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SPACES OF ANALYTIC FUNCTIONS
OF TWO COMPLEX VARIABLES

Abstract. Let f(21,22) = Ew

m,n=0
variables z; and z; in the polydisc |z;| < 1. The growth parameters such as order etc. were
defined by Juneja and Kapoor [1]. Based on these, the spaces of such analytic functions
have been considered and a norm defined. The topological properties of these spaces have
been obtained. Besides finding the duals of these spaces, the proper bases are characterized
in terms of growth parameters.

amn2]" 27 be an analytic function of two complex

1. Let
o o]
f(Z]_,Zz) = Z amnzinzga

m,n=0
amn € C, (21,22) € CxC: |z| < r; < 1,1 = 1,2, be analytic. Various
workers, such as, Stoll [5], Juneja and Kapoor [1] etc. have studied the
growth aspect of these functions and defined their order etc. Let
M(r17r2) = max lf(zhzZ)I‘
|zl <7y

>y

Then f(z1,22) is said to be of order p if

+1opt
log bgﬂﬂ“”ﬂzg, 0<e<L 0.

1.1 limsu
( ) "'1,7'2""11) - log 10g(7‘17‘2)_1

Further, f(z1,2;) will be of order g if and only if

. log(m + n)
1.2 limsu
(1.2) m,n-»olo) log(m + n) — log™ log™ |amn|

=p+1

The above formula follows from Theorem 5.2.2 of Juneja and Kapoor [1].
Let X (o) denote the class of all analytic functions f(21,22) as defined
above such that
+ gt
lim sup log" log™ M (rl,rf)
rra—1 —loglog(rirg)—

<p0,0< o< 0.
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Then, under pointwise addition and scalar multiplication, the set X () is a
linear space over field C. In view of (1.2), for any given € > 0, we have

(1.3) |amn| < exp[(m + n)(9+5)/(p+5+1)]’

for all large values of m and n. In view of (1.3), for any § > 0, the double
series

o0
(1.4) If;0+ 8= ) lamn|exp[—(m + n){e+d/(e+s+1)]
m,n=0
converges for f € X(p), and ||f; 0 + d|| defines a norm on X (g). We denote
the corresponding normed space by X(p,d). The lattice product of these
normed topologies is denoted by X (p). The space X(p) is metrizable and
its metric is given by

(1.5) Afg) = 3 2o — sl
q=1

1+ || f —gllq

where ||fllg = S0 =0 [amn] exp[—(m + n)(e+a™)/ (e+a™ 1)),

We denote by X (o) the space X (p) equipped with above metric. J. K.
Srivastava and Rajiv K. Srivastava ([3], [4]) have studied the properties
of spaces of analytic functions of several complex variables represented by
Dirichlet series such as their completeness, linear hemeomorphisms etc.
O. P. Juneja and A. Sinha [2] have also obtained properties of proper bases.

In this paper, we study different properties of the space X (o) such as
completeness, its dual and linear transformations of X (g) into itself.

, f,9 € X(a),

2. In this section, we obtain results concerning linear transformations on
Xi(o)-
First we prove a completeness theorem. In what follows, we shall denote
for m,n > 0,
am'n(zla z2) = zinz;'
We have
THEOREM 1. The space X (o) is a Frechet space.

Proof. In order to prove the theorem, it is sufficient to show that the space
X (o) is complete. Thus, let {fo} be a A-Cauchy sequence in X(p). Then
for any ' > 0, there exists a positive integer mg = mg(n') such that

(2.1) Mo~ follg<n' foralle, B>mg, g2 1.
Let us denote by

oo
falz1,22) = Z 0531)121"41
mn=0
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fa(z1,22) = Z alf) yman,

m,n=0
Then we have for o, 3 > mg, ¢ > 1.
oo
(2.2) > 1el) —aBie < 7,
m,n=0

where & = exp[—(m+n)(9+q_l)/(‘~’+1+q—‘)] contains m, n but no «, S. Since
each term in (2.2) on the left hand side is obviously less than 7', we get
|a{) — a(8)| < o /&Ya, B > my, and fixed m,n
Thus for given > 0 and fixed m and n, 3mg such that
6@ —a® | <n  Va,B > mo.

