

Hazem Shaba Behnam, G. S. Srivastava

SPACES OF ANALYTIC FUNCTIONS
 OF TWO COMPLEX VARIABLES

Abstract. Let $f(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn} z_1^m z_2^n$ be an analytic function of two complex variables z_1 and z_2 in the polydisc $|z_i| < 1$. The growth parameters such as order etc. were defined by Juneja and Kapoor [1]. Based on these, the spaces of such analytic functions have been considered and a norm defined. The topological properties of these spaces have been obtained. Besides finding the duals of these spaces, the proper bases are characterized in terms of growth parameters.

1. Let

$$f(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn} z_1^m z_2^n,$$

$a_{mn} \in \mathbb{C}$, $(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : |z_i| \leq r_i < 1$, $i = 1, 2$, be analytic. Various workers, such as, Stoll [5], Juneja and Kapoor [1] etc. have studied the growth aspect of these functions and defined their order etc. Let

$$M(r_1, r_2) = \max_{|z_i| \leq r_i} |f(z_1, z_2)|.$$

Then $f(z_1, z_2)$ is said to be of order ϱ if

$$(1.1) \quad \limsup_{r_1, r_2 \rightarrow 1} \frac{\log^+ \log^+ M(r_1, r_2)}{-\log \log(r_1 r_2)^{-1}} = \varrho, \quad 0 \leq \varrho \leq \infty.$$

Further, $f(z_1, z_2)$ will be of order ϱ if and only if

$$(1.2) \quad \limsup_{m, n \rightarrow \infty} \frac{\log(m+n)}{\log(m+n) - \log^+ \log^+ |a_{mn}|} = \varrho + 1.$$

The above formula follows from Theorem 5.2.2 of Juneja and Kapoor [1].

Let $X(\varrho)$ denote the class of all analytic functions $f(z_1, z_2)$ as defined above such that

$$\limsup_{r_1, r_2 \rightarrow 1} \frac{\log^+ \log^+ M(r_1, r_2)}{-\log \log(r_1 r_2)^{-1}} \leq \varrho, \quad 0 \leq \varrho \leq \infty.$$

Then, under pointwise addition and scalar multiplication, the set $X(\varrho)$ is a linear space over field \mathbb{C} . In view of (1.2), for any given $\varepsilon > 0$, we have

$$(1.3) \quad |a_{mn}| < \exp[(m+n)^{(\varepsilon+\varepsilon)/(e+\varepsilon+1)}],$$

for all large values of m and n . In view of (1.3), for any $\delta > 0$, the double series

$$(1.4) \quad \|f; \varrho + \delta\| = \sum_{m,n=0}^{\infty} |a_{mn}| \exp[-(m+n)^{(\varepsilon+\delta)/(e+\delta+1)}]$$

converges for $f \in X(\varrho)$, and $\|f; \varrho + \delta\|$ defines a norm on $X(\varrho)$. We denote the corresponding normed space by $X(\varrho, \delta)$. The lattice product of these normed topologies is denoted by $X(\varrho)$. The space $X(\varrho)$ is metrizable and its metric is given by

$$(1.5) \quad \lambda(f, g) = \sum_{q=1}^{\infty} 2^{-q} \frac{\|f - g\|_q}{1 + \|f - g\|_q}, \quad f, g \in X(\varrho),$$

where $\|f\|_q = \sum_{m,n=0}^{\infty} |a_{mn}| \exp[-(m+n)^{(e+q^{-1})/(e+q^{-1}+1)}]$.

We denote by $X_{\lambda}(\varrho)$ the space $X(\varrho)$ equipped with above metric. J. K. Srivastava and Rajiv K. Srivastava ([3], [4]) have studied the properties of spaces of analytic functions of several complex variables represented by Dirichlet series such as their completeness, linear homeomorphisms etc. O. P. Juneja and A. Sinha [2] have also obtained properties of proper bases.

In this paper, we study different properties of the space $X_{\lambda}(\varrho)$ such as completeness, its dual and linear transformations of $X_{\lambda}(\varrho)$ into itself.

