

Virgil Pescar

NEW CRITERIA FOR UNIVALENCE OF CERTAIN INTEGRAL OPERATORS

Abstract. In this work there is considered the class of univalent functions defined by the condition $\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| < 1$, $|z| < 1$, where $f(z) = z + a_2 z^2 + \dots$ is analytic in the unit disc $U = \{z : |z| < 1\}$. The author determines conditions for the univalence of certain integral operators.

1. Introduction

We denote by S the class of regular and univalent functions $f(z) = z + a_2 z^2 + \dots$ in the unit disc U . Let A be the class of functions f which are analytic in the unit disc U with $f(0) = f'(0) - 1 = 0$.

In their paper [2] Ozaki and Nunokawa proved the following

THEOREM A. *Assume that $f \in A$ satisfies the condition*

$$(1) \quad \left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| < 1, \quad z \in U,$$

then f is univalent in U .

2. Preliminary results

We shall use the following results.

THEOREM B [3]. *Let α be a complex number, $\operatorname{Re}\alpha > 0$ and $f \in A$. If*

$$(2) \quad \frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \leq 1$$

for all $z \in U$, then the function

$$(3) \quad F_\alpha(z) = \left[\alpha \int_0^z u^{\alpha-1} f'(u) du \right]^{\frac{1}{\alpha}}$$

is in the class S .

THEOREM C [4]. *Let α be a complex number, $\operatorname{Re}\alpha > 0$ and $f(z) = z + a_2z^2 + \dots$ is a regular function in U . If*

$$(4) \quad \frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \leq 1$$

for all $z \in U$, then for any complex number β , $\operatorname{Re}\beta \geq \operatorname{Re}\alpha$ the function

$$(5) \quad F_\beta(z) = \left[\beta \int_0^z u^{\beta-1} f'(u) du \right]^{\frac{1}{\beta}} = z + \dots$$

is regular and univalent in U .

THE SCHWARZ LEMMA [1]. *Let the analytic function $f(z)$ be regular in the unit circle $|z| < 1$ and let $f(0) = 0$. If, in $|z| < 1$, $|f(z)| \leq 1$, then*

$$(6) \quad |f(z)| \leq |z|, \quad |z| < 1$$

where equality can hold only if $f(z) \equiv Kz$ and $|K| = 1$.

3. Main results

THEOREM 1. *Let $g \in A$ satisfy (1) and α be a complex number such that $\operatorname{Re}\alpha \geq \frac{3}{|\alpha|}$. If*

$$(7) \quad |g(z)| \leq 1$$

z $\in U$, then for every complex number β , $\operatorname{Re}\beta \geq \operatorname{Re}\alpha$ the function

$$(8) \quad H_{\alpha,\beta}(z) = \left[\beta \int_0^z u^{\beta-1} \left(\frac{g(u)}{u} \right)^{\frac{1}{\alpha}} du \right]^{\frac{1}{\beta}}$$

is in the class S .

Proof. Let us consider the function

$$(9) \quad h(z) = \int_0^z \left(\frac{g(u)}{u} \right)^{\frac{1}{\alpha}} du.$$

The function h is regular in U . From (9) we have

$$h'(z) = \left(\frac{g(z)}{z} \right)^{\frac{1}{\alpha}},$$

$$h''(z) = \frac{1}{\alpha} \left(\frac{g(z)}{z} \right)^{\frac{1}{\alpha}-1} \frac{zg'(z)-g(z)}{z^2} \text{ and}$$

$$(10) \quad \frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zh''(z)}{h'(z)} \right| = \frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \frac{1}{|\alpha|} \left| \frac{zg'(z)}{g(z)} - 1 \right|$$

for all $z \in U$. From (10) we get

$$(11) \quad \frac{1 - |z|^{2Re\alpha}}{Re\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2Re\alpha}}{|\alpha|Re\alpha} \left| \frac{zg'(z)}{g(z)} \right| + \frac{1 - |z|^{2Re\alpha}}{|\alpha|Re\alpha}$$

for all $z \in U$. Hence, we have

$$(12) \quad \frac{1 - |z|^{2Re\alpha}}{Re\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2Re\alpha}}{|\alpha|Re\alpha} \left(\left| \frac{z^2 g'(z)}{g^2(z)} \right| \frac{|g(z)|}{|z|} + 1 \right)$$

for all $z \in U$.

