

Ernest Płonka

SOME REMARKS ON ENDOMORPHISMS
OF UNIVERSAL n -ALGEBRAS

0. Let S be a semigroup of transformation on a set X . In [1] Grätzer has raised the problem of characterizing those S which are the endomorphism semigroup of some finitary algebra over X . There are many papers in which the problem has been solved for special monoids S , e.g. [2], [3], [8], [9] and [10]. In 1977 Sauer and Stone [7] found a characterization of endomorphism semigroups in terms of solutions of some systems of functional equations with coefficients from S . This description seems to be rather unpleasant because of existential character. However the authors gave many applications of their result. One can of course ask [5] about a characterization of endomorphism semigroups of n -algebras ($= n$ -ary algebras). In this note we give some observations on this question. In particular we show that in special cases the endomorphism semigroups of n -algebras can be characterized by the conditions closely related to the condition on the group of automorphisms of n -algebras.

I. Let S be a monoid of transformations on a non-empty set X . For $\mathbf{x} = (x_1, x_2, \dots, x_r) \in X^r$, $s \in S$, $1 \leq r$, $A \subseteq X$ and $U \subseteq S$ we use the natural convention $s\mathbf{x} = (sx_1, sx_2, \dots, sx_r)$, $UA = \{ua : u \in U, a \in A\}$. We will denote by $\mathcal{F}_{S,r}$ the set of all functions $f : X^r \rightarrow X$, which commute with all $s \in S$, i.e. such that the equality

$$sf(x_1, x_2, \dots, x_r) = f(sx_1, sx_2, \dots, sx_r)$$

holds for all $s \in S$ and all $(x_1, x_2, \dots, x_r) \in X^r$. The set of all fixed points of the monoid S will be denoted by $\mathcal{F}_{S,0} = \{x \in X : sx = x \text{ for all } s \in S\}$. If all operations of an algebra \mathfrak{A} are of rank $< n + 1$, where $n \in \{\aleph_0, 0, 1, 2, \dots\} = \{\aleph_0, 0\} \cup \mathcal{N}$, we say that \mathfrak{A} is an n -algebra, but a \aleph_0 -algebra is called simply an algebra. Let $\text{End } \mathfrak{A}$ denotes the endomorphism semigroup of an algebra \mathfrak{A} .

PROPOSITION 1. *We have*

1. *Let $n \in \{\aleph_0, 0, 1, 2, \dots\}$. There exists an n -algebra $(X; \mathcal{F})$ such that $S = \text{End}(X; \mathcal{F})$ if and only if $S = \text{End}(X; \bigcup_{r < n+1} \mathcal{F}_{S,r})$.*
2. *For a finite n we have $\text{End}(X; \bigcup_{n < n+1} \mathcal{F}_{S,r}) = \text{End}(X; \mathcal{F}_{S,n})$.*

Proof. It follows immediately from the implication

$$\mathcal{F} \subseteq \mathcal{F}_{S,n} \implies \text{End}(X; \mathcal{F}_{S,n}) \subseteq \text{End}(X, \mathcal{F})$$

and the fact that the injection $i : X^{X^r} \longrightarrow X^{X^{r+1}}$, $r > 0$, defined by the formula

$$(if)(x_1, x_2, \dots, x_{r+1}) = f(x_1, x_2, \dots, x_r)$$

preserves the commutation relation i.e., the equivalence

$$\varphi i(f) = i(f)\varphi \Leftrightarrow \varphi f = f\varphi$$

holds for each transformation φ of X .

In particular, for $n = 0$, we get

COROLLARY 1. *A monoid S of transformations of X is the semigroup of endomorphisms of some 0-algebra if and only if S contains each transformation of X which moves no element of $\mathcal{F}_{S,0}$.*

In the next proposition we use a simple property of the automorphism groups of n -algebras, which was introduced by B. Jónsson [4].

PROPOSITION 2. *For every $n \in \mathcal{N}$ the endomorphism semigroup of an n -algebra, satisfies*

(β_{n+2}) : *Each transformation φ of X such that for every sequence $\mathbf{x} \in X^{n+1}$ there exists $s \in S$ with $\varphi(\mathbf{x}) = s(\mathbf{x})$, belongs to S .*

Proof. Let us suppose that $\varphi \in X^X$, $f \in \mathcal{F}_{S,n}$ and $(x_1, x_2, \dots, x_n) \in X^n$. We put $\mathbf{x} = (x_1, x_2, \dots, x_n, f(x_1, x_2, \dots, x_n))$. If $\varphi(\mathbf{x}) = s(\mathbf{x})$ for some $s \in S$, then we have

$$\begin{aligned} \varphi f(x_1, x_2, \dots, x_n) &= sf(x_1, x_2, \dots, x_n) = f(sx_1, sx_2, \dots, sx_n) \\ &= f(\varphi x_1, \varphi x_2, \dots, \varphi x_n), \end{aligned}$$

which means that φ is an endomorphism of the algebra $(X; \mathcal{F}_{S,n})$ and therefore, by Proposition 1, it has to belong to S , as required.