2. In this section, we obtain results concerning linear transformations on $X_{\lambda}(\varrho)$.

First we prove a completeness theorem. In what follows, we shall denote for $m, n \geq 0$,

$$\delta_{mn}(z_1, z_2) = z_1^m z_2^n.$$

We have

THEOREM 1. *The space $X_{\lambda}(\varrho)$ is a Frechet space.*

Proof. In order to prove the theorem, it is sufficient to show that the space $X_{\lambda}(\varrho)$ is complete. Thus, let $\{f_{\alpha}\}$ be a λ -Cauchy sequence in $X_{\lambda}(\varrho)$. Then for any $\eta' > 0$, there exists a positive integer $m_0 = m_0(\eta')$ such that

$$(2.1) \quad \|f_{\alpha} - f_{\beta}\|_q < \eta' \quad \text{for all } \alpha, \beta \geq m_0, q \geq 1.$$

Let us denote by

$$f_{\alpha}(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn}^{(\alpha)} z_1^m z_2^n,$$

$$f_\beta(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn}^{(\beta)} z_1^m z_2^n.$$

Then we have for $\alpha, \beta \geq m_0, q \geq 1$.

$$(2.2) \quad \sum_{m,n=0}^{\infty} |a_{mn}^{(\alpha)} - a_{mn}^{(\beta)}| \Phi < \eta',$$

where $\Phi = \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}]$ contains m, n but no α, β . Since each term in (2.2) on the left hand side is obviously less than η' , we get

$$|a_{mn}^{(\alpha)} - a_{mn}^{(\beta)}| < \eta'/\Phi \forall \alpha, \beta \geq m_0, \text{ and fixed } m, n.$$

Thus for given $\eta > 0$ and fixed m and n , $\exists m_0$ such that

$$|a_{mn}^{(\alpha)} - a_{mn}^{(\beta)}| < \eta \quad \forall \alpha, \beta \geq m_0.$$

The letter implies that $\{a_{mn}^{(\alpha)}\}_{\alpha=1}^{\infty}$ is a Cauchy sequence of complex numbers for each fixed m and n . Therefore, there exists a double sequence $\{a_{mn}\}_{m,n=0}^{\infty}$ such that

$$\lim_{\alpha \rightarrow \infty} a_{mn}^{(\alpha)} = a_{mn}, \quad m, n = 0, 1, 2, \dots$$

Now, taking $\beta \rightarrow \infty$ in (2.2), we get for $\alpha \geq m_0$.

$$(2.3) \quad \sum_{m,n=0}^{\infty} |a_{mn}^{(\alpha)} - a_{mn}| \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}] \leq \eta.$$

Taking $\alpha = m_0$, we get for any fixed q ,

$$\begin{aligned} & |a_{mn}| \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}] \\ & \leq |a_{mn}^{(m_0)}| \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}] + 2\eta. \end{aligned}$$

Now, $f_{m_0}(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn}^{(m_0)} z_1^m z_2^n \in X_\lambda(\varrho)$. Hence the condition (1.3) is satisfied. Therefore, for arbitrary $p > q$, we have

$$\begin{aligned} & |a_{mn}| \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}] \\ & < 2\eta + |a_{mn}^{(m_0)}| \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}] \\ & < 2\eta + \exp[-(m+n)^{(\varrho+p^{-1})/(\varrho+1+p^{-1})} - (m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}]. \end{aligned}$$

Since $p > q$ is arbitrary, the second term on the right hand side approaches zero as $(m+n) \rightarrow \infty$. Also, since $\eta > 0$ was arbitrarily chosen, therefore the sequence $\{a_{mn}\}$ satisfies (1.3) for sufficiently large values of $(m+n)$. Consequently,

$$f(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn} z_1^m z_2^n \text{ belongs to } X_\lambda(\varrho).$$

