
DEMONSTRATIO MATHEMATICA 
Vol. XXXIII No 1 2000 

B. Bajorska, O. Macedoriska 

ON SUBCLASSES OF GROUPS 
WITHOUT FREE SUBSEMIGROUPS 

Abstract. The paper is inspired by the question of A. Shalev about possible coinci-
dence of the class of collapsing groups and groups satisfying positive laws. We split the 
class of collapsing groups for subclasses, corresponding to different functions on natural 
numbers and give a positive answer for some of them. 

1. Introduction 
Let Ti be a free semigroup generated by x, y and let u(x, y), v(x, y) € Ti. 

By a (positive) law of degree n we mean here a binary expression 
(1) u(x,y) = v(x,y), 
where x (and y) has the same exponent sum on both sides; the first (and 
the last) letters in u and v are different; the length of u (equal to the length 
of v) is n. From now on by a pair of elements we mean an ordered one. We 
say that a pair g, h of elements in a group satisfies a law (1) if the equality 
u(g, h) = v(g, h) holds. A subset satisfies a law (1) if every pair of elements 
in the subset does. 

Many authors considered properties of groups, which do not contain 
non-abelian free subsemigroups or, which is the same, groups with no free 
2-generator subsemigroups [1], [2], [3], [7], [9]. We call groups of such type 
(no Ti )-groups. 

The notion of a collapsing group was introduced in [10] as (n, m)-col-
lapsing. This definition is equivalent ([10], Lemma 2.2) to the following: a 
group G is called collapsing if and only if there exists n, such that G is 
(n, 2)-collapsing for some n, that is for any 2-element subset A in G, the 
inequality | 4 n | < |,4|n holds. 

Positive laws defining nilpotent groups were found in 1953 by Mal'cev 
[5]. Till 1996 [8] every known group satisfying positive laws was an extension 
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of a nilpotent group by a group of a finite exponent. There still are many-
problems concerning positive laws. 

We compare the above classes of groups. In (no-T^-groups every pair of 
elements satisfies some law (1), while for groups with a positive law there 
exists a common law for all pairs. A collapsing group is (no Tz)-group with 
a restriction on degrees of the laws. So there are inclusions 

In [11] A. Shalev posed the question: does every collapsing group satisfy 
a positive law? 

A positive answer was found for residually finite groups ([11], Corol-
lary C) and for finitely generated soluble groups ([10], Theorem 4.2). We 
can extend the second result to all soluble groups. 

THEOREM 1. Every soluble collapsing group G satisfies a positive law. 

P r o o f . Let G be (n,2)-collapsing group, then G is (noTi)-group. Let H 
denote any finitely generated subgroup in G. Obviously H is also (n, 2)-
collapsing. By Theorems 4.7, 4.12 [9], every finitely generated soluble 
(no Ti )-group is nilpotent-by-finite and hence residually finite. So H is 
residually finite. It follows from Theorem B [11], that every finitely gen-
erated residually finite (n, 2)-collapsing group satisfies some positive law 
MCti, where c,i depends on n only. Thus we conclude that every finitely 
generated subgroup in G satisfies the same law MCij, and hence G satisfies 
the positive law, as required. • 

Since, in general, the problem may have a negative answer we suggest 
another approach to the question. We show that a group G is collapsing if 
and only if for all m, every m-element subset Am in G satisfies a positive 
law of degree < <p(m), where <p(m) depends on m only (Theorem 2). So we 
obtain a refinement of the problem: For which <p(m): if every m-element 
subset in G satisfies a positive law of degree ip(m), then G has to satisfy a 
positive law? 

To simplify futher studies we need the following criterion for a group to 
be collapsing. 

LEMMA 1. A group G is collapsing if and only if there exists k such that 
every 2-element subset in G satisfies a law of degree < k. 

P r o o f . Let every pair of elements in G satisfy a law of degree < k. If 
A = {g, h} and the pair g, h satisfies a law s(x,y) = t(x, y) of degree d < k, 
then in the set Ak two products coincide: gk~ds(g,h) = gk~dt(g,h). So we 
have |Afc| < \A\k which implies that G is collapsing. 

