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THE JENSEN INEQUALITY FOR
s-BRECKNER CONVEX FUNCTIONS IN LINEAR SPACES

Abstract. We derive some inequalities of Jensen’s type for s-convex functions in the
sense of Breckner on subsets of linear spaces and give some applications connected with
special means.

1. Introduction

Let X be a real linear space and C a convex subset of X. If f is a real
valued convex function on C, then Jensen’s inequality states that

(1.1) f(ipizi) < i:?if(xi))
i=1 i=1

whenever p; > 0, z; € C and Z?:l p; = 1. For some classical results con-
nected with Jensen’s inequality see [12], Chapter 1. New inequalities related
to Jensen’s inequality are derived in [2]-[9] and [13].

A function f on C is said to be of Q-type provided
(1.2) ftz+ (1 —t)y) < f(z)/t+ f(y)/(1-¢)
for all t € (0,1) and z, y € C (see [12], p. 410). In particular, every non-
negative convex function and every nonnegative monotonic function on an
interval are of Q-type.

The following inequality for functions of Q-type was derived by Mitri-
novic and Pecarié [11] and is analogous to Jensen's inequality

(1.3) (X pa) <3 flwi) /o
i=1 =1
whenever p; >0,z; € Cand Y., pi =1
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In this paper we consider for s € (0,00) the class of s-Breckner convex
functions (which for 0 < s < 1 were called in (1], {10]) s-convex in the second
sense and we will prove some inequalities similar to Jensen’s inequality and
its refinements.

2. s-Breckner convex functions in linear spaces

DEFINITION 2.1. If f is a real valued convex function on C and s > 0, then
we say that f is s-Breckner convez function provided

(sB) fltz+ (1 —t)y) < f(z) + (1 -1)°f(y),
whenever 0 <t < 1 and z, y € C. For s = 1 it reduces to the usual notion
of convexity.

THEOREM 2.2. Let f be a real valued s-Breckner convez function on C and
s > 0. Then we have the inequality (generalising (1.1))

) £(pias) <3 ontf@),
=1

i=1
whenever p; >0, z; € C and Y o p; = 1.
Proof. We proceed by induction on n. For n = 2 it is just (sB). Now, if
(2.1) holds for n = k — 1, then given p; > 0, z; € C and ZLI pi =1 we
may and do assume that all p; > 0. We put 8; := p;/(p1 + ... + px—1) for
j<k. Then B +...+ Br—1 = 1 and thus we have
f(Brzr + ...+ Be—1Zk-1) < B1f(z1) + - - - + Be_1 f(Tke—1)-
Now for P:=p; +...+ pr—1 we have
frz1+ ...+ pezr) = f(P(m1z1+ ... + pe-1Zk-1)/P + prTk)
< Pf((prz1 + - .. + pr-1Zk—1)/P) + pp f (k)
< P((pif(z1) + ...+ Pk-1f(zx-1))/P°) + pi f (2k)

k
= ZP? f(z:)
i=1
which establishes (2.1) for n = k.
The following corollaries follow trivially.

COROLLARY 2.3. Let f be a real valued s-Breckner convez function on C and
s> 0. Then

(2.2) f(P“1 Zpiwi) <P pif(xi)
i=1 =1

whenever p; > 0, z; €C and Y., pi = P.
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COROLLARY 2.4. Let f be a real valued s-Breckner convez function on C and
§ > 0. Then

n n

(2.3) f(n‘1 Zmi) <n7* Y fl@),
i=1

=1

whenever ; € C.
In the paper [10] the following class of functions was considered.

DEFINITION 2.5. Let s € (0,1]. A real valued function f on an interval
I C [0,00) is s-convez in the second sense provided

flou+ Bv) < o f(u) + B° f(v)
for all u, v € I and @, 8 > 0 with a + 8 = 1. This is denoted by f € K2.
This definition of s-convexity was considered in [1], where was explored
the problem: whether rationally s-convex functions are s-convex.
We record here some of the results from [10] about s-convex functions.

THEOREM 2.6. Let 0 < s < 1. If f € K2, then f is nonnegative.

Recall that a function f : [0, 00) — [0,00) is a ¢-function if f(0) = 0 and
f is nondecresing and continuous, on {0, o).

THEOREM 2.7 ([10, Corollary 2]). If ® is a convez ¢-function and f is a
¢-function in K2, then the composition ® o f belongs to K2. In particular
¥ € K2

If 0 < s < 1 then there are, however, ¢-functions in K2 which are neither
of the form ®(u®) nor ®° for any convex ¢-function & ([10], Example 3).

3. Functionals related to single sums

Let C be a convex set in a linear space X and s > 0. We define

B(f,1,p,2) = Y_pif(:) - P f(P* 3 pias)
iel i€l
for each s-Breckner convex function f on C, each finite set I of natural
numbers, each sequence p of positive numbers and sequence z of points of
C, where Py := )./ pi.
It is clear that (2.2) is equivalent to B > 0. We prove some slightly less
obvious facts about this functional.

