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SOME REMARKS ON ENDOMORPHISMS 
OF UNIVERSAL n-ALGEBRAS 

0. Let 5 be a semigroup of transformation on a set X . In [1] Gratzer 
has raised the problem of characterizing those S which axe the endomor-
phism semigroup of some finitary algebra over X. There are many papers 
in which the problem has been solved for special momoids S, e.g. [2], [3], 
[8], [9] and [10]. In 1977 Sauer and Stone [7] found a characterization of 
endomorphism semigroups in terms of solutions of some systems of func-
tional equations with coefficiens from S. This description seems to be rather 
unpleasent because of existential character. However the authors gave many 
application of their result. One can of course ask [5] about a characteriza-
tion of endomorphism semigroups of n-algebras (= n-ary algebras). In this 
note we give some observations on this question. In particular we show that 
in special cases the endomorphism semigroups of n-algebras can be charac-
terized by the conditions closely related to the condition on the group of 
automorphisms of n-algebras. 

1. Let S be a monoid of trasformations on a non-empty set X. For 
x = (x\,x2-,... ,xr) G Xr, s € S, 1 < r, A C X and U C S we use the 
natural convention sx = (sxi, SX2, • • •, sxT), UA = {tta : u G U, a G A}. We 
will denote by !Fs,r the set of all functions / : Xr —• X, which commute 
with all s G S, i.e. such that the equality 

sf(xl,X2, • . . XT) = f(sxi,sx2, • • • SXr) 

holds for all s € S and all (xi, X2 , . . . , xr) € Xr. The set of all fixed points 
of the monoid S will be denoted by Ts,o = {x € X : sx = x for all 
s G iS}. If all operations of an algebra 21 are of rank < n + 1, where 
n G {Ho, 0 , 1 , 2 , . . . } = {No, 0} U Af, we say that 21 is an n-algebra, but a No-
algebra is called simply an algebra. Let End 21 denotes the endomorphism 
semigroup of an algebra 21. 
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P r o p o s i t i o n 1. We have 
1. Let n G {No, 0 , 1 , 2 , . . . } . There exists an n-algebra such that 

S = End(X; T) if and only if S = End(X; U r < n + i Fs,r)-
2. For a finite n we have End(X; U n<n+i — End(X; Ts,n)-

P r o o f . It follows immediately from the implication 

T C T s ,n = > End(X;^s , n ) C End(X, T) 

and the fact that the injection i : Xxr —> Xx + , r > 0, defined by the 
formula 

(if)(xl,x2,av+i) = f(x i, xr) 
preserves the commutation relation i.e., the equivalence 

= <=> V/ = ftP 
holds for each transformation <p of X. 

In particular, for n = 0, we get 
C o r o l l a r y 1. A monoid S of transformations of X is the semigroup of 
endomorphisms of some 0-algebra if and only if S contains each transfor-
mation of X which moves no element of !Fs,o • 

In the next proposition we use a simple property of the automorphism 
groups of ra-algebras, which was introduced by B. Jonsson [4]. 

PROPOSITION 2. For every n G JV the endomorphism semigroup of an 
n-algebra, satisfies 

(fln+2): Each transformation ip of X such that for every sequence x G 
Xn+1 there exists s € S with ip(x) = s(x), belongs to S. 
P r o o f . Let us suppose that <p G Xx, f £ Ts,n and (xi, £2, • • • xn) G Xn. We 
put x = (xi,x2,.--, xn, f(x i,X2, • • •, xn))- If ¥>(®) = s{x) f° r some s G S, 
then we have 

<pf(xi,X2,...,xn) = sf(xi,x2, ... ,x„) = f(sx1,sx2,...,sxn) 
= f(<pxu<px2,...,<pxn), 

which means that ip is an endomorphism of the algebra (X; Fs ,n) a n d there-
fore, by Proposition 1, it has to belong to S, as required. 

In the case S being a group, f3n+i(S) ensure the existence of an n-algebra 
with S as the automorphism group [4]. In general case it is not true. 

For a finite n > 0 and a transformation semigroup S we set 
£n(S): There exists a family; {xt}teT of elements of Xn such that Xn 

is the sum of pairwise disjoint sets Sx*, t & T. 

E x a m p l e s . 

1. If S is a group,, then en(S) holds for all n € N. 
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2. If S is the semigroup of all injection of X into itself, then en(S) holds 

for every n G N. In fact, if xi,x2, £3 ... is a sequence of pairwise different 

elements of X, then 

X = Sxi, 

X2 = S(xi,x1)uS(x1,x2), 

X3 = 5 ( x i , x 1 , x i ) U S(x 1,X2,X2) U S(x2,Xi,X2) U S(x2,X2,Xi) U 

S(x\,x2,x$), etc. 

3. Let S be a group and let K = { x G X : sx = x for all s € 5 } . Then 

S U K forms a semigroup and ei(S U K) holds. 

4. If X = Sx$ for some XQ€X, then, of course, S satisfies E\. 

5. Let H be a group of bijection of S such that sHx C Hx for all 

s € S and x € X, then Ei(S) holds. 

For n € N, x € Xn and S C Xx, we define 

Cs(x) = {y G X : sx = s'x implies sy = s'y for all s, s' G}. 

Clearly, {xi,x2, • • •, xn} C Cs(x). Therefore if Cs(x) is one element set, 
then x has to be of the form x = (x, x,..., x). 

THEOREM 1. 1. Let S be a monoid on a set X and n G A/". Then 

f(x) G Cs(x) for every f G J~s,n und ® € Xn. 