In the case S being a group, $\beta_{n+1}(S)$ ensure the existence of an n -algebra with S as the automorphism group [4]. In general case it is not true.

For a finite $n > 0$ and a transformation semigroup S we set

$\varepsilon_n(S)$: *There exists a family; $\{\mathbf{x}^t\}_{t \in T}$ of elements of X^n such that X^n is the sum of pairwise disjoint sets $S\mathbf{x}^t$, $t \in T$.*

EXAMPLES.

1. *If S is a group, then $\varepsilon_n(S)$ holds for all $n \in \mathcal{N}$.*

2. If S is the semigroup of all injection of X into itself, then $\varepsilon_n(S)$ holds for every $n \in \mathbb{N}$. In fact, if $x_1, x_2, x_3 \dots$ is a sequence of pairwise different elements of X , then

$$\begin{aligned} X &= Sx_1, \\ X^2 &= S(x_1, x_1) \cup S(x_1, x_2), \\ X^3 &= S(x_1, x_1, x_1) \cup S(x_1, x_2, x_2) \cup S(x_2, x_1, x_2) \cup S(x_2, x_2, x_1) \cup \\ &S(x_1, x_2, x_3), \text{ etc.} \end{aligned}$$

3. Let S be a group and let $K = \{x \in X : sx = x \text{ for all } s \in S\}$. Then $S \cup K$ forms a semigroup and $\varepsilon_1(S \cup K)$ holds.

4. If $X = Sx_0$ for some $x_0 \in X$, then, of course, S satisfies ε_1 .

5. Let H be a group of bijection of S such that $sHx \subseteq Hx$ for all $s \in S$ and $x \in X$, then $\varepsilon_1(S)$ holds.

For $n \in \mathbb{N}$, $\mathbf{x} \in X^n$ and $S \subseteq X^X$, we define

$$C_S(\mathbf{x}) = \{y \in X : s\mathbf{x} = s'\mathbf{x} \text{ implies } sy = s'y \text{ for all } s, s' \in S\}.$$

Clearly, $\{x_1, x_2, \dots, x_n\} \subseteq C_S(\mathbf{x})$. Therefore if $C_S(\mathbf{x})$ is one element set, then \mathbf{x} has to be of the form $\mathbf{x} = (x, x, \dots, x)$.

THEOREM 1. 1. Let S be a monoid on a set X and $n \in \mathbb{N}$. Then $f(\mathbf{x}) \in C_S(\mathbf{x})$ for every $f \in \mathcal{F}_{S,n}$ and $\mathbf{x} \in X^n$.

2. If X^n is the sum of disjoint sets $S\mathbf{x}^t$, $t \in T$, then for every $y \in C_S(\mathbf{x})$ and $1 \leq i \leq n$, there exists $f_i \in \mathcal{F}_{S,n}$ such that $f_i(\mathbf{x}^t) = y$ and $f_i(z) = z_i$ for $z \in \mathbf{x}^t$.

Proof. If $y = f(\mathbf{x})$ for some $f \in \mathcal{F}_{S,n}$ and $s\mathbf{x} = s'\mathbf{x}$ for $s, s' \in S$, then we have $sy = sf(\mathbf{x}) = f(s\mathbf{x}) = f(s'\mathbf{x}) = s'f(\mathbf{x}) = s'y$. Thus $y \in C_S(\mathbf{x})$.

To prove second part let us suppose that $t \in T$ and $1 \leq i \leq n$. We put

$$f_i(z) = \begin{cases} s_0y, & \text{if } z = s_0\mathbf{x}^t, s_0 \in S; \\ z_i & \text{otherwise.} \end{cases}$$

It follows from the definition of $C_S(\mathbf{x}^z)$ and the hypothesis that f_i is well defined function of X^n into X . We show that f_i commutes with all $s \in S$. Indeed, if $z = s_0\mathbf{x}^t$, then $sz = ss_0\mathbf{x}^t$. Thus $f_i(sz) = ss_0y = sf_i(z)$. If $z \notin S\mathbf{x}^t$, then an element sz is also off the set $S\mathbf{x}^t$ and therefore $f_i(sz) = sz_i = sf_i(z)$, as required.