(no?2) 
groups 
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Conversely, if a group G is collapsing then it is (n, 2)-collapsing for some 
n and for any subset A = {g, h} the inequality |An | < |A|n holds. Then at 
least two products in An coincide, that is s(g, h) = t(g, h), say. So we have 
that every pair g, h of elements in G satisfies a law of a length n, which 
implies a balanced law s(g, h)t(g, h) = t(g, h)s(g, h) of degree k < 2n (after 
cancellation). • 

Notations: 
• Let m be a fixed natural. 

(Am G £)-group is a group in which every m-element subset satisfies 
some law (1) (depending on the subset). We write ( A m G Cd.) if the 
length of these laws is bounded by d. 

• (A G £)-group is a group which is (Am G £)-group for every m. We 
write {A G Cd) if the length of all laws is bounded by d. 

• Let <p = <p(m) be a natural function of m. 
{A G £v)-group is a group G such that for every m, G is ( A m G C^m))-
group. If the function tp is bounded we write (A G Cbound)-

It is clear that the class of {A G £d)-groups contains all groups which satisfy 
a positive law. The class.of (A G £)-groups contains all groups which locally 
satisfy positive laws. We show that collapsing groups are {A G £¥,)-groups. 
For every {A G £v,)-group G we introduce the following 

DEFINITION 1. For every m, f(m) is the minimal number such that every 
m-element subset in G satisfies a positive law of degree < f(m). 

So every (A G £¥,)-group is (A G £/)-group. 

THEOREM 2. A group G is collapsing if and only if it is (A G Cf)-group, 
where Vm, f{m) < [/(2)]m2~m. 

P r o o f . By Lemma 1 there exists k such that every 2-element subset in G 
satisfies a law of degree < k, so every pair of elements also does. We assume 
k minimal with this property. So in terms of the function f , k = f(2). We 

2 

show that any m-element subset Am in G satisfies a law of degree <km ~m . 
Since every reflexive pair (a, a) satisfies any balanced law (1), we need to find 
a common law only for m2—m pairs in Am. These pairs we put in some order 
a, b; c, d; e, / ; . . . There exists a law ui(x, y) = v\(x, y) of degree < k such 
that ui(a,b) = v\(a,b). We assume that u\(c, d) and v\(c,d) axe different. 
However there exists a law U2{x,y) = V2(x,y) of degree < k, such that: 
u2(ui(c,d),v\(c,d)) = v2(ui(c,d),vi(c,d)). Since the law U2(x,y) — V2(x,y) 
is balanced, it is also satisfied by the pair of equal elements u\ (a, b), i>i(a, b). 
So the common law for two pairs a, b and c, d is U2(ui(x, y), v\(x, y)) = 
V2(ui(x,y),vi{x,y)), of degree < k2. 
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Assume that for i—1 pairs in Am a common law a(x, y) = b(x, y) of degree 
< fct_1 is found and that the i-th pair g, h does not satisfy it. We consider 
elements a(g, h) and b(g, h). There exists a law 1x3(2:, y) = v${x, y) of degree 
< k such that uz(a(g,h),b(g,h)) = V3(a(gih),b(g,h)). Then the common 
law for all i pairs is u^(a(x, y), b(x, y)) = (a(x)y),b(x,y)) of degree < kl. 

By adding new pairs and repeating the step we find the law for Am of 
degree < km2~m = [f (2)]™* ~m. So /(to) < [/(2)]m2~m and the group is 
(A G £/)-group, as required. 

Conversely, in (A G £/)-group every 2-element subset satisfies a law of 
degree < /(2) and by Lemma 1, G is collapsing. • 

THEOREM 3. A group G satisfies a law of degree < d if and only if G is 

(A2D € Cd,)-group, where D is the number of laws of degrees < d. 