Again from (2.3), for arbitrary $\varepsilon > 0$ and $q = 1, 2, \dots$, we have $\|f_\alpha - f\|_q < \varepsilon$. Hence

$$\lambda(f_\alpha, f) = \sum_{q=0}^{\infty} 2^{-q} \frac{\|f_\alpha - f\|_q}{1 + \|f_\alpha - f\|_q} < \frac{\varepsilon}{1 + \varepsilon} \sum_{q=0}^{\infty} 2^{-q} = \frac{\varepsilon}{1 + \varepsilon} < \varepsilon.$$

Since the above inequality holds for all $\alpha \geq m_0$, it follows that $f_\alpha \rightarrow f$ as $\alpha \rightarrow \infty$. Since we have already proved that $f \in X_\lambda(\varrho)$, this shows that $X_\lambda(\varrho)$ is complete.

The next result characterizes the linear continuous functionals on $X_\lambda(\varrho)$. We have the following

THEOREM 2. *A continuous linear functional F on $X_\lambda(\varrho)$ is of the form $F(f) = \sum_{m,n=0}^{\infty} a_{mn} c_{mn}$ if and only if*

$$(2.4) \quad |c_{mn}| \leq L \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}], \quad m, n \geq 0, q \geq 1,$$

where L is a finite, positive number and $f(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn} z_1^m z_2^n$.

Proof. Let $F : X_\lambda(\varrho) \rightarrow \mathbb{C}$, where \mathbb{C} is the complex field, be a linear, continuous functional. Then for any sequence $\{f_j\} \subseteq X_\lambda(\varrho)$ with $f_j \rightarrow f$, we have $F(f_j) \rightarrow F(f)$ as $j \rightarrow \infty$. Now, let $f(z_1, z_2) = \sum_{m,n=0}^{\infty} a_{mn} z_1^m z_2^n$, where $\{a_{mn}\}$ satisfies (1.3). Then $f \in X_\lambda(\varrho)$. Also for $j = 1, 2, \dots$, let us put $f_j(z_1, z_2) = \sum_{m,n=0}^j a_{mn} z_1^m z_2^n$. Then $f_j \in X_\lambda(\varrho)$ for $j = 1, 2, \dots$. Let q be any fixed positive integer and let $0 < \varepsilon < q^{-1}$. Then from (1.3), we can find a positive integer j such that

$$|a_{mn}| < \exp[(m+n)^{(\varrho+\varepsilon)/(\varrho+1+\varepsilon)}] \quad \forall m, n > j.$$

Now,

$$\begin{aligned} \|f - f_j\| &= \left\| \sum_{m,n=j+1}^{\infty} a_{mn} z_1^m z_2^n \right\|_q \\ &= \sum_{m,n=j+1}^{\infty} |a_{mn}| \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}] \\ &< \sum_{m,n=j+1}^{\infty} \exp[(m+n)^{(\varrho+\varepsilon)/(\varrho+1+\varepsilon)} - (m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}] \\ &< \delta \end{aligned}$$

for sufficiently large values of j , where $\delta > 0$ is arbitrarily small. Hence

$$\lambda(f, f_j) = \sum_{q=1}^{\infty} 2^{-q} \frac{\|f - f_j\|_q}{1 + \|f - f_j\|_q} < \sum_{q=1}^{\infty} 2^{-q} \frac{\delta}{(\delta + 1)} < \delta.$$

Hence $f_j \rightarrow f$ in $X_\lambda(\varrho)$ as $j \rightarrow \infty$. Therefore,

$$\lim_{j \rightarrow \infty} F(f_j) = F(f).$$

Put $c_{mn} = F(z_1^m z_2^n)$. Then

$$F(f) = \lim_{j \rightarrow \infty} F(f_j) = \lim_{j \rightarrow \infty} \sum_{m,n=0}^j a_{mn} c_{mn} = \sum_{m,n=0}^{\infty} a_{mn} c_{mn},$$

where, $|c_{mn}| = |F(z_1^m z_2^n)|$. Since F is continuous on $X_\lambda(\varrho)$, it is continuous on $X_{\|\cdot\|_q}(\varrho)$ for each $q = 1, 2, \dots$. Consequently, there exists a positive constant L independent of q such that

