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Anatolij Dvurecenskij 

COMMUTATIVE BCK-ALGEBRAS WITH PRODUCT 

Abstract. We introduce a product on commutative BCK-algebras with the relative 
cancellation property, i.e., commutative BCK-algebras (X; *, 0) satisfying the condition 
for x,y,a G X, with a < x, a < y and x * a = y * a we have x — y. The product 
is left and right distributive with respect to the partial operation + derived from the 
BCK-operation *. We show that the category of product BCK-algebras is categorically 
equivalent to the category of ¿-rings with special properties. Moreover, we study -ideals 
and we introduce BCKf-algebras. 

1. Introduction 
BCK-algebras entered mathematics in 1966 due to Imai and Iseki [Imls] 

and they met interest of mathematicians, logicians, algebraists, experts in 
fuzzy sets as well as in quantum structures [Cor], [CST], [Pal], [RoPa], 
[DvKi]. Recently Dvurecenskij and Graziano [DvGr] introduced a family 
of commutative BCK-algebras, commutative BCK-algebras with the rela-
tive cancellation property, i.e., for x,y,a £ X, with a < x, a < y and 
x * a = y * a we have x = y. MV-algebras introduced by Chang [Cha] form 
its proper subfamily. 

An important representation of commutative BCK-algebras with the rel-
ative cancellation property was found in [DvGr 1], where we have shown 
that they may be represented as BCK-subalgebras of the positive cone of an 
Abelian ¿-group. We recall that Bosbach [Bos] has proved an embedding of 
semiclans into the positive ¿-group; our commutative BCK-algebra with the 
relative cancellation property can be converted into a semiclan. However, 
we have shown that there is a categorical equivalence between the category 
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2 A. D v u r e c e n s k i j 

of commutative BCK-algebras with the relative cancellation property and 
the category of Abelian ¿-groups with some additional properties, [Dvu 1]. 

For example, the system X = [0,1]^ of all fuzzy sets on J? / 0 has 
a natural BCK-operation * defined by ( / * g){u) •= max{0, f(uj) — g(u)}, 
u> G fi. The partial sum / + g is defined in X iff / < 1 — g, and X admits a 
natural multiplication / • g which is a total operation and is left and right 
distributive with respect to the addition +. 

A product on MV-algebras was introduced in [DvDi]. Other attempts to 
introduce a product can be found also in [DvRi], [Rie], [BDG], and [DiGe], 
In the last two papers, the product is defined only on their radicals. 

In the present paper, we introduce a product on commutative BCK-
algebras with the relative cancellation property as a (total) binary operation 
• defined on the BCK-algebra which is left and right distributive with respect 
to a partial operation + derived from the BCK-operation *. We show that 
product BCK-algebras became from Abelian ¿-rings, and the category of 
product BCK-algebras is categorically equivalent to the category of Abelian 
¿-rings with special properties. In addition, we introduce and study BCKf-
algebras 

2. Commutative BCK-algebras 
A BCK-algebra is a non-empty set X with a binary operation * and with 

a constant element 0 such that the following axioms are satisfied: for all x, 
y,zex, 

(BCK-1) ( ( x * y ) * ( x * z ) ) * ( z * y ) = 0; 
(BCK-2) {x*(x*y))*y = 0; 
(BCK-3) x * x = 0; 
(BCK-4) x * y = 0 and y * x = 0 imply x = y; 
(BCK-5) 0 * x = 0. 

In every BCK-algebra X = (X; *, 0) we can define a partial order < via 
x < y iff x*y = 0; then X is a poset with the least element 0. A BCK-algebra 
(X; *, 0) is said to be commutative if 

x * (x *y) = y * (y * x), x,y € X, 

and in this case, xAy = x*(x*y), where A is a g.l.b. 
A BCK-algebra (X; *, 0) is bounded if there is a greatest element 1 in X. 

The class of bounded commutative BCK-algebras is categorically equivalent 
to the class of MV-algebras, [FRT]. 

Let (X; *, 0) and (Xi; *i, 0i) be two BCK-algebras. A mapping / : X —> 
X\ such that f(x * y) = f(x) *i f(y), x,y G X, is said to be a BCK-
homomorphism; it is evident that /(0) = 0. If / is injective, / is said to be 
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a BCK-embedding; if / is injective and surjective, / is said to be a BCK-
isomorphism. It is evident that if X and Xi are commutative BCK-algebras, 
then any BCK-homomorphism from X into X\ preserves meets from X. 

According to [DvGr], we say that a commutative BCK-algebra (X; *,0) 
has the relative cancellation property if, for a, x, y G X, a < x, y with x * a = 
y*a imply x — y. In this case we can introduce a partial binary operation + 
on X as follows: a + b is defined in X and equals c iff c > a and b = c* a. 
For the basic properties of + see [DvGr, DvGr 1]; we recall only that + is 
commutative, associative, cancellative and has a neutral element 0. 

In [DvGr], we have proved that any upwards directed BCK-algebra (i.e., 
given x,y G X there exists z G X with x,y < z), and in particular, any 
bounded commutative BCK-algebra, has the relative cancellation property. 

For example, ([0, oo); *K,0), where 

s *K t = max{0, s — £}, 
s,t G [0,oo), (M stands for real numbers) is an example of a commutative 
BCK-algebra with the relative cancellation property. 
EXAMPLE 2.1. Suppose that ( G ; + , < , 0 ) is an Abelian ¿-group with the 
positive cone G+ = {<? G G : p > 0}. Then (G+;*G,0) is a commutative 
BCK-algebra with the relative cancellation property, where *G is defined via 

(2.1) u*Gv := (u- v) V0, 
for u, v G G+. More generally, if Go is a non-void subset of G + such u*Qv 

G Go for u, v G Go, then (Go;*GIO) is a commutative BCK-subalgebra of 
(G+;*G,0) having the relative cancellation property. 