THEOREM 2. Let n be a natural number and let S be a semigroup of transformations of a set X which satisfies the condition $\varepsilon_n : X^n$ is the sum of pairwise disjoint sets $S\mathbf{x}^t$, $t \in T$, where $\mathbf{x}^t = (x_1^t, x_2^t, \dots, x_n^t) \in X^n$. Then there exists an n -algebra \mathfrak{A} such that $S = \text{End } \mathfrak{A}$ if and only if each transformation $\varphi \in X^X$ belongs to S provided it satisfies the following condition

(*) for all $s \in S$ and $t \in T$ either φs agrees with some $s_0 \in S$ on the set $C_S(\mathbf{x}^t)$, or $\varphi s\mathbf{x}^t = s_0\mathbf{x}^{t'}$ for some $t' \in T$, $t \neq t'$ and $\varphi sC_S(\mathbf{x}^t) = \{\varphi s\mathbf{x}_1^{t'}\} = s_0C_S(\mathbf{x}^{t'})$.

Proof. By Proposition 1, $\phi \in X^X$ is an endomorphism of an n -algebra \mathfrak{A} with $S = \text{End } \mathfrak{A}$ if and only if ϕ is an endomorphism of the algebra $(X; \mathcal{F}_{S,n})$, and therefore, it suffices to show that $\phi \in \text{End}(X; \mathcal{F}_{S,n})$ if and only if ϕ satisfies (*). Let $\phi \in \text{End}(X; \mathcal{F}_{S,n})$, $t \in T$, $s \in S$. It follows from our hypothesis that $\varphi s\mathbf{x}^t = s_0\mathbf{x}^{t'}$ for some $s_0 \in S$ and $t' \in T$.

If $t = t'$ we claim that φs agrees with some s_0 on the set $C_S(\mathbf{x}^t)$. If $y \in C_S(\mathbf{x}^t)$, then, by Theorem 1, for every i , $1 \leq i \leq n$, there is a function $f_i \in \mathcal{F}_{S,n}$, such that $f_i(\mathbf{x}^t) = y$. Hence we get

$$\varphi s y = \varphi s f_i(\mathbf{x}^t) = f_i(\varphi s\mathbf{x}^t) = f_i(s_0\mathbf{x}^{t'}) = s_0 f_i(\mathbf{x}^{t'}) = s_0 y.$$

If $\varphi s\mathbf{x}^t = s_0\mathbf{x}^{t'}$, where $t \neq t'$ then, by Theorem 1 for each $y \in C_S(\mathbf{x}^t)$ and $1 \leq i \leq n$ there is a function $f_i \in \mathcal{F}_{S,n}$ with $f(\mathbf{x}^t) = y$ and $f(\varphi s\mathbf{x}^t) = \varphi s\mathbf{x}_i^{t'}$. This yields

$$\varphi s y = \varphi s f_i(\mathbf{x}^t) = f_i(\varphi s\mathbf{x}^t) = \varphi s\mathbf{x}_i^{t'}.$$

Thus $\varphi sC_S(\mathbf{x}^t) = \{\varphi s\mathbf{x}_1^{t'}\}$. It follows again from the previous theorem that for every $y \in C_S(\mathbf{x}^t)$, there is $f_1 \in \mathcal{F}_{S,n}$ with $f_1(\mathbf{x}^{t'}) = y$ and $f_1(z) = z_1$ for z off $S\mathbf{x}^{t'}$. Hence

$$s_0 y = s_0 f_1(\mathbf{x}^{t'}) = f_1(s_0\mathbf{x}^{t'}) = f_1(\varphi s\mathbf{x}^t) = \varphi s f_1(\mathbf{x}^t) = \varphi s\mathbf{x}_1^{t'}.$$

In order to prove the converse implication let us suppose that φ is a transformation of X which satisfies the condition. We show that φ is an endomorphism of the algebra $(X; \mathcal{F}_{S,n})$. In fact, let f be an element of $\mathcal{F}_{S,n}$ and $z = s\mathbf{x}^t$ for some $s \in S$, $t \in T$. Suppose that φs agrees with some $s_0 \in S$ on the set $C_S(\mathbf{x}^t)$. Since $f(\mathbf{x}^t) \in C_S(\mathbf{x}^t)$, we infer

$$\varphi f(z) = \varphi f(s\mathbf{x}^t) = \varphi s f(\mathbf{x}^t) = s_0 f(\mathbf{x}^t) = f(s_0\mathbf{x}^t) = f(\varphi s\mathbf{x}^t) = f(\varphi z).$$

Finally, if $\varphi s\mathbf{x}^t = s_0\mathbf{x}^{t'}$ for some $t' \in T$, $t \neq t'$, then we get $\varphi f(z) = \varphi f(s\mathbf{x}^t) = \varphi s f(\mathbf{x}^t) = \varphi s\mathbf{x}_1^{t'}$, and also $f(\varphi z) = f(\varphi s\mathbf{x}^t) = f(s_0\mathbf{x}^{t'}) = s_0 f(\mathbf{x}^{t'}) = \varphi s\mathbf{x}_1^{t'}$, which completes the proof.