$$|F(z_1^m z_2^n)| = |c_{mn}| \leq L \|\delta_{mn}\|_q, \quad q \geq 1,$$

where $\delta_{mn}(z_1, z_2) = z_1^m z_2^n$. Now, using the definition of the norm for $\delta_{mn}(z_1, z_2)$, we get

$$|c_{mn}| \leq L \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}],$$

for all $m, n \geq 0$, $q \geq 1$. Hence we have $F(f) = \sum_{m,n=0}^{\infty} a_{mn} c_{mn}$, where c_{mn} 's satisfy (2.4).

Conversely, suppose that c_{mn} 's satisfy (2.4) and for any sequence of complex numbers $\{a_{mn}\}$, $F(f) = \sum_{m,n=0}^{\infty} a_{mn} c_{mn}$. Then for $q \geq 1$, we have

$$|F(f)| \leq L \sum_{m,n=0}^{\infty} |a_{mn}| \exp[-(m+n)^{(\varrho+q^{-1})/(\varrho+1+q^{-1})}].$$

Then $|F(f)| \leq L \|f\|_q$, $q \geq 1$. Hence $F \in X'_{\|\cdot\|_q}(\varrho)$ for $q = 1, 2, \dots$ Now since

$$\lambda(f, g) = \sum_{q=1}^{\infty} 2^{-q} \frac{\|f - g\|_q}{1 + \|f - g\|_q}$$

therefore $X'_\lambda(\varrho) = \bigcup_{q=1}^{\infty} X'_{\|\cdot\|_q}(\varrho)$. Hence $F \in X'_\lambda(\varrho)$. This proves Theorem 2.

3. In this section we shall study continuous linear transformations and proper bases in $X(\varrho)$. The sequence of functions $\{\alpha_{mn}\}$ is said to be linearly independent if $\sum_{m,n=0}^{\infty} a_{mn} \alpha_{mn} = 0$ implies that $a_{mn} = 0$ for all sequences $\{a_{mn}\}$ of complex numbers for which the series $\sum_{m,n=0}^{\infty} a_{mn} \alpha_{mn}$ converges in $X(\varrho)$. $\{\alpha_{mn}\}$ spans a subspace X_0 of $X(\varrho)$ provided X_0 consists of all linear combinations $\sum_{m,n=0}^{\infty} a_{mn} \alpha_{mn}$ which are convergent in $X(\varrho)$. A sequence $\{\alpha_{mn}\} \subseteq X(\varrho)$ which is linearly independent and spans a subspace X_0 of $X(\varrho)$ is said to be a base in X_0 . Finally, a sequence $\{\alpha_{mn}\} \subseteq X(\varrho)$ will be called a "proper base" if it is a base and satisfies the condition: "For all sequences $\{a_{mn}\}$ of complex numbers, the convergence of $\sum_{m,n=0}^{\infty} a_{mn} \alpha_{mn}$ in $X(\varrho)$ implies the convergence of $\sum_{m,n=0}^{\infty} a_{mn} \delta_{mn}$ in $X(\varrho)$, and conversely".

Now, we prove

THEOREM 3. *A necessary and sufficient condition that there exists a continuous linear transformation $F : X(\varrho) \rightarrow X(\varrho)$ with*

$$F(\delta_{mn}) = \beta_{mn}, m, n = 0, 1, 2, \dots; \delta_{mn}(z_1, z_2) = z_1^m z_2^n,$$

is that for each $\delta > 0$,

$$(3.1) \quad \limsup_{m, n \rightarrow \infty} \frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta\|^{-1}}{\log(m+n)} < \frac{1}{(\varrho+1)}.$$

Proof. Let F be a continuous linear transformation from $X(\varrho)$ into $X(\varrho)$ with $F(\delta_{mn}) = \beta_{mn}$, $m, n = 0, 1, 2, \dots$. Then, for any given $\delta > 0$ one can find $\delta_1 > 0$ and a constant $K = K(\delta)$ such that

$$\|F(\delta_{mn}); \varrho + \delta\| \leq K \|\delta_{mn}; \varrho + \delta_1\|$$

i.e.