The later example is in some sense an archetype of commutative BCK-
algebras with the relative cancellation property because of the following 
basic representation theorem for commutative BCK-algebras proved in 
[DvGr 1, Thm 6.4]: 

THEOREM 2.2 . Let (X\ *, 0 ) be a commutative BCK-algebra with the relative 
cancellation property. Then there exists an Abelian t-group ( G ; + , < , 0 ) and 
a non-void subset Go of the positive cone G+, Go generates G"1",1 such that, 
for any u, v G Go, u * c y G Go, and there exists a BCK-isomorphism h from 
X onto Go-

We recall that an ideal of a commutative BCK-algebra (X;*,0) is a 
non-empty subset I of X such that (i) 0 G I, and (ii) x * y G I and y G I 
entail x G I. 

An ideal I of X is said to be maximal if it is a proper ideal of X and if 
it is not contained in any other proper ideal of X. We denote by M(X) the 

1I.e.J for any g 6 G+, there exist gi,... ,gn £ Go with g — g\ + • •. + <?n• 
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set of all maximal and prime ideals of X. We recall that it can happen that 
M(X) = 0. 

Define recursively, for all x,y € X : 
x y — x, x k1 y = x * y,..., x *n+1 y = (x *n y) * y, n > 1. 

An element u of X is said a quasi strong unit for X if, for any x € X, 
there exists an integer n > 1 such that x *n u = u. If X possesses a quasi 
strong unit, then M.{X) / 0. 

HM{X) + 0, then the set Rad(X) := f|{M : M € M(X)} is said to be 
a radical of X. The radical carries an important part of the propositional 
system. For example, if Rad(X) = {0}, X is said to be semisimple, and in 
this case X can be represented by functions or even by fuzzy sets, [Dvu]. 

Let n > 1 be an integer and a £ X. If ai +... + an is defined in X, where 
aj = a for i = 1 , . . . , n, then na ai + ... + an. An element x is said to be 
infinitesimal if nx is defined in X for any n > 1. The set of all infinitesimal 
elements in X will be denoted by Infinit(X). 

In [Dvu 2], we have proved that if X possesses a quasi strong unit, then 

(2.2) Rad(X) = Rad(Xu) = Infinit(X„), 

where Xu := {x €E X : x < u}. In addition, if x,y € Rad(X), then x + y is 
defined in X and x + y € Rad(X). 

We denote by BCK the category whose objects are commutative BCK-
algebras and morphisms are BCK-homomorphisms. 

Let G\ and Gi be two Abelian ¿-groups. A mapping h : G\ —> G2 is 
said to be an ¿-group homomorphism iff h is both a group-homomorphism 
and a lattice-homomorphism. In other words, for each a,b € G\, h(a + 6) = 
h(a) + h(b), h(a A b) — h(a) A h(b) (as well as for joins). 

We denote by CQ the category whose objects are pairs (G,G0), where 
G is an Abelian ¿-group and Go is a non-void subset of the positive cone 
G+ of G such that Go generates G+ and (Go; *G, 0) is a BCK-algebra (in 
fact a BCK-subalgebra of (G+ ; *G>0), see Example 2.1). A morphism from 
(G, Go) into (G',GQ) is an ¿-group homomorphism h : G —• G' such that 
h(G0) C G'0. 

Now let (G, Go) be an object of CQ and define a morphism X from the 
category CQ into the category BCK, as follows 

(2.3) * ( G , G o ) = (Go;*g,0), 

where *G is defined via (2.1). Let h be a morphism from (G, Go) into 
(G',G'0). We define X(h) as a mapping from X{G,G0) into X(G',G'0) via 

(2.4) X(h)(a) := h(a), a € Go-

The following result has been proved in [Dvu 1]: 
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THEOREM 2.3. X is a faithful, full and right-adjoint functor from the cate-
gory CQ of Abelian i-groups into the category BCK. of commutative BCK-
algebras with the relative cancellation property. Moreover, X is a categorical 
equivalence. 

R e m a r k 2.4. From Theorem 2.3 we have, in particular, see also [DvGr 1], 
that any commutative BCK-algebra with the relative cancellation property-
admits a universal group, i.e. a pair (G(X),h), where G(X) is an Abelian 
¿-group and h is a mapping from X into G(X) preserving the order in X 
and +, such that if g : X —> Gi is an order and + preserving mapping into 
an ¿-group G\, then there exists a unique group homomorphism g' : G —• G\ 
such that g = g' o g. We recall that h is a BCK-embedding. In this case, 
X = X{G(X),h{X)). 

On the other hand, every commutative BCK-algebra (X;*,0) with the 
relative cancellation property can be embedded into a commutative BCK-
algebra (X-, *, 0), called the BCK-hullof X, such that X is a lattice consisting 
of all finite joins of elements from X. Moreover, every element from X is a 
finite sum of elements from X, where the sum is taken in X, [Dvu]. Then 
(G(X), h) is a universal group for X, where h is a unique extension of h. 

3. Product on commutative BCK-algebras 
In many important commutative BCK-algebras, for example, in semisim-

ple MV-algebras, we are able to introduce besides a total BCK-binary op-
eration * and the derived partial addition + also a multiplication as a to-
tal binary operation. For example, if X — [0, l] n , we define ( / * g)(u) = 
f(u>) *JR g(uj), u G O. Then we define the product • as a natural multipli-
cation of functions. The derived -I- is such one that / + g exists in X iff 
f(u) + g(u) < 1 for any u £ Q. Then the natural product is left and right 
distributive with respect to the derived +. 