The letter implies that {a(a) ® 1, is a Cauchy sequence of complex num-
bers for each fixed m and n. Therefore, there exists a double sequence
{amn}i n=o such that

lim aS,‘f,)‘ =Qmn, m,n=01,2....
a—o0

Now, taking 8 — oo in (2.2), we get for a > my.

oo
(23) 3 1al%) — amalexp[—(m + m)(ere VD <
m,n=0
Taking a: = mg, we get for any fixed g,
|Gmn| exp[—(m + n)(eta™ )/ (e+1+a7h)
< [a{mo) | exp[—(m + n)@te )/ (et1+a™H] 4 o
Now, fmq(21,22) = E: 0 as,',':,")zl 2% € X, (p). Hence the condition (1.3)
is satisfied. Therefore, for arbitrary p > ¢, we have

|amn| exp[...(m + n)(0+q_l)/(e+1+q—l)]
<2+ exp[—(m + n)(etP N/ (e14p™h) _ (1 4 pyleta™/(et14+a7Y)

Since p > ¢ is arbitrary, the second term on the right hand side approaches
zero as (m + n) — oo. Also, since n > 0 was arbitrarily chosen, therefore
the sequence {am,} satisfies (1.3) for sufficiently large values of (m + n).
Consequently,

flz1,22) = Z emnzy 25 belongs to X, ().

m,n=0
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Again from (2.3), for arbitrary e > 0and ¢ = 1,2,..., we have || foa~ f|lq < e.
Hence

g e =1l € Ng-a_ _E
A(fa,f)—qf;%? q1+”fa_;||q < 1+€q§)2 Bl

Since the above inequality holds for all @ > my, it follows that. f, — f
as a — 00. Since we have already proved that f € X(p), this showes that
X (o) is complete.

The next result characterizes the linear continuous functionals on X, (o).
We have the following

THEOREM 2. A continuous linear functional F on Xx(g) is of the form
F(f) = Em n=p @mnCmn if and only if

(24)  lomn| < Lexpl—(m + )+ /@4 mn > 0,92 1,
where L is a finite, positive number and f(21,22) = Y0, | _0 Gmn 2725 -

Proof. Let F : X5(¢) — C, where C is the complex field, be a linear,
continuous functional. Then for any sequence {f;} C Xa(g) with f; — f,
we have F(f;) — F(f) as j — oo. Now, let f(z1,22) = 300 _g amnz{"zg,
where {amn} satisfies (1.3). Then f € X, (p). Also for § = 1,2,..., let us
put fj(z1,22) = Zm n=00mn27"23. Then f; € X»(o) for j =1,2,.... Let g
be any fixed positive integer and let 0 < ¢ < ¢~ 1. Then from (1. 3), we can
find a positive integer j such that
|amn| < exp[(m + n)(ete)/ (e+1+elym 5 > 4.

Now,

[o ]
1 =fill =] X emnsrz
mn=j+1 q
oo

= Z |amn| exp[_(m + n)(9+q"1)/(e+1+q‘1)]
mn=j7+1

o0
< Z exp|(m + n)lete)/(e+1+e) _ (4 n)(g+q‘1)/(e+1+q—1)]
m,n=j+1

<é
for sufficiently large values of j, where § > 0 is arbitrarily small. Hence

oM = Fills Sy b,
M) 22 T+17 - f:llfgl2 G+ -
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Hence f; — f in X(p) as j — o0o. Therefore,
lim F(f;) = F(f).
j—o0

Put cmn = F(z[*2%). Then

F(f)= lim F(f;) = lim Z GmnCmn = Z GmnCmn,

m n=0 m,n=0
where, |cmn| = |F(2]*2%)|. Since F is continuous on X,(g), it is continu-
ous on Xy (g) for each ¢ = 1,2,.... Consequently, there exists a positive

constant L independent of ¢ such that
|F(z;nzg)| = |cmn| < L”‘smn”qa q2>1,

where dmn(21,22) = 27"z7. Now, using the definition of the norm for
Omn(21, 22), we get

lemn] < Lexp[—(m + n)(eta™ )/ eri+a™)),

for all m,n > 0, ¢ > 1. Hence we have F(f) = 2:,n=0 QmnCmn, Where
Cmn’s satisfy (2.4).