$$\|\beta_{mn}; \varrho + \delta\| \leq K \exp[-(m+n)^{(\varrho+\delta_1)/(\varrho+1+\delta_1)}]$$

i.e.

$$(m+n)^{(\varrho+\delta_1)/(\varrho+1+\delta_1)} \leq \log K + \log \|\beta_{mn}; \varrho + \delta\|^{-1}$$

i.e.

$$\frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta\|^{-1}}{\log(m+n)} \leq \frac{1}{\varrho+1+\delta_1} + o(1)$$

i.e.

$$\limsup_{m, n \rightarrow \infty} \frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta\|^{-1}}{\log(m+n)} \leq \frac{1}{\varrho+1+\delta_1} < \frac{1}{(\varrho+1)}.$$

Conversely, suppose that the double sequence $\{\beta_{mn}\}$ satisfies (3.1). Then, for any $\eta' > 0$, there exists $N_0 = N_0(\eta')$ such that for all $\delta > 0$ and all $m, n > N_0$,

$$\frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta\|^{-1}}{\log(m+n)} < \frac{1}{\varrho+1+\eta'}$$

or

$$(3.2) \quad \|\beta_{mn}; \varrho + \delta\| < \exp[-(m+n)^{(\varrho+\eta')_1/(\varrho+1+\eta')}]$$

Let

$$f(z_1, z_2) = \sum_{m, n=0}^{\infty} a_{mn} z_1^m z_2^n \in X(\varrho)$$

and choose $0 < \eta < \eta'$. Then from (1.3), there exists $N_1(\eta) = N_1$ such that for all $m, n \geq N_1$

$$(3.3) \quad |a_{mn}| < \exp[(m+n)^{(\varrho+\eta)/(\varrho+1+\eta)}].$$

Let $n_0 = \max(N_0, N_1)$. Then from (3.2) and (3.3), we have for all $m, n \geq n_0$,

$$|a_{mn}| \|\beta_{mn}; \varrho + \delta\| < \exp[(m+n)^{(\varrho+\eta)/(\varrho+1+\eta)} - (m+n)^{(\varrho+\eta')/(\varrho+1+\eta')}]$$

Since $\eta < \eta'$, this inequality implies that the series $\sum_{m,n=0}^{\infty} a_{mn} \beta_{mn}$ converges absolutely in $X(\varrho)$ and since $X(\varrho)$ is complete, we infer that this series converges to an element of $X(\varrho)$. Let us define a transformation $F : X(\varrho) \rightarrow X(\varrho)$ by putting $F(\alpha) = \sum_{m,n=0}^{\infty} a_{mn} \beta_{mn}$ for $\alpha \in X(\varrho)$. We note that F is linear, $F(\delta_{mn}) = \beta_{mn}$ and for $\delta > 0$, $\exists \delta' > 0$, such that

$$\frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta\|^{-1}}{\log(m+n)} < \frac{1}{\varrho + 1 + \delta'}$$

for $m, n > N(\delta, \delta')$ i.e. $\|\beta_{mn}; \varrho + \delta\| \leq h \exp[-(m+n)^{(\varrho+\delta')/(e+1+\delta')}]$ for all $m, n \geq 0$, $h = h(\delta)$ being a positive constant. Hence

$$\begin{aligned} \|F(\alpha); \varrho + \delta\| &\leq \sum_{m,n=0}^{\infty} |a_{mn}| \|\beta_{mn}; \varrho + \delta\| \\ &\leq h \sum_{m,n=0}^{\infty} |a_{mn}| \exp[-(m+n)^{(\varrho+\delta')/(e+1+\delta')}] \\ &\leq h' \|\alpha; \varrho + \delta'\|, \end{aligned}$$

where $h' = \max(h^{-1}, 1)$. Thus F is continuous and Theorem 3 is proved.