Motivating that example, we introduce in the present Section product 
BCK-algebras. We show that they are closely connected with ¿-rings. Other 
examples of product BCK-algebras are given after Theorem 3.3. 

DEFINITION . We say that a commutative BCK-algebra (X;*,0) with the 
relative cancellation property admits a product if there is a binary operation 
• on X satisfying for all a,b,c € X the following 

(i) if a + b is defined in X, then a - c + b- c and c • a + c • b exist and 

(a + b) • c = a • c + b • c, 
c • (a + b) = c • a + c • b, 

where + is a derived partial operation on X, and we say that X is a 
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product BCK-algebra. Sometimes we write X = (X; *, 0, •). An element u of 
a product BCK-algebra X is said to be a unity, if a • u = u • a — a for any 
a ex. 

A product • on X is 

(ii) associative if (a • b) • c = a • (b • c), a,b,c G X] 

(iii) commutative if a • b = b • a, a,b G X. 

It is worth saying that if • is a product on X , then 

(iv) a • 0 = 0 = 0 • a, 
(v) if a < b, then for any c€X,a-c<b-c and c • a < c • b. 

Property (iv) follows easily from the following: a-0 = a-(0+0) = a-0+a-0, 
and the cancellation property gives a • 0 = 0. Similarly, 0 • a = 0. 

THEOREM 3.1. The class of product BCK-algebras is equationally definable. 

P r o o f . The class of commutative BCK-algebras with the relative cancella-
tion property is equationally definable, [DvGr 1, Thm 5.4], The condition 
(i) is equivalent to the identities, for all c, x,y G X, 

c • (x * (x A y)) = (c • x) * (c • (x A y)), 

(x * (x A y)) • c = (x • c) * ((x A y) • c). 

Hence the class of product BCK-algebras is equationally definable. • 

We recall that an t-ring is a usual ring (R ; + , •, 0) with a partial order < 
such that (R ; + , 0, < ) is an ¿-group and, if 0 < a and 0 < b, then 0 < a • b. 

A function ring or an f-ring is an ¿-ring such that a A b = 0 and 0 < c imply 
(c • a) A b = (a • c) A b = 0. An ¿-ring R is Archimedean if (i?; + , 0, < ) is 
Archimedean. For an ¿-ring R we shall write R = (R\ 

We recall that if unity 1 of an ¿-ring R is a strong unit, then R is an 
f-ring, [Bir, Lem XVII.5.2], and any Archimedean f-ring is commutative and 
associative, [Bir, Thm XVII. 10]. More about ¿-rings see, e.g., [Bir] or [Fuc]. 

THEOREM 3.2. Let (/?;+,-, 0, < ) be an (associative) I-ring with 0 ^ Rq 
C R+ such that a,b G Ro entails a*Rb G i?o and a b G Rq- Then (X; *, 0) := 
X{R, R0) is a product BCK-algebra with an (associative) product •, which 

is the restriction of • to RQ X RO. 
Conversely, let (X;*,0) be a product BCK-algebra with an (associative) 

product Then there exists a unique (up to isomorphism) (associative) 

¿-ring (i?;+,-,0, < ) with a non-empty set Ro C R+ generating R+ as 

a group-cone such that a,b G Ro entails a *Rb G Ro, a • b G Ro, and 

X ^ X(R,R0), and (f){a • b) = <f>{a) • <f>(b), a,b G X, where <f> is a BCK-

isomorphism of X onto X(R,Ro). 
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P r o o f . (1) Let X = X(R,R0). For a,b E X we have a • b £ X which says 
that the restriction of • onto X x X defines the (associative) product on the 
BCK-algebra X. 

(2) Let X be a BCK-algebra with a product •. According to Theorem 
2.3, there is an ¿-group (R; + , 0, <) with a BCK-subalgebra Rq and a BCK-
isomorphism </> from X onto X(R,Ro). We can define the product • on 
X(R, Rq) as follows 

(j>(a) • <t>(b) := <j)(a • b), a,b<E X. 

Because X{R, Rq) is generating for the positive cone R+ of R, (j) preserves 
all existing + in X, we see that • is a product on X{R, Ro)-

Given g G R+ there exist a\,...,an E X such that g = <Kai)- For 
any <p(c), where c E X, we define 

(3.1) g • <j>(c) = 4>{ai • c) + . . . + <j>(an • c). 

We claim that (3.1) is defined unambiguously. Indeed, if g = Y^jLi f° r 

some &i,. . . , bm £ X, due to the Riesz decomposition property holding on £-
groups [Goo, Prop 2.2], there exist elements Cjj € X such that a* = YlJLi °ij 
and bj = Y17=i c*j f° r all i, 1 < i < ri and all j, 1 < j <m. Then 

n n m n m 
5 3 . <0 = £ 4>((J2 en) • c) = 5 3 0 ( 5 3 ^ • c)) 
i=i i=i j=I i=i j=I 

u 77i m n 

= 5 3 S • c ) = X • c ) 
i= 1 J = 1 j = l i = l 
m n 77i 71 

= S ^ C C • c ) = 2 ^ ( E • c ) 
j=l i=l j=1 ¿=1 

m 

= 5 3 ^ - c ) . 
j=i 

which proves that the extension of • on R+ x X{R, RQ) is correct. We now 
extend to R x X(R, Ro) as follows: If g = g\ — g2, gi,g2 € R+, then 

g-<t>{c) := pi • 0(c) - 0 2 -0(c). 

