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Serhiy Lavrenyuk, Lech Zareba

THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE
FIRST ORDER DEGENERATED HYPERBOLIC SYSTEM

Abstract. In this paper we consider the linear hyperbolic system of the first order
with degeneracy at z — 0 and z — [. For such system we assume that initial data are
unbounded on the interval (0,!). Some conditions of the uniqueness, existence and stability
of solution for the initial-boundary value problem are obtained.

The initial and initial-boundary value problem for the first order linear
hyperbolic systems were investigated by many authors. In some of these
papers [1]-[6] hyperbolic systems degenerated at t — 0 were considered. In
this paper we shall study the linear hyperbolic system of the first order with
degeneracy at £ — 0 and z — [. For such system we assume that initial
data are unbounded on the interval (0,!). We obtain some conditions of
the uniqueness, existence and stability of solutions for the initial-boundary
value problem. Notice that the stability of solutions of some initial and
initial-boundary value problems for linear hyperbolic systems and equations
(without degeneracy) were studied in papers [7]-[18].

Let Q@ = {(z,t) : 0 < z < I, 0 <t < oo}. We shall consider in this
domain the hyperbolic system of the form

(1) uilz, t) + Ai(z)uiz(z, t) + zn:a,-j(a:, tyuj(z,t) = fi(z,t) i=1,...,n.
i=1

Suppose that the following conditions for the functions \; hold:
A(Z)2M(T) > ... 2 Ay (2) >0, 2€(0,1]; AM(0)=...= A, (0)=0;

(2) 0> My41(z) 2 ... 2 My (2), € [0,1); Meyia(D) = ... = A, (1) = 0;
0> M,+1(z) = ... > A(2), z €[0,]].

For the system (1) we consider initial data

(3) ui(z,0) = ¢i(z), i=1,...,n
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and boundary data
(4) ’U.,'(l,t)=0, i=ko+1,...,n.
Denote by H ;,E’A(O, 1), >0, 8 >0, a closed set of functions belonging to
C§°[0,!1] such that
l
Jlo*(2) + X*(2)g(2)]e*( — 2)Pdz < oo
0

with the norm
!

1/2
lgllapn = (S[gQ(m) N(2)g2 (@)l (1 - x>ﬁdz) .
0

Moreover, let Li, 5(0,1) denote a closed set of functions belonging to C§°[0, ]

such that .

ng(z)x"‘(l —z)Pdz < 00
0
with the norm

! 1/2
lollos = (@ - 2)%ds)
0
Rewrite the matrix A = (a;;) of the system (1) in the form
Au(m,t) Au(z t))
Az, t) = ’ ,
(2,1) (A21(z, £) A1)

where Aj; is the square matrix of the size k2 X kg, A2z — the square matrix
of the size (n — k2) X (n — kz), A1z — the matrix of the size k2 X (n — kg),
and Aj; — the matrix of the size (n — k3) X ka.

Define the sets Iy = {1,...,k1}, Io = {k1 + 1,...,k2}, and I3 = {k2 +
1,...,n}. Let

B, = B, t1€LUly,
710, i€,

Qr={(z,t):0<z<l,0<t<T}, T>0.
THEOREM 1. Let the conditions (2) hold. Moreover, let
I\ € L™(0,1), i € I;
(1 —z)~\ € L™(0,1), i € Ip;
Ai € L™(0,1), i€ I3;
Aiz € L=(0,1), i=1,...,n;

6jA21 —-B/2 61'A22 Pos
5 |02 g € L7(Q),

A An
ot ’

ot (l - 2)3/2’
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7=01,8>0;
(An(z,1)€,€) 2 a1lé]” V€ € R®, (z,t) € Q;
(Az2(z,t)n,m) 2 azlnl® ¥n € ™%, (2,t) € Q;
J f.