This together with Proposition 1 yields

THEOREM 3. *Let S be a monoid of transformation of a set X , which satisfies the condition (β_n) for all $n \in \mathcal{N}$. Then $S = \text{End}(X; \mathcal{F})$ for some algebra $(X; \mathcal{F})$ if and only if each element of $\varphi \in X^X$ which satisfies the condition*

(**) for each natural n , $s \in S$ and $t_n \in T_n$ either φs agrees with some $s_0 \in S$ on the set $C_S(xx^{t_n})$, or

$\varphi s x^{t_n} = s_0 x^{t'_n}$ for some $t'_n \in T_n$, $t_n \neq t'_n$ and $\varphi s C_S(x^{t_n}) = \{\varphi s x_1^{t_n}\} = s_0 C_S(\varphi x^{t'_n})$ belongs to S .

EXAMPLE 6. Consider the semigroup S of all injection of a infinite set X into itself. If a transformation φ is not in S , then $\varphi(x) = \varphi(x')$ for some $x \neq x'$. Thus $\varphi(x, x')$ is not in $S(x, x')$ and consequently $\beta_3(S)$ holds. Clearly, $C_S(y_1, y_2, \dots, y_n) = \{y_1, y_2, \dots, y_n\}$ for all $(y_1, y_2, \dots, y_n) \in X^n$. Let $\varphi(x) = x_1$ for all $x \in X$. We show that the mapping φ satisfies (**). Indeed, let $n \in \mathbb{N}$, $s \in S$. Then we have $\varphi s = Id_X$ on the set $\{x_1\} = C_S(x_1, x_1, \dots, x_1)$. Now if $y_1, y_2, \dots, y_n \in \{x_1, x_2, \dots\}$, and $y_i \neq y_j$ for some $i \neq j$, then for all $s \in S$ we have $\varphi s(y_1, y_2, \dots, y_n) = (x_1, x_1, \dots, x_1) = Id_X(x_1, x_1, \dots, x_1)$, and also $\varphi s C_S(y_1, y_2, \dots, y_n) = \{\varphi s x_1\} = \{x_1\} = Id_X(C_S(\varphi x_1, \varphi x_1, \dots, \varphi x_1))$. Since $\varphi \notin S$, the condition of Theorem 2 is not satisfy and therefore there is no algebra for which S is the endomorphism semigroup.

References

- [1] G. Grätzer, *Universal Algebra*, 1968, D. Van Nostrand Company, Inc., Princeton, New Jersey.
- [2] G. Grätzer and W. A. Lampe, *Representation of some transformation semigroup as endomorphism of endomorphism semigroups of universal algebras II*, Notices Amer. Math. Soc. 14 (1967), 625.
- [3] J. Ježek, *Algebraicity of endomorphisms of some relational structures*, Acta Univ. Carolinae Math. Phys. 13 (1972), 43–52.
- [4] B. Jónsson, *Algebraic structures with prescribed automorphism groups*, Colloq. Math. 19 (1968), 1–4.
- [5] B. Jónsson, *Topics in universal algebras*, Lecture Notes in Mathematics, 250 (1970).
- [6] E. Płonka, *On a problem of B. Jónsson concerning automorphisms of general algebras*, Colloq. Math. 19 (1968), 5–8.
- [7] N. Sauer and M. G. Stone, *The algebraic closure of a semigroup of functions*, Algebra Universalis 7 (1977), 219–233.
- [8] N. Sauer and M. G. Stone, *The algebraic closure of a function*, Algebra Universalis 7 (1977), 295–306.
- [9] J. Sichler, *Concerning endomorphisms of finite algebra*, Commentationes Math. Univ. Carolin. 8 (1967) 405–414.
- [10] M. G. Stone, *On endomorphism structures for algebras over a fixed set*, Colloq. Math. 33 (1975), 41–45.
- [11] L. Szabó, *Characterization of related semigroup of universal algebras*, Acta Sci. Math. (Szeged), 37 (1975), 143–147.

[12] L. Szabó, *Concrete representation of some related structures of universal algebras I*,
Acta Sci. Math. 40 (1978), 175–184.

INSTITUTE OF MATHEMATICS
SILESIAN TECHNICAL UNIVERSITY
ul.Kaszubska 23
44-100 GLIWICE, POLAND
E-mail:eplonka@zeus.pols.gliwice.pl

Received May 11st, 1999.