Since if gi - g2 = hi - h2 for gi,hi E i — 1,2, then 51 + /12 = + 52, 
so that by (3.1) 

(51 + ^2) • 4>{c) = {hi + g2) • <j>(c) 
9i • 4>{c) + h2 • <f>{c) = hi • <f>{c) + g2 • <p{c) 
gi • <f>(c) - g2 • 4>{c) = hi • <f>{c) - h2 • <p(c). 
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Now let c G R+. Then c = <p(c\) +... + <f>{cs), where ct G X, t = 1 , . . . , s. 
We extend • to R x R+ as follows 

s 
g-c:=J29-<t>{ct), 9 € R. 

t=l 

If c = <t*(dw), using the Riesz decomposition property, we have 
S V 

5~^9-<t>{ct) = 
t=1 tu=l 

It is clear that the "multiplication" • can be extended to whole R x R: If 
c = ci — C2, where c\, c-i G R+, then 

g • c \= g • ci - g • c2. 

It is evident that if g, h G R+, then g-h € R+, and due to (ii), • is associative 
on R, so that (R; + , •, 0, <) is an ¿-ring with the BCK-subalgebra Rq, which 
proves Theorem. • 

A commutative BCK-algebra (X;*,0) with the relative cancellation 
property is said to be Archimedean if the statement "na is defined and na <b 
for any n > 1 and for some b G X" implies a — 0. Due to [Dvu], a BCK-
algebra X is Archimedean iff its universal group (G, h) is an Archimedean 
¿-group. In addition, X is Archimedean if X is semisimple [Dvu]. The con-
verse statement holds for example, if X has a quasi strong unit. 

T h e o r e m 3 .3. Let ( X ; * , 0 ) be a product BCK-algebra with a product •. 

(1) If a • b = b • a, for all a,b G X, then (R-, + , •, 0, <) from Theorem 3.2 
is a commutative ¿-ring. 

(2) If a quasi strong unit u for X is the unity for X, then the I-ring 
(R; + , •, 0, <) from Theorem 3.2 is an f-ring with a strong unit <f>{u)2 

which is unity in R. 
(3) If X is semisimple with unity u which is a quasi strong unit for a 

product •, then the ¿-ring (U;+,-,0, <) from Theorem 3.2 is a com-
mutative and associative f-ring. 

(4) If there is an element e G X which is unity for X, then (j>(e) is unity 
in the ¿-ring (R\ +, •, 0, <) from Theorem 3.2. 

P r o o f . (1) It follows from the construction of (R; + , - ,0) from the proof of 
Theorem 3.2. 

2 A positive element of an ¿-ring i i is a strong unit if, for any g 6 R, there exists an 
integer n > 1 such that -nu < g < nu. 
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(2) Since a • u = u • a = a for any a € X, it is possible to show that <p(l) 
from the proof of Theorem 3.2 is unity in R. Prom [Bir, Lem XVII.5.2] we 
conclude that R is an f-ring. 

(3) According to (2), R is an f-ring. Due to the semisimplicity of X we 
infer that (R; +, 0) is an Archimedean ¿-group, and by [Bir, Thm XVII. 10], 
the multiplication • on R is commutative and associative. 

(4) It is evident. • 

To illustrate our notions, we investigate the possibility of the existence 
of product BCK-algebras. It is evident that every BCK-algebra under the 
trivial product, i.e., a • b = 0 for all o, 6 € X, is a product BCK-algebra, 
called a zero-BCK-algebra. Other product BCK-algebras with non trivial 
product we can obtain as follows. 

Let a be an element of X. If there exists a greatest integer n such that 
na := a + ... + a is defined in X, ord(a) := n; if na is defined in X for any 
integer n > 1, we put ord(a) — oo. 

A non-zero element a of X is said to be an atom of X if b < o, b e X 
imply b = 0 or b = o. A BCK-algebra X is said to be atomic if given a 
non-zero element b of X there is an atom a in X such that a < b. 

A BCK-algebra (X; *,0) is said to be implicative if x * y = (x * y) * y, 
x,y € X. Such BCK-algebras have the relative cancellation property and 
they can be embedded onto a BCK-algebra (<S; \ , 0), where S is a usual ring 
of subsets of a non-void set J?, and \ is the set-theoretical difference, [MeJu, 
Thm VII.2.7]. 

THEOREM 3.4. A finite commutative BCK-algebra ( X ; *, 0) with the relative 
cancellation property admits a product with unity u if and only if X is 
implicative. If it is the case, then a • b — a Ab, a,b € X. 
P r o o f . Suppose that X is implicative and define a • b := a A b for all a, b G X. 
Then • is a product in question. 

Conversely, assume that the product • satisfies a • u = a = u • a for any 
a£X. 

First, let X be a bounded BCK-algebra with the greatest element 1. 
Then 1 - 1 < 1 = 1- u < 1 - 1 which proves 1 - 1 = 1. For any a e X, we 
denote by a* = 1 * a. Then a • 1 > a • u = a and 1 • a > u • a — a. In addition, 
a + a* = 1 = 1 - 1 = (a + a*) • 1 = a • 1 + a* -1 > a + a*, which entails 
a • 1 = a. By symmetry, we have 1 • a — a for any a £ l , and in addition, 
1 = 1 • u = u. 

The finiteness of X yields that X is atomic. If a and b are two different 
atoms, then (na) A (mb) = 0 whenever na and mb are defined in X, [Dvu, 
Thm 7.2] Therefore ((na) V (mb)) - (na) = (mb) - ((na) A (mb)) = (mb) so 
that na + mb is defined in X and na + mb = (na) V (mb). 
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Given an atom a, let ja(x) denote the greatest integer n such that no is 
defined in X and na < x. Since X is finite, ja (x) is finite for any atom a 
and for any element x, and the element x of X can be uniquely expressed 
in the form 

x = jai (z)ai + • • • + jak (x)ak, 
where ai,..., ak denote the set of all atoms in X. 

