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SEMIRING-VALUED KORCZYNSKI NETS

Abstract. Korczynski [4]-[6] generalized the notion of a Petri net by introducing the
notion of an e-net. The purpose of this generalization, based on a nonstandard definition
of a directed graph, was to allow a wider class of morphisms, including those which send
edges to vertices. Around the same time, Golan [2] introduced the notion of a semiring-
valued Petri net in order to present a common framework which includes classical Petri
nets, colored Petri nets, fuzzy Petri nets, etc. In this note we use the same techniques for
presenting semiring-valued Korczynski nets, which contain semiring-valued Petri nets as
a special case.

1. Notation and terminology

For nonempty sets X and Y, we will denote the set of all functions from
X to Y by YX. Functions in YX are always written as acting on the left.
Any function a: X — X can be extended to a function Y*:YX — YX
by setting Y*:g — ga. Note that if @,8: X — X then YoY? = YP> A
Y-valued relation on X is an element of YX*X,

There is a bijective correspondence between the family of all subsets of a
set X and BX, where B = {0, 1}, through which a subset A of X corresponds
to its characteristic function h 4, defined by

1 ifzeA
haize { 0 otherwise.
Thus, if a: X — X then B® : hg = ho-1(4)-

A semiring R is a nonempty set on which we have operations of addition

and multiplication defined such that the following conditions are satisfied:

(1) (R,+) is a commutative monoid with identity element 0;
(2) (R,-) is a monoid with identity element 1 # 0;

(3) Multiplication distributes over addition from either side;
(4)0r=0=r0for all r € R.

For information and background on semirings, refer to [1, 3]. A semi-
ring R is difference ordered if and only if the relation < on R defined by
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the condition » < 7’ if and only if there exists an element 7"/ € R satisfying
r+r" 47, is a partial order on R. It is uniquely difference ordered if the
element r” is always unique. Thus, for example, the semiring (B, max, min)
is a difference-ordered semiring in which we take addition to be max and
multiplication to be min. It is not uniquely difference ordered. Examples of
uniquely difference-ordered semirings include the semiring (N, +, -), where N
denotes the set of nonnegative integers, and the semiring (R*,+, ), where
Rt denotes the set of all nonnegative real numbers. Wu [7] has defined
an intermediate notion: a semiring R is weakly uniquely difference or-
dered if and only if r < 7/ when and only when r = r' or r # r’ and
there exists an element 0 # ' € R satisfying r + »'" = »’. The semiring
(B, max, min) is in fact weakly uniquely difference ordered. Other weakly
uniquely difference-ordered semirings include the semiring (I, max, M), where
I is the unit interval on the real line and M is any triangular norm defined
on I, the semiring (I, min, L1), where LI is any triangular conorm defined on
I, and the semiring (R* U {~o00}, max, +).

A semiring R is zerosumfree if and only if r+7'=0 only when r=7'=0
and it is entire if and only if 77’ # 0 when r # 0 and ' # 0. Difference-
ordered semirings are zerosumfree. Indeed, if R is difference-ordered and if
r+7 =0then 0 > r > 0 and so r = 0. Similarly 7’ = 0. A sufficient
condition for a semiring R to be entire is that it be a division semiring,
namely that for each 0 # r € R there exists an element 7~ € R satisfying
1 =rr~! = r~1r. Every zerosumfree division semiring is difference ordered;
see Proposition 20.30 of [3].

Let R be a semiring and let X be a set. If f,g € RX we can the define
the elementwise sum and product of f and g by

f+g:zw f(z)+9(z)
and

fg:z - f(x)g(x).
Also, we define the function f — g by setting
q f(z) ifg(z)=0
frgiom {0 otherwise.

For each r € R we have the constant R-valued function ¢, € RX defined by
Cr 1 T T

If f,g € RX satisfy f(z) < g(z) for all z € X then we write f < g. If R
is a weakly uniquely difference-ordered semiring and X be a nonempty set,
and if f,g € RX satisfy f < g, then we define the function g — f € RX by
setting (g — f)(z) = 0 if g(z} = f(z) and otherwise (g — f)(z) = r, where r
is the unique element of R satisfying f(z) + r = g(z).
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The support of an R-valued function f € RX is
supp(f) = {z € X | f(z) # 0}.

Let R be a semiring and let X be a nonempty set. If f € RX*X is an
R-valued relation on X and if z € X, we set

={z' € X | f(=z,2') # 0}
and
flo,z) = {:L" €X| f(xlvz) # 0}.
The domain of an R-valued relation f on X is dom(f) = Ugzex f(o,z). In
particular, dom(f) = X if and only if for each ' € X there exists an z € X
such that f(z',z) # 0.

For any nonempty subset Y of X we always have the diagonal R-valued
relation iy defined by

' 1 fz=2'€Y
by i (=, m)H{O otherwise.

