Q = (0, %), a(t) = 3, ¢(z,¢t,€) = 4, c(z,t,u) = U, g
t+ & gt,€) =t+¢& f(z,t) = e coszsint + et~ cosz cost, (0,
¥(%,t) = —e'sint.
It is to easy see that the condition (H) holds, and

(1= )] 1 oo+ éaﬂs)wz,pj(s))] o+ | £(0,9)da |

31 anN Q

_..et l_e_w_*_lt_l_'_?—_"_l_i COSt +E
- 2 2 2 4 2 t t’

where c is a constant. Hence all the conditions of Theorem 2 hold. It follows
from Theorem 2 that every solution of the problem (E*), (B*) is oscillatory
in (0,%) x [0, +00). For example u(z,t) = e' coszsint is oscillatory.
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