Assume again that a and b are two different atoms. Hence a • b < a • 1 = a 
and a • b < 1 • b = b which gives ab<aAb = 0. Similarly a • a < a which 
entails a • a € {0, a}. 

If X is not implicative, then there is an atom a of X such that n 
ord(a) > 2. If a • a = a, then (na) • (na) = n2 (a • a) = n2a which yields 
n - ord(a) > n2 . If a • a = 0, then 0 ^ a = a- l = a - (ord(ai)ai + . . . + 
ord(ak)ak) = 0 which is again absurd. Consequently, on X, which is not 
implicative, there is no product in question. 

Assume now that X is a finite BCK-algebra which is not necessarily 
bounded. In any rate, the BCK-hull X of X is due to finiteness of X bounded 
and finite. If (G(X), h) is a universal group for X, then by Theorem 3.2, 
G(X) is an ¿-ring. By Remark 2.4, h(X) is closed under the product in 
G(X), because if x, y G X, then x = x\ + ... + xn, y = y\ + . . . + ym , where 
xu Vj G X\ then x • y = • Vj € X. 

Therefore, X is a finite product BCK-algebra. It is clear that u is unity 
in X, too. Due to the first part of the present proof, X has to be implicative, 
so that, X is implicative. 

Assume now that X is implicative, and without loss of generality, let 
X be bounded, and let a • a = 0 for some atom a of X. Then a = a • 1 = 
a - (a + a*) = a-a* = a • ai) = 0, which is absurd. Hence a • a = a for 
any atom a. Therefore x • y = (jai (x)ai + ... + jak (x)ak) • (jai (j/)oi + • • • + 
jak (y)afe) = jai (x A y)oi + . •. + jak (x A y)ak = x A y for any x, y £ X. m 
COROLLARY 3.5. (i) A product • with unity on a non-implicative BCK-
algebra X can exists only if X is an infinite BCK-algebra. For example, 
on ([0, oo); *r,0) we can define a usual product of real numbers. 

(ii) From the proof of the previous theorem we conclude that if u is a 
unity for a product • on a bounded product BCK-algebra X, then 1 = u. 

4. Product BCK-algebras and categorical equivalence 
Denote by VBCK. the category of product BCK-algebras, i.e., its objects 

are BCK-algebras with product, and morphisms are BCK-homomorphisms 
of product BCK-algebras preserving also •. 

We denote by VR. the category whose objects are pairs (R, RQ), where 
R is an Abelian ¿-ring and RQ is a non-void subset of the positive cone R+ 
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of R such that RQ generates R+ and (RQ; *R, 0) is a product BCK-algebra 
under •. A morphism from (R, RO) into (R', R!Q) is an ¿-group homomorphism 
h : R —> R', preserving •, A, V, such that h(RO) C R'0. 

We denote by Xn a morphism from VR. into VBCK. defined by X-JZ(R, RQ) 

— {Ro, *R, 0, )3 , a n d X j i ( f ) := f\Ro-

THEOREM 4.1. X-R is a faithful and full functor from VR. to VBCK. 

Proof . Let h\ and h2 be two morphism from (R,RQ) into (R',R'0) such 
that Xnihx) = Xn(h2). Then h^a) = h2(a) for any a € XK(R,Rq). Since 
XFC(R, RQ) generates R+ and R, we have that hi(g) = h2(g) for any g € R 
which proves that X-R is faithful. 

To prove that X-R is a full functor, suppose that / is a morphism from 
X-R(R,RO) into XN(R', R'0). Since X-H(R,RQ) generates R, due to the Riesz 
decomposition property, / can be uniquely extended to a group-homomor-
phism f from R into R'. 
CLAIM 1. / is a lattice-homomorphism. The proof will proceed in several 
steps. 

Step 1. f preserves meets in XN(R, RQ). This follows from the observation 
that a Ab — a * b which entails / preserves meets in Xn(R, Ro). 

Step 2. L e t a,b,u0 <E R+. If f(a Ab) = f(a) A f{b) a n d if f(u0 A (b — 

(a A b))) = f(uo) A f(b - (a A &)), then 

/((o + no) Ab) — f{a + uo)A f{b). 

Indeed, we have (a A b) 4- [«o A (b — (a A6))] = ((a A b) + UQ) Ab — (a + ito) A 
(b + uo) A b = (a + ito) A b. 

Therefore 
/((a + u0) A b ) = f(a A b) + f(u0 A (b - (a A b))) 

= ( / ( a ) A / (&)) + [f(u0) A ( f ( b ) - ( f ( a ) A f(b)))\ 

= ( ( f ( a ) A f ( b ) ) + f(u0))Af(b) 

= (f(a) + /(uo)) A (/(6) + 7(«o)) A f(b) = f(a + u0) A 7(6). 

Step 3. f{a A 6) = f ( a ) A f(b) whenever a G R+ and 6 6 XN(R, RQ). 
Since X-R(R, RQ) is generating for R+, a is of the form a = ai + . . . +a„ for 

some a j , . . . , an G XN(R, RQ). The proof will follow mathematical induction 
on n. 

If n = 1, the statement is trivial. Suppose now that the statement holds 
for tiny a' = ai + . . . + a* with 1 < i < n. Put a = a\ + . . . + a„, u0 = a„+ i . 