2. If Xn is the sum of disjoint sets Sat, t G T, then for every y G Cs(x) 

and 1 < i < n, there exists fc G ^"s.n such that fife*) = y and fi{z) = Zi 

for z G x*. 

P r o o f . If y — f(x) for some / G Ts,n and sx — s'x for s, s' G S, then 
we have sy = sf(x) = f(sx) = f(s'x) — s'f(x) = s'y. Thus y G Cs{x). 

To prove second part let us suppose that t € T and 1 < i < n. We put 

It follows from the definition of Cs(xx) and the hypothesis that ft is 
well defined function of Xn into X. We show that fx commutes with all 
s G S. Indeed, if z — sqX1, then sz = sso®i- Thus fi(sz) = ssoy = sfi(z). 

If z 0 Sxt, then an element sz is also off the set Sx1 and therefore 
fi(sz) = szi = sfi(z), as required. 

THEOREM 2. Let n be a natural number and let S be a semigroup of trans-

formations of a set X which satisfies the condition en : Xn is the sum 

of pairwise disjoint sets S x t G T , where xl — (x\,x2,..., x^) G Xn. 

Then there exists an n-algebra 21 such that S = End 21 if and only if each 

transformation tp G Xx belongs to S provided it satisfies the following 

s0y, if z — SQX^ , SO G S", 

Zi otherwise. 

condition 
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(*) for all s G S and t G T either ips agrees with some SQ G S on 
the set Cs{xt), or (psx* = SQX* for some t' G T , t ^ t' and <psCs(x*) = 
{<psx\} = sQCs{x*'). 

P r o o f . By Proposition 1, $ G Xx is an endomorphism of an n-algebra 
21 with S = End 21 if and only if (j> is an endomorphism of the algebra 
(X; ^s .n) , and therefore, it suffices to show that <p 6 End(X; J F ^ ) if and 
only if ()> satisfies (*). Let (f> G End(X; Fs,n), t € T, s e S. It follows from 
our hypothesis that <psx* = soxt for some SQ € S and t' G T. 

If t = t' we claim that ips agrees with some SQ on the set Cs(x*). If 
y G Cs(x*), then, by Theorem 1, for every i, 1 < i < n, there is a function 
fi G such that /¡(a;4) = y. Hence we get 

ipsy = <psfi(x*) = h{ipsx*) = fi(s0x*) = sQfi(x*) = s0y. 

If ipsx4 = so33 ' ) where t^t' then, by Theorem 1 for each y G Cs{x*) 
and 1 < i < n there is a function fi GFs,n with fix1) = y and 
f(<psxf) = ips:r4. This yields 

ipsy = <psfi(x*) = fi(<psx*) = ipsx\. 

Thus <psCs(x-4) = {ipsx\}. It follows again from the previous theorem that 
for every y G Csix* ), there is f \ GF$>n with f i ( x t ) = y and f i ( z ) = zx 

for z off Sx* . Hence 

Soy = S0fl(x*') = fl(s0X*') = fiiipsx*) = (psfi(x*) = ipsx\. 

In order to prove the converse implication let us suppose that ip is a 
transformation of X which satisfies the condition. We show that tp is an 
endomorphism of the algebra (X; Fs,n)- In fact, let / be an element of 
!Fs,n and z = sx* for some s G S, t G T. Suppose that (ps agrees with 
some so G S on the set Cs(x*). Since fix*) G Csix*), we infer 

¥>/(*) = Vfisx*) = <psfix*) = s 0 / (® 4 ) = f(s0x*) = fi<psx*) = fitpz). 

Finally, if (psx4 = SQX*' for some t' G T, t ^ £', then we get ipfiz) = 
ipfisx4) = ips fix4) = ipsx\, and also fi<pz) = fiipsx*) = fisQX* ) = 
so fix* ) = <psx\, which completes the proof. 

This together with Proposition 1 yields 

THEOREM 3. Let S be a monoid of transformation of a set X, which 
satisfies the condition (/3n) for all n G N. Then S = End(X; T) for 
some algebra (X; T) if and only if each element of <p G Xx which satisfies 
the condition 
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(**) for each natural n, s G S and tn G Tn either ips agrees with 
some SQ G S on the set Cs(xx tn), or 

ipsxtn = so®'*1 for some t'n G Tn, tn ± t'n and (psCs(xtn) = {<psx= 
soCs{<pxtn) belongs to S. 

EXAMPLE 6. Consider the semigroup S of all injection of a infinite set X 
into itself. If a transformation ip is not in S, then ip(x) = <p{x') for some 
x x'. Thus tp(x, x') is not in S(x, x') and consequently @3{S) holds. Clearly, 
Cs(yi,y2,---,yn) = {yi,y2,---yn} for all (yi,y2,...,yn) e Xn. Let <p(x) = 
Xi for all x € X. We show that the mapping tp satisfies (**). Indeed, let 
n € A/", s G S. Then we have ips = Idx on the set {a;i} = Cs{xi,x\,... ,x\). 
Now if 2/1,y2,.. •, yn G {xi,X2,. •.}, and yi ^ yj for some i / j, then for all 
s G 5 we have <ps(yi,y2, •. .yn) = ( x i . x i , . . .x i ) = Idx(x i , x i , . . . x i ) , and 
also <psCs(yi,y2,---,yn) = {<psx i } = { x j = Idx(Cs{<pxi, tpxi,..., </>®i)). 
Since ip 5, the condition of Theorem 2 is not satisfy and therefore there 
is no algebra for which S is the endomorphism semigroup. 
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