Conversely, suppose that c¢,,,’s satisfy (2.4) and for any sequence of
complex numbers {amn }, F(f) = Ef:,n=o GmnCmn- Then for ¢ > 1, we have

oo
IF(F)ISL Y |amn| expl—(m + n)lete™)/(e+i+a™)],

m,n=0

Then |F(f)| < L||fllg; ¢ > 1. Hence F € XI/HI (o) for ¢ =1,2,... Now since

.
Mfo) = 22 T+ 17 - ol

therefore X} (o) = Uoe a=1X| e (0)- Hence F e X, (o). This proves Theorem 2.

3. In this section we shall study continuous linear transformations and
proper bases in X (g). The sequence of functions {amn} is said to be linearly
independent if E: n=0 @mnQmn = 0 implies that a,, = 0 for all sequences
{@mn} of complex numbers for which the series D o _ GmnQmn converges
in X(p). {@mn} spans a subspace Xg of X(p) prov1ded Xo consists of all
linear combinations zm n=0 @mnCOmn Which are convergent in X(p). A se-
quence {amn} C X (o) which is linearly independent and spans a subspace
Xo of X(p) is said to be a base in Xj. Finally, a sequence {amn} C X (o) will
be called a ”proper base” if it is a base and satisfies the condition: ” For all se-
quences {@mn} of complex numbers, the convergence of E:,fmo AmnCQmn D
X (o) implies the convergence of Z:,r;:ﬂ GmnOmn in X (g), and conversely”.
Now, we prove:
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THEOREM 3. A necessary and sufficient condition that there exists a con-
tinuous linear transformation F : X (p) — X(p) with

F(Jmn) = ﬂm‘nama n,= 0) 1,2a .. -;Jmn(zlyz2) = zinzg,
is that for each § > 0,

[ + + . ~1
(3.1) lim sup log(m + n) — log™ log™ ||Bmn; ¢ + 6| < 1 |
m,n—00 log(m + 'n,) (Q + 1)

Proof. Let F be a continuous linear transformation from X (p) into X (o)
with F(6mn) = Bmn, myn = 0,1,2,.... Then, for any given § > 0 one can
find §; > 0 and a constant K = K(§) such that

| F(8mn); 0+ 8|l £ Kl|6mn; 0 + 61|

ie.
1Bmn; @+ 8]| < K exp[—(m + n)(eto)/(et1+e)]
i.e.
(m + n)(e+61)/(9+1+61) < log K + log ||Bmn; 0 + 6]}
i.e.
log(m + n) — log™ log™ |Bmn; 0 + 6|~} < 1 +o(1)
log(m + n) o+1+4,
ie.
1 —log* + n -1 1
lim sup .28+ ) —log” log” 1Bmnie 817" 1 _
M, 100 log(m + n) o+1+481 (e+1)

Conversely, suppose that the double sequence {8mn } satisfies (3.1). Then,
for any ' > 0, there exists Ny = Ny(n') such that for all § > 0 and all
m,n > Ny,

log(m + n) —log* log* |Bmn; 0 4 6] * < 1

Tog(m + ) RS
or
(3.2) |Bmn; 0 + 6| < exp[~(m + n)(9+n’)1/(e+1+n’)]_
Let

flzr,22) = Y amn2l2f € X(0)

m,n=0
and choose 0 < 7 < 7. Then from (1.3), there exists N;(n) = N; such that
for all m,n > N,

(3.3) lamn| < exp[(m + n)(etn)/(et1+m)]
Let ng = max(N,, N1). Then from (3.2) and (3.3), we have for all m,n > nq,