If f and g are R-valued relations on a finite set X we define
fog:(z,z')— Z flz,z")g(z", ).
aEX
Note that if R is entire and zerosumfree, if f,g € RX*X, and if z € X then
(fog)(z,e)={z' € X | (f o g)(z,2') # O}
= {x' € XI Z flz,z")g(z",2") # 0}
z"eX
={z' e X| f(eac,a:") # 0 # g(z”,z’) for some " € X}
= U g(z",e).

z'' € f(z,0)

2. Semiring-valued Korczynski nets

We now define a semiring-valued version of the notion of an e-net, studied
by Korczynski [4, 5, 6]. Let R be a semiring. An R-valued Korczyiski net
on a finite set X is a pair A = (f, g) of R-valued relations on X satisfying
the following conditions:

(K1) dom(f) = dom(g) =

(K2) fog=fof=f;
(K3) gof=gog=g;
(K4) fo(f —ix)=co;
(K5) go (g bl ix) = Cp.
The case studied by Korczynski is obtained by taking R = B.
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Since R is entire and zerosumfree, these last two conditions can be
rephrased as follows:

(K4') If z # 2’ in X then for each 2" € X we have f(z,2"”) = 0 or

f(@",z')=0.
(K5') If z # 2’ in X then for each z” € X we have g(z,z") = 0 or
g{z",z') =0.

PROPOSITION 2.1. Let R be an entire zerosumfree semiring and let A =
(f,g) be an R-valued Korczyniski net on a finite set X. If y € X then:

(1) z€(fof)(y,®) = f(z,0) = g(z,0) = {z};

(2) z€(gog)(y,0) = f(z,0) = g(z,0) = {z};

(3) z € (fog)(y,®) = f(z,0) =g(z,0) = {z};

(4) z€(gof)y,o) = f(z,0) = g(z,8) = {z}.

Proof. (1) If z € (f o f)(y,e) then there exists an element z € X sat-
isfying f(y,2) # 0 # f(z,z). Moreover, f = fo f and so f(y,z) # O.
First let us consider the case y = z. Then we know that f(z,z) # 0 so
z € f(z,e). Conversely, suppose that z' € f(z,e) for some 2’ # z. Then
f(z,z)f(z,2') # 0 and so 0 # [fo(f = ix)](z,2'), which is a contradiction.
Therefore f(z,e) = {z}. Now suppose that y # z. If 2’ € f(z,e) for some
z' # z then f(y,z)f(z,z’') # 0 and so [f o (f = ix)](y,2’') # 0, which is a
contradiction. Moreover, we know by hypothesis that f(z,z) # 0. If z # z
then f(y,z) = f(y,2)f(2,7) # 0 and so [f o (f - ix)|(y,z) # 0, which is
a contradiction. Therefore we must have z = z and so f(z,z) # 0. Thus
f(z,e) = {z} in this case as well.

Since f o f = f o g we know that there exists a z € X such that
fly, 2)g(z,2)#0. First let us consider the case z=z. Then surely z € g(z, o).
If g(z,2') # 0 for = # 2’ then 0 # g(z,2)g(z, ') = [g0 (g ~ ix)}(z, "),
which is a contradiction. Thus g(z,e) = {z}. Now assume that z # z. If
9(z,2') # 0 for o/ # o then 0 # g(z2)9(z,2') = g0 (g = ix))(2, '), which
is a contradiction. On the other hand,

0# f(z,2) = (fog)(z.2)= Y f(z,2)g(z',z) = f(z,7)g(z, )
z'eX

and so g(z,z) # 0. Thus g(z,e) = {z}.

(2)—(4): These are proven similarly. m
PROPOSITION 2.2. Let R be an entire zerosumfree semiring and let A =
(f,9) be an R-valued Korczyriski net on a finite set X. For z,y € X the
following conditions are equivalent:

(1) y € f(z,0) Ug(z,e);

(2) f(y,0) = g(y, ) = {v}.
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Proof. This is a direct consequence of Proposition 2.1 and the fact that
fof=fandgog=g.m
PROPOSITION 2.3. Let R be an entire zerosumfree semiring and let A =

(f,9) be an R-valued Korczyriski net on o finite set X. For x € X the
following conditions are equivalent:

(1) There ezists an element y # z in f(z,e) U g(z,9);
(2) f(z,0) # {z} # g(z,9).

Proof. Clearly (2) implies (1). Assume (1) and let y € f(z,e). Then

surely £(z,0) # {z}. If g(z, ) = {z} then g(z,)f(z,y) # 0 s0 g(a,y) =
(g o f)(z,y) # 0, which is a contradiction. Thus we have (2). If y € g(z, )
the proof is similar. =

Let A = (f,g) be an R-valued Korczyiski net on a finite set X and let
A" = (f',4’) be an R-valued Korczynski net on a finite set X’. A morphism
from A to 4’ is a function ¢ : X — X’ such that the diagram

XxX—t g

gi e If’

R<—TX' x X'

commutes.