P r o o f . We assume that the laws are ordered. Let Vi G G x G be a subset 
of pairs which do not satisfy the i-th law of degree < d. If G does not satisfy 
a positive law, then no Vi is empty. We take a pair from every Vi and get 
a subset of 2D elements which does not satisfy a law of degree < d. Hence 
G is not a (A2D £ £d)-group, which is a contradiction. The converse is 
obvious. • 

COROLLARY 1. G satisfies a law if and only if G is {A G Cboun<i)-group. 

P r o o f . The first implication is clear. Conversely, let / (m) < d,m G N, for 
some fixed d. Then f(2D) < d, where D is the number of laws of degree < d. 
So G is (A2D G £d)-group and hence by Theorem 3, G satisfies a law. • 

THEOREM 4. The chain of classes (2) coincides with 

(3) r (A G £ ) - 1 r (A G Cf(m)). K i i A e ¿bound)-
| groups j [ groups J — \ groups 

or more precisely 

f (Vm, Am G £ ) - 1 > r (Vm, Am G £ / ( m ) ) - 1 > i ( 3 d , V m , A m G Cd)-1 
| groups j [ groups / — \ groups j ' 

P r o o f , In ( n o ) - g r o u p every pair of elements satisfies some law. It is 
shown in the proof of Theorem 2, that for a finite number of such pairs a;, bi 
there exists a common law, so G is (no T2 )-group if and only if for every 
m it is (Am G £)-group. Because of Theorem 2 and Corollary 1 we need 
to see only that the first inequality is strict. We consider an infinite direct 
product J7 of free nilpotent groups of increasing nilpotency classes. Since 
is locally nilpotent then by [5], locally satisfies positive laws and so for 
every m, is {Am € £)-group. 

• 
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If assume that n is 6 £/)-group then, as a consequence, every pair 
of elements satisfies some law of degree < /(2). These laws form a finite 
subset {ui(x,y) = Vi(x,y),i = 1,2,. . . ,£>}. So as in [11] we conclude that 

has to satisfy the commutator law 

[[. . . [ [ u i U f 1 , ^ ^ 1 ] , ^ ^ 1 ] , . . . ] , « D ^ 1 ] = 1. 

Since n does not satisfy any law, we have a contradiction and hence f j is 
not (A € £/)-group, which finishes the proof. • 

R e m a r k . The above law does not imply a positive law, because it is 
satisfied in a free metabelian group which does not satisfy a positive law [5]. 

2. When (A G £ / ) -group satisfies a positive law 
We can give the following properties of the function / , defined in the 

previous section. 

LEMMA 2. (i) / is not a decreasing function, (ii) ifm>n and M are some 
fixed naturals, then every ( A m G CM)-group is {An G CM)-9TOUP, (iii) if 
for a group G, Vm > 16, f{m) < log4 m, then G satisfies a law of degree 
< l0g4 771. 

P r o o f . Properties (i) and (ii) follow from the definition. To prove (iii) we 
denote d = log4m (for m < 16 it does not make any sense). Then the 
condition f(m) < log4m gives / (4 d ) < d and hence by property (ii), G is 
(A4d G £<j)-group. We use a rough calculation to get D (the number of laws 
of degree < d). The number of all words of the length d is 2d and the number 
of laws of degree < d is D < 2 d ( 2 d - l ) / 2 < 22d~1. So 2D < 4d. By property 
(ii), (A4d € £d)-group is (A2D G £d)-group and hence, by Theorem 3, G 
satisfies a law of degree < d = log4 m as required. • 

R e m a r k . The above calculation is too rough not only because we obtained 
many times (after cancellation) the same law, but also: (1) the fact that pairs 
a, b and b,a are always in the same Am, implies that the laws u(x,y) = 
v(x,y) and u(y,x) = v(y,x) axe simultaneously satisfied and hence one can 
be removed, (2) some law can be a consequence of another for the same pair 
g,h G G, for example a pair of commuting elements satisfies any balanced 
law. 