From (1.3), we know that $\sum c_{mn} a_{mn}$ converges in $X(\varrho)$ if and only if

$$(3.4) \quad \limsup_{m,n \rightarrow \infty} \frac{\log(m+n)}{\log(m+n) - \log^+ \log^+ |c_{mn}|} \leq \varrho + 1.$$

Now, we prove the following

LEMMA 1. *In $X(\varrho)$, the following three statements are equivalent:*

$$(3.5) \quad \limsup_{m,n \rightarrow \infty} \frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta\|^{-1}}{\log(m+n)} < \frac{1}{(\varrho + 1)}, \delta > 0,$$

(3.6) *For all sequences $\{a_{mn}\}$ of complex numbers, the convergence of $\sum_{m,n=0}^{\infty} a_{mn} \delta_{mn}$ in $X(\varrho)$ implies the convergence of $\sum_{m,n=0}^{\infty} a_{mn} \beta_{mn}$ in $X(\varrho)$.*

(3.7) *For all sequences $\{a_{mn}\}$ of complex numbers, the convergence of $\sum_{m,n=0}^{\infty} a_{mn} \delta_{mn}$ in $X(\varrho)$ implies that $\lim_{m,n \rightarrow \infty} a_{mn} \beta_{mn} = 0$ in $X(\varrho)$.*

Proof. In proving the sufficiency part of Theorem 3, we have already shown that (3.5) \Rightarrow (3.6). The implication (3.6) \Rightarrow (3.7) is evident. Hence we have to prove only that (3.7) \Rightarrow (3.5). To a contrary let (3.7) be true but, for some $\delta > 0$, (3.5) be not satisfied. Then, say for $\delta = \delta'$, one can pick sequences $\{m_k\}$, $\{n_l\}$ of positive integers such that

$$\frac{\log(m_k + n_l) - \log^+ \log^+ \|\beta_{m_k n_l}; \varrho + \delta'\|^{-1}}{\log(m_k n_l)} > \frac{1}{\varrho + 1 + (kl)^{-1}}$$

for all $k, l = 1, 2, \dots$. We define

$$a_{mn} = \begin{cases} \|\beta_{mn}; \varrho + \delta'\|^{-1}, & m = m_k, n = n_l \\ 0 & \text{otherwise.} \end{cases}$$

Then, for all large values of k and l and $m = m_k, n = n_l$,

$$\begin{aligned} \frac{\log(m+n)}{\log(m+n) - \log^+ \log^+ |a_{mn}|} &= \frac{\log(m+n)}{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta'\|^{-1}} \\ &< \varrho + 1 + (kl)^{-1}. \end{aligned}$$

Hence

$$\limsup_{m,n \rightarrow \infty} \frac{\log(m+n)}{\log(m+n) - \log^+ \log^+ |a_{mn}|} \leq \varrho + 1.$$

Thus, the sequence $\{a_{mn}\}$ defined above satisfies (3.1) and hence $\sum_{m,n=0}^{\infty} a_{mn} \delta_{mn}$ converges in $X(\varrho)$. So by (3.7), we have $\lim_{m,n \rightarrow \infty} a_{mn} \beta_{mn} = 0$. However

$$\|a_{m_k n_l} \beta_{m_k n_l}; \varrho + \delta'\| = |a_{m_k n_l}| \|\beta_{m_k n_l}; \varrho + \delta'\| = 1.$$

Therefore $\{a_{m_k n_l}\}$ does not converge to zero in $X(\varrho)$. This is a contradiction. Hence (3.5) must hold for every $\delta > 0$ and proof of Lemma 1 is complete.