3. Places and transitions

Let R be a semiring and let A be an R-valued Korczynski net on a finite
set X. An element z € X is a A-place if and only if f (z, o) = {z}. By
Proposition 2.3, this is equivalent to the condition that g(z, e) = {z}. Note
that if = is a place then

fe)= ) fle,2)f(@,2) = f(z,2)
z’'eX
and
f(a:,a:) = Z f(:z:,:z:')g(:c',a:) = f(z,7)9(z, z).
z'eX
similarly g(z,z) = g(z,z)? = g(z,z)f(z,2).

Also note, that as a consequence of (3) and (4), a sufficient condition for
z € X to be a place is that there exist an element 2’ # z in X satisfying

f(z',z) #0 or g(z',z) # 0.
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Denote the set of all places of A by pl(A). If £ € X is not a A-place then
it is a A-transition. We denote the set of all transitions of A by tr(A). We
also set f = f - idyy4) and § = g = idpy(4)-

PROPOSITION 3.1. Let R be an entire zerosumfree semiring and let A =
(f,g) be an R-valued Korczyriski net on a finite set X. Then

(1) supp(f) Usupp(g) € X x pl(4).
(2) dom(f) = tr(A) = dom(g).

Proof. (1) Note that (z,y) € supp(f) © y € f(z,9) & f(y,9) = {y} =
y € pl(A). The case of supp(g) is similar.

(2) If z € tr(A) then z € dom(f) by definition and z ¢ pl(4) so z €
dom(f). Conversely, assume that z € dom(f). Then there exists an element
y of X such that (z,y) € supp(f), and either z # y or = & pl(4A). In the
second case, z € tr(A) and we are done. Assume therefore that z # y and
z € pl(A). Then z # y € f(z,o) and f(z,e) = {z}, which is a contradiction.
Thus z € tr(A). The proof of the second inequality is similar. =

In particular, we see that if A = (f,g) is an R-valued Korczyiski net on
a finite set X then supp(f) U supp(g) C tr(4) x pl(A).

4. Markings

When one describes the action of systems using Petri nets, the under-
lying net describes the environment, or hardware, of the system, while the
dynamics of the system is described by markings on the net, which are al-
tered by firing various transitions when allowable. A similar situation holds
for Korczynski nets.

Let R be a semiring and let A = (f, g) be an R-valued Korczynski net on
a finite set X. A marking on A with values in R is a function d € RP{4),
Every transition ¢t € tr(A) defines two such markings, namely

pe :p— f(t,p) and vy : p— G(p,t).

Similarly, a guard on A with values in R is a function e € R*(4). Every
place p € pl(A) defines two such guards, namely

byt t > f(t,p) and vp : t > G(t,p).

If d € RP{4) is a marking on A with values in R and if ¢ € tr(A) then
we say that A can be fired at ¢ if and only if f > u.. In this case, there
exists a marking d” € RP{4) satisfying d = d" + p; and so the marking
d’' = d" + v, satisfies the condition



Semiring-valued Korczyriski nets 27

(*) d+Vt=dl+/Jt.

In this case we write d [R|t) d’ and say that d’ is a marking obtained from
d as a result of firing the net at ¢. One problem which we may encounter
while working over an arbitrary zerosumfree semring is that the marking d”
above, and hence the marking d’, need not be unique. This cannot happen if
R is a weakly uniquely difference-ordered semiring, for in that case we must
have d” = d ~ p;. Otherwise, we may need some outside criterion to allow
us to decide which of possibly many values to prefer.

Similarly, if e € R*"(4) is a guard with values in R and if p € pl(A)
then we say that A can be activated at p to obtain a new guard e’ if
and only if e > v,, an we write e [R|p) €, where €' is aguard satisfy-
ing € + v, = e+ pp. Again, if R is a weakly uniquely difference-ordered
semiring we select €’ = e — up, but otherwise we may need some out-
side criterion to allow us to decide which of possibly many values of €' to
prefer.

If a marking d’ is obtained from a marking d on A with values in R by
successive firings of a sequence w = ty,...,t, of (not necessarily distinct)
transitions in tr(A), we write d [R|w) d’. Thus every marking d € RPY4)
defines a subset L(d) of the free monoid tr(A)* of all finite sequences of
elements of tr(A), given by the condition that w € L(d) if and only if
there exists a marking d' € RPY4) satisfying d [R|t) d’. The set L(d)
is called the formal language defined by d. Similarly, if a guard €’ is
obtained from a guard e with values in R by successive firings of a se-
quence y = pi,...,Pn of (not necessarily distinct) places in pl{4), we write
e [Rly) €. Thus every guard e € R¥(4) defines a subset M(e) of the free
monoid pl(A)* given by the condition that y € M(e) if and only if there
exists a guard e’ such that e [R|p) €’. The set M(e) is the formal language
defined by e.
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