THEOREM 3.1. Let f be a s-Breckner convex function on C and take a
sequence p of positive numbers and a sequence x of points of C, and set
Pr:= 3.1 pi- Let I and K be disjoint finite sets of natural numbers. Then

(3.1) B(f,1UK,p,z) 2 B(f,1,p,z) + B(f, K, p, z).
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Proof. We have
B(f,IUK,p,2)= > pif(e:) = Ploxf (P > pisi)

i€IUK i€IUK
=Y pif(m)+ D pife) - Piukf
el k€K
9 ( Py piTi Pk pkwk)
Prox ey P Prk oy Py
> Zpif(wi) + Z pef (k) — Pluk
iel keK

biZ; PrZk
SO LY f( B ) )
(PIUK ! Py Pk keK Py

= Y pif(@i) - Pff(zpizi/PI)

il i€l
+ Y pif(e) - Pif( Y pai/Px)
keK kEK

= B(f,I,p,z) + B({, K, p, z).
THEOREM 3.2. Let f be a s-Breckner convex function on C and teke a
sequence p of positive numbers and a sequence x of points of C, and set

Pr:=3Y.c;pi. Let I and K be finite sets of natural numbers with I C K.
Then

(3.2) B(f,K,p,z) > B(f,I,p,z).
Proof. We have

B(f,Kap:m) = B(faIU (K\I),P,z) 2 B(f,I),p,:l:)+B(f,K\I,p,.’L‘),
by (3.1), so that B(f, K,p,z) — B(f,I,p,z) > B(f,K\ I,p,z) > 0.

Now consider the sequence {B,} with

n n
=Y pif(z) - Baf (B psi),
i=1 i=1
where P, := Y ", pi.
COROLLARY 3.3. The sequence {B,} is monotone nondecreasing and

Ba2 o [p1f(00) +03f(55) = (i +5)* f(mii + )/ (pi+ )] 2 0.

Now conmder the functional

H(f,I,p,x) := P f()_ pizi/ Pr),

ief
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for each s-Breckner convex function f on C, each finite set I of natural
numbers, each sequence p of positive numbers and sequence z of points of

C, where P; := Zielp,-.

THEOREM 3.4. The mapping H(f,1I,-,z) is subadditive, that is, if p and
q > 0 are sequences of positive numbers, then

(3.3) H(f,I,p+q,z) < H(f,1,p,x) + H(f,1,9,%).
Proof Let Qr:=) ;.7 - Then

H(f,I,p+a,2) = (Pr+Qn)°*f(Q_ (pi + @)/ (Pr + Q1))

i€l
- s Py PiTi Qr LT
= (PI+QI) 'f((P[+QI) & Py (PI+QI) iel Q1 )
s —-ﬁ——-— %
< (Pr+Qr) ((P1+Q1)’f(.~ez PI)
L ST oy ]
+ (Pr+@Qr)* (.'ez QI)

= H(f,1,p,z) + H(f,1,q,2)).

Similarly one can prove that H is subadditive as an index set mapping.
THEOREM 3.5. If I and K are disjoint finite sets of natural numbers, then
(3.4) H(f,IUK,p,z) < H(f,I,p,z)+ H(f,K,p, ).

It is obvious that H has the following homogeneity property.
PROPOSITION 3.6. For a > 0 we have H(f,I,ap,z) = «*H(f,1,p, ).

Similarly, H is s-Breckner convex over positive sequences.
PROPOSITION 3.7. If p and q are sequences of positive numbers, then

H(f,I,ap+ (1 -a)g,2) < o’H(f,I,p,z) + (1~ ) H(f,1,4,2)
forall0<a<]1.

4. Some applications

Suppose that f is a concave function on an interval [a,b] which is also
s-Breckner convex. Then we have

n n n
(41 Y pf@)/Pa< f(PTY o pim) < 3 pif(m)/ Py

i=1 i=1 i=1
which suggests that we need conditions which guarantee that f has those
properties.
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THEOREM 4.1. Let ® be a ¢-function on [0,00) which is twice differentiable
on (0,00). If0<s< 1 and

0 < B(t)®"(t) < (1 - s)[@' ()]
for all t, then ®° is a concave function which is also s-convez in the second
sense.

Proof. Note that, if ®(t) # 0, then &"(¢) > 0, so ¥ is convex. By Theo-
rem 2.7, the function g := ®° is s-convex in the second sense. Then

g"(t) = s[@()**[2(1)2"(t) - (1 - s)(¢'(1))*] < 0
which shows that g is also concave.

COROLLARY 4.2. Let s € (0,1). Then for 1 < g < 1/s the function g(z) :=
z9% is concave and s-convez in the second sense on [0, 00).

Applying (4.1) to the function g(z) := z%°, we get

n n qs
(4.2) Y pial*/P, < (Pr: ' Zpimi) < Zps /P
i=1 =1

with P, := ) .- ; p; if = and p are positive sequences, s € (0,1) and 1 < ¢ <
1/s. In particular we have

n n s n
(4.3) > pint/Pa < (P opizs) <Y vt/ P
=1 =1 i=1
and
n n
(4.4) > pizi/Pn <Y pizi/Py.
=1 i=1

Also, letting ¢ > 1 and s = 1/q, we get

n n 1/q n
Z:pi:l?:/q/Pn < (Pn—l Epiivi) < Zpg/qmg/q/qu
t=1 i=1

i=]

which gives us
(4.5) (Xn:pifv?/q/Pn)q <P? Zn:piwz < (Zp”" 7' /P,
Finally, let m::==1 qui in (4.5) to get -
(i;piyi/Pn)q <P;! i;piy? < (Zpl/" )
= =

which gives an upper bound corressponding to the convexity of the gth power
function for ¢ > 1.
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