LEMMA 2. *The following three conditions are equivalent:*

(3.8) *For all double sequences $\{a_{mn}\}_{m,n=0}^{\infty}$ of complex numbers, $\lim_{m,n \rightarrow \infty} a_{mn} \beta_{mn} = 0$ in $X(\varrho)$ implies that $\sum_{m,n=0}^{\infty} a_{mn} \delta_{mn}$ converges in $X(\varrho)$,*

(3.9) *For all sequences $\{a_{mn}\}$ of complex numbers, convergence of $\sum_{m,n=0}^{\infty} a_{mn} \beta_{mn}$ in $X(\varrho)$ implies that $\sum_{m,n=0}^{\infty} a_{mn} \delta_{mn}$ converges in $X(\varrho)$,*

$$(3.10) \quad \lim_{\delta \rightarrow 0} \left[\liminf_{m,n \rightarrow \infty} \frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta'\|^{-1}}{\log(m+n)} \right] \geq \frac{1}{\varrho + 1}.$$

Proof. Clearly (3.8) \Rightarrow (3.9). Hence we first prove that (3.9) \Rightarrow (3.10). Suppose, to a contrary, that (3.9) holds but (3.10) is not true. Then we have

$$\lim_{\delta \rightarrow 0} \left[\liminf_{m,n \rightarrow \infty} \frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta'\|^{-1}}{\log(m+n)} \right] < \frac{1}{\varrho + 1}.$$

Hence for any $\delta > 0$,

$$\liminf_{m,n \rightarrow \infty} \frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta'\|^{-1}}{\log(m+n)} < \frac{1}{\varrho + 1}$$

Let $\eta > 0$ be a fixed number. From (3.9), we can find increasing sequences $\{m_k\}, \{n_l\}$ of positive integers such that

$$\frac{\log(m_k + n_l) - \log^+ \log^+ \|\beta_{m_k n_l}; \varrho + \delta'\|^{-1}}{\log(m_k + n_l)} < \frac{1}{\varrho + 1 + \eta}.$$

For η_1 , $0 < \eta_1 < \eta$, we define a sequence $\{a_{mn}\}$ as

$$a_{mn} = \begin{cases} \exp[(m+n)(\varrho+\eta_1)/(\varrho+1+\eta_1)], & m = m_k, n = n_l \\ 0 & \text{otherwise.} \end{cases}$$

Then, for any $\delta > 0$, we have

$$(3.11) \quad \sum_{m,n=0}^{\infty} |a_{mn}| \|\beta_{mn}; \varrho + \delta\| = \sum_{k,l=1}^{\infty} |a_{m_k n_l}| \|\beta_{m_k n_l}; \varrho + \delta\|.$$

Now, for any $\delta > 0$, we omit those terms on the right hand side series for which $\delta < (kl)^{-1}$. Then the remainder of the series (3.11) is dominated by

$$\sum_{k,l=0}^{\infty} |a_{m_k n_l}| \|\beta_{m_k n_l}; \varrho + (kl)^{-1}\|.$$

Consequently, by (3.7), we obtain

$$\begin{aligned} & \sum_{k,l=0}^{\infty} |a_{m_k n_l}| \|\beta_{m_k n_l}; \varrho + (kl)^{-1}\| \\ & \leq \sum_{k,l=0}^{\infty} \exp[(m_k + n_l)(\varrho+\eta_1)/(\varrho+1+\eta_1) - (m_k + n_l)(\varrho+\eta)/(\varrho+1+\eta)]. \end{aligned}$$

Since $\eta_1 < \eta$, the series on the right hand side is convergent. Since $a_{mn} = 0$ for $m \neq m_k$, $n \neq n_l$, the series $\sum_{m,n=0}^{\infty} a_{mn} \beta_{mn}$ converges for the above choice of $\{a_{mn}\}$. Since this is true for any $\delta > 0$, $\sum_{m,n=0}^{\infty} a_{mn} \beta_{mn}$ converges in $X(\varrho)$. On the other hand, for this sequence $\{a_{mn}\}$, we also have

$$\limsup_{m,n \rightarrow \infty} \frac{\log(m+n)}{\log(m+n) - \log^+ \log^+ |a_{mn}|} = \varrho + 1 + \eta_1 > \varrho + 1,$$