%t%za/?(z 2P e L3Q), i=1,...,n,j=0,1, a>0;

i € Hy5,,(0,0), i=1,...,n; %(1)=0,i=k+1,...,n
Then there exists the only solution u = (uy,...,u,) of the problem (1), (3),
(4) and

]
8) (i@ t) +ub(e,t) + M)l (2, )]z*(1 - z)idz < C(T),

0

te(0,T), i=1,...,n.

Proof. We shall use the system of functions ¢ = sin kT”a:, k=12,....
This system is complete in each of the spaces H;’B',’,\‘,(O,l), i=1,...,n.
Consider the sequence of functions

N
uf\r(m’t) =chNi(t)‘Pk(m)) N=1,2,...,
k=1

where ¢, ...,cN;, i =1,...,n, are solutions of the following Cauchy prob-
lems:

] n
(6) S(uit‘pk + AiUizpk + Z a;ju; P — fiSok)xa(l - z)Pidz = 0,
0 j=1

(1 O =4, i=1,...,n, k=1,...,N,
with ¢# defined by the conditions:

N
¢1N(x) = Z:ldifchk(z), Nh_I’n‘_’° ”’l/), - 1/1?’”0,3‘,,“ =0, 1=1,...,n.

Multiplying every equation of the system (6) by the function cX (¢), re-
spectively, adding from k=1 to k=N and integrating on the interval (0, 7),
T > 0, we obtain the equality

t ! n
® | S(uﬁ uf + ) + Y aiul el ~ ful )z"(l — z)Pidzdt = 0,
0o j=1

i=1,...,n.
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Denote
a1z = sup(l41a(@ Ol = 2)%); - o1 = sup (421 (@, (0 - 2) /%)

and put
2a; — /\iz(ﬂi) - a:c"l)\i(:v) - 6(0.12 + 021) -4, 1€ I,
hi(z;e,6) = 2a1 — Aiz(z) + Bl — )71 Ai(z) — e(arz +a21) -6, i€y,
2a4 — /\,;._,,(:II) — E(am + 0.21) -6, i€l
where ¢ > 0,6 > 0.

Taking into account the assumptions of the theorem it is easy to obtain
the inequality

I n
9 D @) (=z,m) (- o)%de

0i=1
Tl n
+ 11" hilmie, 6)(wf (z,1) (1 - o) du dt
00 i=1
I n Tl n
< SZ(ﬁbsz(x))?xa(l - x)ﬁidz + S S Zf?(z’ t)a:"‘(l _ z)ﬁ"dx dt.
0i=1 00i=1

Putting in the estimate (9) € = § = 1 and using Gronwall-Bellman inequality
we get

(10) SZ(uN(z 7))2z%(l — z)Pidz < Cy(7) SZ ¥i(z)) 222 (1 - z)P da
0i=1
Tl n
+10)° e )z - x)ﬂ-dzdt] Ca(r), 0<7< o0
00 i=1
Differentiating the system (6) with respect to ¢, then multiplying every
equation respectively by the function cX,(t), adding on k from 1 to N and
integrating on the interval [0, 7], we obtain the system

i n

N
s( muu + ’\t“wt“zt + E :atJth“u
0 j=1

(11)

(=Y ]

+ Zaz]tu U;t fztu;g) a(l - $)pid$dt =0, i=1,...,n.

From the assumptlons and the estimate (10) it is easy from (11) to get the
inequality
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Il n I n
(12) SZ ull (z,7))%z%(l - z)Pidr < SZ uly (z,0))2z%(l — 2)Pidz
0i=1 0i=1
Tl n
+Co() {1 fa(z, )z2(1 - z)Pdz dt.
00i=1

To estimate the first term in the right hand side of (12) we shall use the
system (6) for ¢t = 0. Multiplying every equation of this system respectively
by cl},(0), adding on k from 1 to N we obtain the estimate