3We recall that is understood as that defined by (2.1). 
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Then there exist v\,...,vk G X-R,(R, Ro) such that b = (ui + .. .+Vk) + (aAb). 
Since v := vi + ... + Vk < b, v G Xn{R, Ro)- Hence v = b — (a A b). Since 
/ preserves meets in Xn(R, Ro), we have f(uo A v) = f(uo) A /(D), SO that 
f(u0 A (6 - (a A 6))) = / K ) A /(& - (a A 6)) = f(u0) A (/(&) - (/(a) A / (&))) 
when we have used induction hypothesis. By Step 1, f((a + UQ) A b) = 
/ ( a + u0) A /(&), that is, / ( (a i + . . . + a n + i ) A b) = f(a1 + ... + o n + i ) A /(&) 
for any n. 

Step 4. f(a A b) = / (a) A /(6) whenever a, & G 
Let a = oi 4-. • • + on , b = b\ + ... + bk • The proof will follow complete 

induction on k. 
If k = 1, we apply Step 3. Suppose now that the assertion holds for any 

j with 1 < j < k. Put B = a, A = bi + ... + bk, u0 = 6jk+i- By Step 3, 
f(uQA(B-(AAB))) - f(u0)Af(B-(AAB)) and f(AAB) = f(A)Af{B). 
Therefore the conditions of Step 1 are satisfied, so that f((A + UQ) A B) = 
f(A + u0) A f(B) which proves f((ai + . . . + an)) A (6i + . . . + bk+1)) = 
f(ai + • • • + an) A f(bi + . . . + frfc+i) for each ra and each k. 

Step 5. f(aAb) = f(a)Af(b) whenever a,b G R. There exist a', a", b', b" G 
R+ such that a = a' -a" and b = b'-b". By Step 4, f((a' + b") A(b' + a")) = 
f(a' + b') A f(b' A a"). Subtracting f(b") and f(a") we obtain the assertion 
in question. 

CLAIM 2. f preserves the product • in R. 
Let a, b G R+. There exist a i , . . . , a n , b\,..., bm G Xv.{R, Ro) such that 

a = + ... + an and b = &i + ... + bm. Then a • b = Y^jLi a' ' 
bj and aj • bj G Xn(R,Ro)- Calculate f(a • b) = f(ai ' fy) = 

E r = i E 7 = i T(OI) • M = ( E r = i / K ) ) • ( E ; = i M ) ) - / ( « ) • M -
If now a, 6 G R, then a = a,2 and b — 61—62, where a,\,a2,b\, 62 G R+. 

Then f(a-b) = / ( a i - 6 1 + a i - 6 2 - a 2 - 6 i + a2-62) = f (ai-bi)~ f (ai-b2)- f (a2-
61) + / ( a 2 • 62) = f(ai) • f(h) - /(0l) • f(b2) - f(a2) • f(h) + f(a2) • f(b2) -
M • M . 

Consequently, we have proved that / is a morphism from (R; +, 0, <) 
into (R'-, +, •, 0, <) such that Xn{f) = /• • 

THEOREM 4.2. The functor X-R defines a categorical equivalence of the ca-
tegory VIZ of ¿-rings and the category VBCK, of product BCK-algebras. 

P r o o f . According to [MaL, Thm IV.4.1], to prove that X-n is an equivalence 
of the categories in question, it is necessary and sufficient to show that X-R is 
faithful and full, and each object X from VBCK is isomorphic to XN{R, R'0) 
for some object (R,RQ) in VTZ. 
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Due to Theorem 4.1, Xn is faithful and full, and by Theorem 3.2, there 
exists an object (R,R0) in VTZ such that Xn(R,R0) is isomorphic with X 
which proves Theorem. • 
R e m a r k 4.3. Theorem 4.2 holds also for the category of product BCK-
algebras which are also associative. In this case APTZ has to be the category 
of associative elements from VIZ. 

Finally we compare product BCK-algebras and MV*-algebras introduced 
in [BDG]. We recall that Cornish [Cor] introduced so-called conical BCK-
algebras, which by [Dvu 1, Rem 3.4] can be defined by the equivalent way: 
A commutative BCK-algebra (X; *,0) is said to be conical iff it is with the 
relative cancellation property and if x + y is defined in X for all x, y € X. It 
is possible to show that X(G, Go) is conical iff Go = and due to Cornish 
[Cor] the category of conical BCK-algebras is categorical equivalent to the 
category of all Abelian ¿-groups. 

Denote by VCBCK the category of all product conical BCK-algebras, and 
by VCBCK u the category of all product conical BCK-algebras whose objects 
are pairs (X, u), where it is a fixed quasi strong unit such that u • u < u, and 
morphisms is any BCK-homomorpshim preserving the product and fixed 
quasi strong units. 

An MV-algebra (M; ©, 0,* , 0,1) is said to be perfect if, for each element 
x € M, either x G R a d ( M ) or x* £ Rad(M). 

According to [BeDi], we say that a perfect MV-algebra M is with prin-
cipal radical if there is an element a € Rad(M) such that the ideal of M 
generated by a coincides with Rad(M). The category MVpr of perfect MV-
algebras with principal radical is a category whose objects are pairs (M, a), 
where M is a perfect MV-algebra with a fixed element a G Rad(M) gen-
erating Rad(M), as an ideal, and morphisms are MV-homomorphisms pre-
serving fixed elements a in radicals.4 Due to [BeDi, Prop 27], this category 
is equivalent with the category MV of all MV-algebras, or equivalently with 
the category of all unital Abelian ¿-groups (Mundici's representation). 

We recall that in [BDG] an MV*-algebra M has been introduced, which 
can be defined equivalently as follows: M is a perfect MV-algebra with a 
binary operation * : Rad(M) x Rad(M) —> Rad(M) such that (i) it is 
associative, (ii) a * (£> + c) = (a * b) + (a * c), (b + c) * a = (b * a) + (c * a), 
a,b,c€ Rad(M). 