[ l1Brn; @ + 81l < expl(m + n) @D/ @D — (1 4 m)letn)/(et1t)
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Since n < 7/, this inequality implies that the series Z:,r;:O @mnPmn COD-
verges absolutely in X (g) and since X(p) is complete, we infer that this
series converges to an element of X(p). Let us define a transformation

F : X(¢) — X(o) by putting F(a) = Y77 _@mnBmn for a € X (o).
We note that F is linear, F(6;mn) = Bmn and for § > 0, 36’ > 0, such that
log(m +n) — log™ log™ |Bmnj 0+ 4|71 1
log(m + n) o+1+4¢

for m,n > N(8,8') i.e [|Bmn; @ + 8|l < hexp[—(m + n)(e+)/(e+1+6))] for all
m,n > 0, h = h(§) being a positive constant. Hence

IF(@)ie+dll < Y lamalllBmnio+ 4|

m,n=0

ShE:MMMmFm+mWWWﬁHm

m,n=0
< Kllos 0+ 8|,

where b’ = max(h~!,1). Thus F is continuous and Theorem 3 is proved.
From (1.3), we know that Y ¢nn@mn converges in X(p) if and only if

) log(m + n)
3.4 lim su
(34) m,n_.£ log(m +n) — log* log™ |cimn

Now, we prove the following

]$g+L

LEMMA 1. In X (p), the following three statements are equivalent:

, log(m + n) — log™ log™ ||Bmn; 0 + 6|2 1

e e D

(3.6) For all sequences {amn} of complex numbers, the convergence
of Z:,u:() Gmndmn tn X(g) implies the convergence of
> n=0 @mnBmn in X(0)-

(3.7)  For all sequences {amn} of complez numbers, the convergence of

Yoo ne0 8mnOmn in X (o) implies that liMm oo GmnBmn = 0 in

X (o).
Proof. In proving the sufficiency part of Theorem 3, we have already shown
that (3.5)=>(3.6). The implication (3.6)=>(3.7) is evident. Hence we have to
prove only that (3.7)=>(3.5). To a contrary let (3.7) be true but, for some
d > 0, (3.5) be not satisfied. Then, say for § = §’, one can pick sequences
{mi}, {m} of positive integers such that

log(mux + m1) ~ log* log™ || Bmyn,; 0+ 8'|| 7 1

log(mny) o+ 1+ (k)1
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for all k,l =1,2,.... We define

o = { UBrmn; 0+ 8|7, m = my, n=mn

mn N
0 otherwise.

Then, for all large values of k and ! and m = my, n = ny,

log(m + n) log(m + n)
log(m + 1) — log* log* [amn|  log(m +n) — log+ log* [|Bmn; 0+ '] 2
<o+1+ (k)T
Hence
lim sup log(m + n) <o+1.

m,n—oo log(m +n) — log* log? |ama| ~
Thus, the sequence {am,} defined above satisfies (3.1) and hence
E::,n=o GmnOmn converges in X (g). So by (3.7), we have lim;, n—00 @mnBmn
= 0. However

lamun Brminis @ + 8'l| = lamn, ||| Bmeni; 0 + 8[| = 1.
Therefore {am,n, } does not converge to zero in X (g). This is a contradiction.
Hence (3.5) must hold for every § > 0 and proof of Lemma 1 is complete.

LEMMA 2. The following three conditions are equivalent:

(3.8)  For all double sequences {amn}mn—o Of complex numbers,
limy 00 GmnBmn = 0 in X (o) zmplzes that 320 0 @mnOmn cON-
verges in X (p),

mn—

(3.9) For all sequences {amn} of complex numbers, convergence of

Z;’: =0 @mnBmn in X(0) implies that 3 00 _amndmn converges
in X (o),

_ + + . ~17
(310) lim | liminf 28m+ 1) ~ 108" 108" |Bmnie +OIT7] 1
§—0 | m,n—o0 log(m + n) 1 T e+1
Proof. Clearly (3.8)=>(3.9). Hence we first prove that (3.9)=-(3.10). Sup-
pose, to a contrary, that (3.9) holds but (3.10) is not true. Then we have
log(m + n) — log* log* || Bmn; 0 + 3|71 1