(13) SZ(ult z,7))2x%(l — z)Pide

0i=1

< Cs(n) | [Z SECDRS WAL 02|zt - o) ds
0*ti=1

< )| L Il + 3 e 0 ‘x)ﬂ"“]
=1

0i=1
Thus, due to the estimates (10), (12), (13) we have
(14)  MuMllzeqomyzz T luff | oe 0,y; 22 5,0 S Cs(T)

for arbitrary T > 0, i = 1,...,n. Since the sequences {ul (z,t)}, {ul (z,t)}
are bounded we can choose subsequences {u*(z,t)}, {ulf(z,t)} such that

u*(z,t) — ui(z,t) *—weak in L=((0,T); L2 4,(0,1)),
and

uly(z,t) muit(x,t) * —weak in L*((0,T); Lﬁ’ﬁ‘, (0,1))

for arbitrary T > 0,7 =1,...,n
Now using equations of the system (6) and data (7) it is easy to show
that the functions u,, ..., u, satisfy the system

(15)

© tammmy

i

-1
S[uiwt AigUiVi ~ AiUiliz — QT AiUiv;
0

+B(1 — =) hugvs + Y asjugv; — fi'Uz] z%(1 - z)%dz dt = 0
Jj=1
for arbitrary functions v; € C§°(Q), ¢ = 1,...,n, and the initial data (3)
hold.
Consider the distribution (A;u;), € (C§°[0,1])’. By (15) we have
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((Mitsi)a, 9z (1 ~ 2)%)
14

= - ()\iui, (QO(L‘a(l - x)ﬁ‘)m) = - S )\iui(tpz“(l - :z:)ﬂ"),,. dr

0
Tl n
= S S()\,-xui - Ujp — Za,—juj + f,-) wz*(l — z)Pdz dt
00 =1

n
= <)\imui — Usg ~— Zaiju_j + fi,0z®(l —z)ﬂ‘>, i=1,...,n

j=1

for all functions ¢ € C§°[0,!]. From the latter we get

n
(/\,;’U.i)_-,; = AjgU; — Ujp — Zaijuj +f, i=1,...,n
j=1

In other words the functions u,,...,u, are the solutions of the system (1).

Moreover, these functions satisfy the initial data (3), boundary data (4)
and u; € H. (Q),i=1,...,n. Thus, u; € C(Q),i=1,...,n

Using the method of characteristic [19], [20] it is easy to show that the
problem (1), (3), (4) can have no more than one continuous solution in Q.
The theorem is proved.

Denote
by = a12 + a2
'" "min  min [2a2 — Aiz(2)]’
"=k2+1’ “wn 26[0 l] 7'1:
by= min min [2a1 —az”\ () = Aiz(2)] — b1(a12 + a21),
i=1,...,k1 €[0,l)
b3 = min mm [2a1 + B(1 — )7 hi(z) = Miz(x)] — by (012 + az).

i=ky+1,...,k2 z€[0,!

THEOREM 2. Let all conditions of Theorem 1 be satisfied and b; > 0, j =
1,2,3; fi € L?((0,00); Li,ﬂ‘(O,l)), t = 1,...,n. Then the solution of the
problem (1), (3), (4) is asymptotically stable with respect to data (3) and the
right hand stde functions f;.

Proof. Since b; > 0, j = 1,2,3, we can choose such numbers € > 0, § > 0
that hi(z;€,8) > 8 > 0,1 = 1,...,n for all ¢ € [0,!]. Then from the
estimate (9) we have

[ Tl n
1> Wl (@, m) e - 2)Pida + 6 || D (ul (z,1)22>(l — 2)*dz dt
00

0i=1 i=1
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I n Tl n
SCs(‘Z(@bi(I))zm“(l—a:)ﬁ"da:+“2 fi(z,t) a(z-z)ﬂ-dxdt) =C,
00i=1

0 i=1

for N = 1,2,..., where C7 does not depend on t. In particular from the
above inequality we obtain the esimates

(16)

llwi (s )| oo (0,00); L2 5, 01) S < Gs,
[ o]

S ”ui(’at)“L“'((O,oo);Li'pi(o,l))dt <G i=1,...,n
0

The estimates (16) imply the conclusion of the theorem.
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