By the Schwarz Lemma also $|g(z)| \leq |z|$, $z \in U$ and using (12) we obtain

$$(13) \quad \frac{1 - |z|^{2Re\alpha}}{Re\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2Re\alpha}}{|\alpha|Re\alpha} \left(\left| \frac{z^2 g'(z)}{g^2(z)} - 1 \right| + 2 \right)$$

for all $z \in U$.

Since g satisfies the condition (1) then from (13) we have

$$(14) \quad \frac{1 - |z|^{2Re\alpha}}{Re\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{3}{|\alpha|Re\alpha} (1 - |z|^{2Re\alpha}) \leq \frac{3}{|\alpha|Re\alpha}$$

for all $z \in U$.

Since $\frac{3}{|\alpha|Re\alpha} \leq 1$ we conclude that

$$(15) \quad \frac{1 - |z|^{2Re\alpha}}{Re\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \leq 1,$$

for all $z \in U$.

Now (15) and Theorem C imply that the function $H_{\alpha,\beta}$ is in the class S .

THEOREM 2. *Let $g \in A$ satisfy (1) and α be a complex number, with $|\alpha - 1| \leq \frac{Re\alpha}{3}$. If*

$$(16) \quad |g(z)| \leq 1$$

for all $z \in U$, then the function

$$(17) \quad G_\alpha(z) = \left[\alpha \int_0^z g^{\alpha-1}(u) du \right]^{\frac{1}{\alpha}}$$

is in the class S .

Proof. From (17) we have

$$(18) \quad G_\alpha(z) = \left[\alpha \int_0^z u^{\alpha-1} \left(\frac{g(u)}{u} \right)^{\alpha-1} du \right]^{\frac{1}{\alpha}}.$$

Let us consider the function

$$(19) \quad f(z) = \int_0^z \left(\frac{g(u)}{u} \right)^{\alpha-1} du.$$

The function f is regular in U . From (19) we obtain $f'(z) = \left(\frac{g(z)}{z}\right)^{\alpha-1}$, $f''(z) = (\alpha-1)\left(\frac{g(z)}{z}\right)^{\alpha-2}\frac{zg'(z)-g(z)}{z^2}$ and

$$(20) \quad \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \leq \frac{1-|z|^{2Re\alpha}}{Re\alpha} |\alpha-1| \left(\left| \frac{zg'(z)}{g(z)} \right| + 1 \right),$$

for all $z \in U$. Hence, we have

$$(21) \quad \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \leq |\alpha-1| \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left(\left| \frac{z^2g'(z)}{g^2(z)} \right| \frac{|g(z)|}{|z|} + 1 \right).$$

Applying Schwarz Lemma and using (21) we obtain

$$(22) \quad \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \leq |\alpha-1| \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left(\left| \frac{z^2g'(z)}{g^2(z)} - 1 \right| + 2 \right).$$

Since g satisfies the condition (1), then from (22) we have

$$(23) \quad \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \leq 3|\alpha-1| \frac{1-|z|^{2Re\alpha}}{Re\alpha} \leq 3 \frac{|\alpha-1|}{Re\alpha}$$

for all $z \in U$.

But $|\alpha-1| \leq \frac{Re\alpha}{3}$ so from (23) we get

$$(24) \quad \frac{1-|z|^{2Re\alpha}}{Re\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \leq 1$$

for all $z \in U$.

Now Theorem B and (24) imply that the function G_α is in the class S .

References

- [1] Z. Nehari, *Conformal Mapping*, Mc Graw-Hill Book Comp., New York, 1952 (Dover. Publ. Inc., 1975)
- [2] S. Ozaki and M. Nunokawa, *The Schwarzian derivative and univalent functions*, Proc. Amer. Math. Soc. 33(2), (1972), 392-394.
- [3] N. N. Pascu, *On a univalence criterion II*, Itinerant seminar on functional equations approximation and convexity, Cluj-Napoca, Preprint nr. 6, (1985), 153-154.
- [4] N. N. Pascu, *An improvement of Becker's univalence criterion*, Proceedings of the Commemorative Session Simion Stoilow, Brașov, (1987), 43-48.
- [5] C. Pommerenke, *Univalent Functions*, Göttingen, 1975.

"TRANSILVANIA" UNIVERSITY OF BRAȘOV
FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS
2200 BRAȘOV, ROMANIA

Received December 15, 1998; revised version September 28, 1999.