which is a contradiction. This proves that (3.9) \Rightarrow (3.10). Lastly, we prove that (3.10) \Rightarrow (3.8). Suppose to a contrary that (3.10) holds but (3.8) does not. Then, there is a sequence $\{a_{mn}\}$ of complex numbers for which $a_{mn} \beta_{mn} \rightarrow 0$ in $X(\varrho)$ but $\sum_{m,n=0}^{\infty} a_{mn} \delta_{mn}$ does not converge in $X(\varrho)$. Hence from the equivalent condition (3.4), we have

$$\limsup_{m,n \rightarrow \infty} \frac{\log(m+n)}{\log(m+n) - \log^+ \log^+ |a_{mn}|} > \varrho + 1.$$

Thus, we can pick a positive number ε and sequences $\{m_k\}$, $\{n_l\}$ of positive integers such that

$$\frac{\log(m_k + n_l)}{\log(m_k + n_l) - \log^+ \log^+ |a_{m_k n_l}|} > \varrho + 1 + \varepsilon.$$

Let $0 < \eta < \varepsilon/2$. From (3.10), we can find a positive number δ such that

$$\liminf_{m,n \rightarrow \infty} \frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta\|^{-1}}{\log(m+n)} \geq \frac{1}{\varrho + 1 + \eta}.$$

Choose an integer $N = N(\eta)$ such that for $m, n \geq N$,

$$\frac{\log(m+n) - \log^+ \log^+ \|\beta_{mn}; \varrho + \delta\|^{-1}}{\log(m+n)} \geq \frac{1}{\varrho + 1 + 2\eta}.$$

Therefore,

$$\begin{aligned} \|a_{mn}\beta_{mn}; \varrho + \delta\| &= \max\{|a_{mn}|\|\beta_{mn}; \varrho + \delta\| \} \\ &\geq \max\{|a_{m_k n_l}|\|\beta_{m_k n_l}; \varrho + \delta\| \} \\ &\geq \exp[(m_k + n_l)^{(\varepsilon+\eta)/(\varepsilon+1+\eta)} - (m_k + n_l)^{(\varepsilon+2\eta)/(\varepsilon+1+2\eta)}] \\ &> 1, \end{aligned}$$

since $\varepsilon > 2\eta$. Hence the sequence $\{a_{mn}\beta_{mn}\}$ does not converge to zero for the δ chosen above. Hence, $\{a_{mn}\beta_{mn}\}$ does not converge to zero in $X(\varrho)$. This is clearly contradictory to (3.10) and hence we obtain that (3.10) \Rightarrow (3.8). This proves Lemma 2.

The following result, which gives a characterization of a proper base in $X(\varrho)$, follows from Lemma 1 and Lemma 2. Thus, we state

THEOREM 4. *A base $\{\beta_{mn}\}$ in a closed subspace $X_0(\varrho)$ of $X(\varrho)$ is proper if and only if the conditions (3.5) and (3.10) stated above are satisfied.*

The authors are thankful to the referee for his valuable comments.

References

- [1] O. P. Juneja and G. P. Kapoor, *Analytic Functions-Growth Aspect*, Pitman, London 1985.
- [2] O. P. Juneja and A. Sinha, *Proper bases, continuous linear functionals, continuous linear transformations and simultaneous automorphisms in a complete linear metric space*, Far East J. Math. Sci. 3, no. 1, (1995), 63–95.
- [3] J. K. Srivastava and R. K. Srivastava, *Automorphisms and proper bases in space of analytic functions of several complex variables represented by Dirichlet series*, Kyungpook Math. J. 21, no. 2, (1981), 251–262.
- [4] J. K. Srivastava and R. K. Srivastava, *On the space of analytic functions of several complex variables represented by Dirichlet series*, Ganita 32 (1981), 133–144.
- [5] W. Stoll, *Holomorphic functions of finite order in several complex variables*, Amer. Math. Soc. 1974.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ROORKEE
ROORKEE 247 667, INDIA

Received September 28, 1998; revised version August 25, 1999.