< .
log(m + n) | o+1

lim [lim infm nooo

6—0
Hence for any § > 0,
-1 + + . -1
m,n—o0 log(m + n) o+1
Let n > 0 be a fixed number. From (3.9), we can find increasing sequences
{ms}, {ru} of positive integers such that
log(my + 1) — log™ log™ || Bm,ny; 0+ 8| 1
log(my + ) oe+1+7
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For n1, 0 < m; < 1, we define a sequence {amn} as

{ exp[(m + n)letm)/(etl+tm) 1y = my n=n
amn — / ] b
0 otherwise.

Then, for any § > 0, we have

oo o0
(3.11) 3 lamnllBmnio+ 61 = Y [amen|1Bmunii € + 61]-
m,n=0 k,l=1

Now, for any § > 0, we omit those terms on the right hand side series for
which § < (kl)~!. Then the remainder of the series (3.11) is dominated by

oo
Y lamun|1Brmgni; 0+ (k1) M-
k=0
Consequently, by (3.7), we obtain

o0

Z |amni|[|Brminii @ + (KDY

k,l=0

2]
< Z exp[(my + m)(2+m)/(9+1+fn) — (mg + n,)(e+n)/(g+1+n)]_
k=0

Since 11 < 7, the series on the right hand side is convergent. Since @, =0
for m # myg, n # ny, the series Z:,u:O GmnPmn converges for the above
choice of {amn }. Since this is true for any 6 > 0, E:,n=0 GmnBmn converges

in X(p). On the other hand, for this sequence {amn}, we also have

lim sup log(m + n)

m,n—o0 log(m + n) e 10g+ 10g+ Iamnl ¢ " ¢

which is a contradiction. This proves that (3.9)=>(3.10). Lastly, we prove
that (3.10)=(3.8). Suppose to a contrary that (3.10) holds but (3.8) does
not. Then, there is a sequence {amn} of complex numbers for which
AmnPmn — 0 in X (o) but Z:,u:O @mndmn does not converge in X(p).
Hence from the equivalent condition (3.4), we have

limn sup log(m + n)

>po+1.
m,n—oo log(m + n) — log" log™ |amn| e

Thus, we can pick a positive number € and sequences {my}, {ni} of positive
integers such that

log(mg + 1)
log(my + ny) — log™* log™ |am,n,|

>p+1+e.
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Let 0 < 7 < /2. From (3.10), we can find a positive number § such that

log(m + n) — log* log? [|Bmn; 0+ 8|72 > 1
log(m + n) Te+l+n

liminf,, n—c0

Choose an integer N = N(n) such that for m,n > N,

log(m + n) — log* log* [[|Bmni e+ 3~ 1
log(m +n) T o+1+2n

Therefore,
“amnﬂmn; o+ 6“ = ma-x{lamnlnﬂmn; e+ 6“}

2 max{|@myn, ||| Bmni; 0 + 6|1}
> exp[(mx + nl)(e+e)/(9+1+e) ~ (me + nz)(9+2'7)/(9+1+2’l)]

>1,

since € > 2n. Hence the sequence {amnBmn } does not converge to zero for the
d chosen above. Hence, {@mnmn} does not converge to zero in X (p). This
is clearly contradictory to (3.10) and hence we obtain that (3.10)=>(3.8).
This proves Lemma 2.

The following result, which gives a characterization of a proper base in

X (o), follows from Lemma 1 and Lemma 2. Thus, we state

THEOREM 4. A base {Bmn} in a closed subspace Xo(o) of X (o) is proper if
and only if the conditions (3.5) and (3.10) stated above are satisfied.

(1]
(2]

(3]

(4]
(5]

The authors are thankful to the referee for his valuable comments.
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