Now let MV* be the category of MV*-algebras whose morphisms are 
MV-homomorphisms preserving a binary operation * on radicals. According 
to [DiLe, Thm 3.5], the category MVP of perfect MV-algebras is categor-
ically equivalent with the category of all ¿-groups (not necessarily unital), 

4We recall that any MV-homomorphism maps radicals into radicals, use (2.2). 



14 A. D v u r e c e n s k i j 

and MV* is categorically equivalent to the category of all associative ¿-rings 
[BDG, Thm 2.6] (not necessarily unital). Let MV*r denote the category hav-
ing as objects pairs (A ,g) , where A is a perfect MV*-algebra with principal 
radical with a distinguished generator g such that g * g < g, and mor-
phisms are MV*r-homomorphisms preserving the distinguished generator of 
the radical. 

Finally, let 7Z denote the category of associative ¿-rings, where the objects 
are associative ¿-rings, and let 1ZU be the category of associative ¿-rings with 
a fixed strong unit u such that u-u < u, i.e., objects are pairs (R, u), where u 
is a fixed strong unit in R, and morphisms are ¿-rings morphisms preserving 
fixed strong units. 

THEOREM 4.4 . (1) The categories M V * of perfect MV*-algebras, VCBCK, of 
product conical BCK-algebras, and TZ of associative t-rings are categorically 
equivalent. 

(2) The categories M V * r , VCBCKU, and 1ZU are categorical equivalent. 

P r o o f . It follows ideas developed in above and in [BDG], and from the 
observation that an element u of X is a quasi strong unit iff the ideal of X 
generated by u is equal to X. u 

5. Ideals in product BCK-algebras and BCKf-algebras 
Let X be a product BCK-algebra. A non-empty subset I of X is said to 

be a -ideal of X if 

(i) 0 e /; 
(ii) a*b G / , a G X, and b G I, entail a G I; 

(iii) a G / and b G X entail a • b G I and b • a G I. 
We denote by I P ( X ) the set of all -ideals of X . 
Let (R) + , •, 0, <) be an ¿-ring. An L-ideal of R is a non-void subset J of 

R such that 

(i) x,y G J entails x±y G J; 
(ii) x G R, y G J , |x| < |y| entail x G J ; 

(iii) x G J a n d y G R e n t a i l x • y G J a n d y • x G J . 

We denote by XL (ii) the set of all L-ideals of R. 
Let (X;*,0) be a commutative BCK-algebra with the relative cancel-

lation property and let ( G ( X ) , h ) be its universal group. Given a subset I 
of X, let h0(I) be the ¿-ideal of G(X) generated by the image h(I) of I in 
G(X). 

THEOREM 5.1 . Let ( R ; + , •, 0 , < ) be an l-ring with 0 ^ RQ C R+ such that 
a, b G RO entails a b G RO and a - b G RQ, and let X = X-N(R, RQ). Then 
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the correspondence $ defined by 

(5.1) *( / ) :=h0(I), J e T p ( X ) , 
where h is the embedding of X into R, is an order-isomorphism, from the 
set 1 P ( X ) of --ideals of the product BCK-algebra X , ordered by inclusion, 
onto 1l{R)- The inverse isomorphism & is given by 

P r o o f . In [Dvu 2, Thm 2.5] we have proved that the mappings (5.1) and 
(5.2) define inclusion isomorphisms between the set of ideals of X and l-
ideals of R. We show that they preserve also "-ideal property". 

We assert that x G <P(/) iff x = xi + . . . + Xj — y\ — . . . — yk, where 
Xi,ys G I. It is clear that if x has a given form, then x G $( / ) . Conversely, 
let x G $(I)- Assume that x > 0. Then there exist x i , . . . , x n G X such 
that x = x\ + ... + xn. We show that x i , . . . , xn G I. The proof will follow 
mathematical induction on n. If n = 1, the statement is evident. Assume 
thus that whenever x G #( / ) and x = xi + . . .+x* for i < n, then X\,..., Xi G I. 
Now let x = x\ + . . . + xn + xn+i. Then 0 < xn+i < x so that xn+\ G $ ( / ) 
and x — Xn+i € £ ( / ) and by induction Xi, . . . ,xn 6 I. Hence x — x\ = 
X2 + • • • + x n + i which proves also xn+i € I . 

If x is an arbitrary element of #( / ) , then x = x+ — x~ and x + , x~ G #( / ) , 
so that x = x\ + ... + Xj — yi — ... — yk-

Now let x G $(I) and y G R, then x = x\ + . . . + Xj — yi — . . . — yk 
and y = ui + ... + Us — vi — ... — Vk, where x i , . . . , Xj ,y i , . . . , yk G I and 
Ui,..., us, v i , . . . , Vk £ X . Then evidently x • y, y • x G which proves 
that $ preserves -ideals. • 

A product BCK-algebra X is said to be a BCKi-algebra if, for all 
a, 6, c G X , 

(5.3) a A b = 0 implies (a • c) A b = 0 = (c • a) A b. 

For example, any linearly ordered product BCK-algebra is a BCKf-algebra. 
THEOREM 5 . 2 . Let (R• +, - , 0 , <) be an I-ring with 0 / R0 C R+ such that 
a, b G i?o entails a*nb G RO and a-b G Rq. Let X = XN(R, R0). Then X 
is a BCKf-algebra if and only if R is an f-ring. 

P r o o f . One direction is trivial. Suppose now that X is a BCKf-algebra, 
and let for a,b,c € R we have a A b = 0 and c > 0. Let x < a - c and x < b 
and express a = o», b = bj, and c = Ylk cfc> where aj, bj, Ck G X. 