In [4] there was introduced a definition of a minimal set of laws. For a 
given d we denote by M.(d) a minimal set of laws of degree < d such that 
if a subset A satisfies a law of degree < d, then it satisfies a law in M(d). 
Now if denote /z(d) = 2|Ai(d)|, from the proof of Theorem 3 we obtain the 
following 

COROLLARY 2. Every (A^d) G Cd)-group satisfies a law of degree < d. 
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It is clear that if one of the four laws 

u(x,y) =v(x,y), v(x,y) = u(x,y), u(y,x) = v{y,x), v(y,x) = u{y,x) 
is satisfied in some subset, then the other three are also satisfied and hence 
only one belongs to M.(d). We say that a law u(x,y) = v(x, y) of degree n 
is of the type XkYl if the first letter in u is x, the exponent sum of s's is 
k and the exponent sum of y's is I, k + I = n. The law of the type XkYl is 
called standard if k < I and u(x, y) is lexicographically less than, or equal 
to v(x,y). 

So the set M.(d) consists of standard laws. For example M{2) consists 
of one abelian law. If a set satisfies an abelian law then it satisfies any other 
law (1). So .M(3) also contains only one law xy2 = y2x and we get 

COROLLARY 3. (Ai € £.2)-group satisfies a positive law of degree 2. (A2 € 
£3) -group satisfies a positive law of degree < 3. 

Since both xy = yx and xy2 — y2x imply x2y2 — y2x2, we get 
•M(4) C {(xy)2 = (yx)2, (xy)2 = y2x2, xy3 = y3x, xy2x = yx2y, x2y2 = y2x2}. 
So |A^(4)| < 5, and then by Corollary 2 we get: if every 10-element subset 
in a group satisfies some law of degree < 4, then the group satisfies a law of 
degree < 4 and we can write it as 

COROLLARY 4. (j4io G Li)-group satisfies a positive law of degree < 4. 

Moreover by [4], such a group has to satisfy one of the following three laws: 
3 3 2 2 2 2 2 2 xy = y x, xy x = yx y, x y = y i , 

which are minimal (as consequences) in the poset of laws of degree < 4. 
As it is shown in [4], there are 13 standard laws of degree 5. Since the 

law xy3 = y3x implies x2y3 = y3x2, we have |.M(5)| < |A^(4)| + 13 - 1 = 17. 
COROLLARY 5. Every (^34 € C^)-group satisfies a positive law of degree 
< 5. 

Using Lemma 2 and Corollaries 3, 4, 5 we prove 
T HEOREM 5. If there exists at least one m such that the point (m,f(m)) is 
in the area i) (see figure 1 below) then (A € Cf)-group has a positive law. 

P r o o f . The construction is as follows. The horizontal axe m denotes the 
number of elements in the set. The vertical axe k denotes degree of the 
law. We mark the point (M, K) if every M-element subset satisfies a law 
of degree < K. The point (M, K) is called PL if when f(M) < K then 
(A G £/)-group has positive law. We give the list of PL points: 

1. By Corollaries 3, 4, 5, (2,2), (2,3), (10,4), (34,5) axe PL. 
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2. By (iii) in Lemma 2, for M > 16, 2 < K < log4 M, (M, K) are PL. 
3. By (ii) in Lemma 2 if (M, K) is PL then (M + S, K) is PL. So from 

the above it follows that every point which is "on the right" of the PL point 
is PL itself. 

Figure 1: i i area 

We construct the area £2, which consists of PL points. Note that we 
consider only points with integer coordinates. It follows from the definition 
that if at least one point (m,f(m)), m G N belongs to fi then {A € £ / ) -
group has to satisfy a positive law, as required. • 
Remark. For k = 5 from points 1. and 2. in Theorem 5, we get different 
minimal m, for which the point (m, k) belongs to ii, namely 34 and 1024, 
respectively. So the latter one gives us much worse result. However for k > 6 
the only we have is m > 4096. The result can be improved if we know the 
number of elements in /A(d ) for d > 5, so it seems to be an open area for 
futher studies. 
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