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NEW CRITERIA FOR UNIVALENCE
OF CERTAIN INTEGRAL OPERATORS

Abstract. In this work there is considered the class of univalent functions defined by
2y
the condition | sz(z;) - 1’ <1, |z| < 1, where f(2) = z+a22% +. .. is analytic in the unit

disc U = {z : |z| < 1}. The author determines conditions for the univalence of certain
integral operators.

1. Introduction

We denote by S the class of regular and univalent functions f(z) =
Z+az% + ... in the unit disc U. Let A be the class of functions f which are
analytic in the unit disc U with f(0) = f’'(0) -1 =0.

In their paper [2] Ozaki and Nunokawa proved the following

THEOREM A. Assume that f € A satisfies the condition

" 21(2)

-1
f3(2)
then f is univalent in U.

<1, ze€Ul,

2. Preliminary results
We shall use the following results.

THEOREM B [3]. Let a be a complez number, Rea > 0 and f € A. If

1— lzlmw zf”(z)
@) Rea f(2) st
for all z € U, then the function
(3) Fo(z) = [a S u®" 1 (u) du] B
0

1s in the class S.
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THEOREM C [4]. Let a be a complez number, Rea > 0 and f(z) = z +
az2% + ... is a regular function in U. If

_ 2Rea 1"
Rea f(z)
for all z € U, then for any complex number 3, Ref3 > Rea the function
¢ 3
(5) Fg(2) = [ﬂSuﬁ‘lf'(u) du] =z+...
0

is regular and univalent in U.

THE SCHWARZ LEMMA [1]. Let the analytic function f(z) be regular in the
unit circle |z| < 1 and let f(0) = 0. If, in [2] < 1, |f(2)| £ 1, then

(6) @RI <2, Izl <1
where equality can hold only if f(2)= Kz and |K|=1.

3. Main results

THEOREM 1. Let g € A satisfy (1) and a be a complez number such that
Rea > ]-2[ If

(7) lg(z)| <1
z € U, then for every complex number 3, Ref3 > Rea the function
1 1
z s 3
o b8
0

s in the class S.

Proof. Let us consider the function

9) h(z) = § (2@) : du.

u
0
The function h is regular in U. From (9) we have
W(z) = (427,
Wi(z) = 3 (48) =7 2 ehete) ang

zhll(z) B 1-— |z|2Reai
h(z) |  Rea |of

1-— Iz|2Rca

(10) Rea

-
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for all z € U. From (10) we get

(11) 1-— |Z|2Rea zh"(z) 1-— |z|2Rea zg'(z) 1- IZPRea
Rea h(z) |~ |a|Rea | g(2) |a|Rea
for all z € U. Hence, we have
— |»|2Rea n _ 2Rea 2,/
Rea h'(2) |a|Rea g%(2) | |2
forall zeU.
By the Schwarz Lemma also |g(z)| < |z|, z € U and using (12) we obtain
_ 2Rea " _ 2Rea 2,0
(13) 1-— |z zh"(2) 51 2] zg(z)_1+2
Rea h'(z) |a| Reat 9%(z)
forall ze U.
Since g satisfies the condition (1) then from (13) we have
1 — |z|2Rex | zh"(2) 3 2Rea 3
- eay <
(14) Rea h'(z) | — |a|Rea(1 1 )< || Reo:
forall zeU.
Since Fl%; < 1 we conclude that
1- |z12Rea zh”(z)
<
(15) Rea h(z) |~ L
forallzeU.

Now (15) and Theorem C imply that the function H, g is in the class S.

THEOREM 2. Let g € A satisfy (1) and a be a complez number, with |a—1| <
Rea
Bea g

3

(16) lg(z)| <1

for all 2 € U, then the function

(17) Ga(2) = [afg™ () du]"
0

ts in the class S.
Proof. From (17) we have

z a~-1 é—
(18) Ga(z) = [a S u*? (M) du] .
5 u
Let us consider the function

(19) f(z) =

(£)"

© e N
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The function f is regular in U. From (19) we obtain f'(2) = (M)a_l,
f'(z) = (= 1) (£2) "7 2lrs(e) ang

1-— 'z'2Rea zf”(z) 1— 'Z|2Rea zgl(z)
00 e | e (e )
for all 2 € U. Hence, we have
1 — |z|*Rex| 2f"(2) 1 — [z[2Rex 11229/ (2) | |9 (2)|
(21) Rea f'(2) Sla-1| Rea ( 9%(2) | |7 * 1).

Applying Schwarz Lemma and using (21) we obtain
1~ 2Rea 1" _ 2Rea 2./
'zl Zf (Z) Sla_1|1 |Z| zg(z)_l +2 .
Rea f(2) Rea 9%(2)
Since g satisfies the condition (1), then from (22) we have

(22)

1_|z|2Rea zf"(z) 1_|z|2Rea Ia“ll
2 < — <
(23) Reo: fi(z) | ~ 3o =1l Rea ~ 3 Rea
forall ze U.
But ja — 1] < &&= so from (23) we get
11— |z|2Rea zf”(z)
24 <1
(24) Rea fil(z) | ~
forallze U.

Now Theorem B and (24) imply that the function G, is in the class S.
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