Since x < k a{-Ck, the Riesz decomposition property, [Goo, Prop. 2.2] 
entails x = cf=> where Cjfc < al-Ck- Then cat < bj and applying again 
the Riesz decomposition property, we have Cik = cijfc where Cijk < bj 

(5.2) ${H) := X D H, H G Tl{R). 
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for any i and any k. Since a{ A bj — 0, we conclude that c^ < a,i • cjt and 
<kjk < bj, so that Cijk = 0 for all i,j,k. Hence, Cik = 0 for all i,k which 
yields x = 0. 

In a similar way we can prove that (c • a) A b = 0. • 

COROLLARY 5.3. In any BCKf-algebra X we have for all a,b,c G X 
a • (6 V c) = (a • b) V (a • c) 

(bV c) • a = (b- a)V (c- a) 
a • (b A c) = (a • b) A (a • c) 

(b Ac) • a = (b • a) A (c- a) 
aAb = 0=>a-b = 0. 

P r o o f . Use Theorem 5.2 and [Bir, Cor XVII.5.1, Lem XVII.5.1]. • 

Given a non-void subset A of X, we define 

A1- := {a £ X : a A x = 0 for any x € A}. 

THEOREM 5.4. Let (R; +, 0, <) be an ¿-ring with 0 / Ro C II+ such that 
a,b € Ro entails a *Rb € Rq and a -b G Ro- Let X = Xn(R, Ro)- Then X 
is a BCKf-algebra if and only i f , for every subset A of X, the set A1 is a 
••ideal of X. 

P r o o f . Let X be a BCKf-algebra. Let a * b € AL, b e A-1 and x G A. 
Then a A b G AL. We show that a G AL. Let z < a and z < x. Then 
z < a = aAb+a*b. The Riesz decomposition property entails that z = Z1+Z2, 
where z\ < a A b and z<i < a * b. Since we also have zi < x, we conclude 
Z2 = 0, and z\ < a A b G Ax, consequently, zi = z2 = 0 = z which yields 
a e i 1 

Take now a G A-1, b G X, and x G A. Then o A x — 0, which gives 
(a • b) A x = (b • a) A x = 0. 

Conversely, assume that for any non-void A C X, A1- is a -ideal of X. 
Let a A b = 0, c G X. Then a G {b}x. Since {b}x is a -ideal of X, a • a, 
c • a G {£>}x, i.e., (a • c) A b = (c • a) A b = 0. • 

THEOREM 5.5. The class of BCKf-algebras is equationally definable. 

P r o o f . Any product BCK-algebra is equationally definable, Theorem 3.1. 
The implication (5.1) is equivalent to the identities 

(c-(x*(x A y))) A (y * (x A y)) = 0, 
(Or * (a: A y)) -c)A{y*{xA y)) = 0. 

Hence the class of BCKf-algebras is equationally definable. • 
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COROLLARY 5.6. Any BCKf-algebra is a subdirect product of subdirectly ir-
reducible BCKf-algebras. 

Proof. It follows from Theorem 5.5 and [Bir, Thm VIII.15]. • 

PROPOSITION 5.7. Any subdirectly irreducible BCKf-algebra is linearly or-
dered. 

Proof. Let X be an irreducible BCKf-algebra and suppose that X is not 
linearly ordered. Then there exist two non-zero elements a,b G X such that 
a A b = 0. Put I = {b}1- and J = Ix. Then / n J = {0}, and o € I and 
b G J. By Theorem 5.4, I and J are both -ideals of X. The irreducibility of 
X entails that I = {0} or J = {0} which is a contradiction. Therefore, X is 
linearly ordered. • 

THEOREM 5.8. A product BCK-algebra is a BCKf-ring if and only if it is a 
subdirect product of linearly ordered product BCK-algebras. 

Proof. By Corollary 5.6 and Proposition 5.7, any BCKf-algebra is a sub-
direct product of linearly ordered product BCK-algebras. 

Conversely, any linearly ordered product BCK-algebra is an BCKf-alge-
bra. By Theorem 5.5, (5.1) holds in every subdirect product of linearly 
ordered BCKf-algebras, i.e., X is a BCKf-algebra whenever X is a subdirect 
product of linearly ordered product BCK-algebras. • 

A weaker form of BCKf-algebras are almost BCKf-algebras, i.e., such 
product BCK-algebras X that a A b = 0, a, b G X, imply a • b = 0. Similarly, 
an associative ¿-ring R is said to be an almost f-ring if x A y = 0 implies 
x • y = 0. We recall that not every almost f-ring has to be an f-ring [Bir, 
§ XVII.6]. 

A non-zero element u of a BCK-algebra X is a weak unit if u A a ^ 0. 
Similarly a non-zero positive element u of an ¿-algebra R is a weak unit if 
i A u / 0 for any positive element x € R. 

THEOREM 5.9. Let (R; + , •, 0, < ) be an associative ¿-ring with 0 ^ R0 C R+ 

such that a, b G RQ entails a b G RO and A-b € RQ. Let X = X-JI(R, RQ). 
Then X is an associative almost BCKf-algebra if and only if R is an almost 
f-ring. If X has a unity e, then X is an almost BCKf-algebra if and only if 
e is a weak unit for R. 

Proof. One direction is evident. Suppose now that X is an almost BCKf-
algebra, and let a Ab = 0 for o, b € R. Then a = at and b = bj, where 
a», bj G X. Since aj A bj = 0 for all i, j, we have a -b = . <Zj • bj — 0. 

Now let e be a unity for X. Then e is a unity for R, and e is a weak 
unit for X iff e is a weak unit for R. Applying [Bir, Thm XVII. 12], R is an 
almost f-ring iff e is a weak unit for R. • 
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