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Anatolij Dvurecenskij

COMMUTATIVE BCK-ALGEBRAS WITH PRODUCT

Abstract. We introduce a product on commutative BCK-algebras with the relative
cancellation property, i.e., commutative BCK-algebras (X; x,0) satisfying the condition
for z,y,a € X, witha < z,a < yand z *a = y *x a we have z = y. The product
is left and right distributive with respect to the partial operation + derived from the
BCK-operation *. We show that the category of product BCK-algebras is categorically
equivalent to the category of £-rings with special properties. Moreover, we study --ideals
and we introduce BCKf-algebras.

1. Introduction

BCK-algebras entered mathematics in 1966 due to Imai and Iséki [Imls]
and they met interest of mathematicians, logicians, algebraists, experts in
fuzzy sets as well as in quantum structures [Cor|, [CST], [Pal], [RoPa],
[DvKi]. Recently Dvurecenskij and Graziano [DvGr] introduced a family
of commutative BCK-algebras, commutative BCK-algebras with the rela-
tive cancellation property, i.e., for z,y,a € X, with a < z, ¢ < y and
x * a =y * a we have £ = y. MV-algebras introduced by Chang [Cha] form
its proper subfamily.

An important representation of commutative BCK-algebras with the rel-
ative cancellation property was found in [DvGr 1], where we have shown
that they may be represented as BCK-subalgebras of the positive cone of an
Abelian £-group. We recall that Bosbach [Bos] has proved an embedding of
semiclans into the positive £-group; our commutative BCK-algebra with the
relative cancellation property can be converted into a semiclan. However,
we have shown that there is a categorical equivalence between the category
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2 A. Dvureéenskij

of commutative BCK-algebras with the relative cancellation property and
the category of Abelian /-groups with some additional properties, [Dvu 1].

For example, the system X = [0,1]" of all fuzzy sets on 2 # 0 has
a natural BCK-operation * defined by (f * g)(w) := max{0, f(w) — g(w)},
w € §2. The partial sum f + g is defined in X iff f <1 - g, and X admits a
natural multiplication f - g which is a total operation and is left and right
distributive with respect to the addition +.

A product on MV-algebras was introduced in [DvDi]. Other attempts to
introduce a product can be found also in [DvRi], [Rie], [BDG], and [DiGe}.
In the last two papers, the product is defined only on their radicals.

In the present paper, we introduce a product on commutative BCK-
algebras with the relative cancellation property as a (total) binary operation
- defined on the BCK-algebra which is left and right distributive with respect
to a partial operation + derived from the BCK-operation *. We show that
product BCK-algebras became from Abelian £-rings, and the category of
product BCK-algebras is categorically equivalent to the category of Abelian
£-rings with special properties. In addition, we introduce and study BCKf-
algebras

2. Commutative BCK-algebras

A BCK-algebra is a non-empty set X with a binary operation * and with
a constant element 0 such that the following axioms are satisfied: for all z,
¥, z€ X,

(BCK-1) ((z*xy)*(z*2))*(z*xy)=0;
(BCK-2) (zx(zx*y))*xy=0;
(BCK-3) zx*z=0;
(BCK4) czxy=0andyx*xz=0imply z=1y;
(BCK-5) 0Oxz=0.
In every BCK-algebra X = (X;*,0) we can define a partial order < via
z < yiff zxy = 0; then X is a poset with the least element 0. A BCK-algebra
(X;*,0) is said to be commutative if

zx(zry)=yx*(yxz), z,y€X,

and in this case, z Ay = = * (z * y), where A is a g.1.b.

A BCK-algebra (X;x,0) is bounded if there is a greatest element 1 in X.
The class of bounded commutative BCK-algebras is categorically equivalent
to the class of MV-algebras, [FRT).

Let (X;*,0) and (X7i;*1,0;1) be two BCK-algebras. A mapping f: X —
X; such that f(z xy) = f(z) *x1 f(y), z,y € X, is said to be a BCK-
homomorphism; it is evident that f(0) = 0. If f is injective, f is said to be
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a BCK-embedding; if f is injective and surjective, f is said to be a BCK-
isomorphism. It is evident that if X and X; are commutative BCK-algebras,
then any BCK-homomorphism from X into X; preserves meets from X.

According to [DvGr], we say that a commutative BCK-algebra (X; ,0)
has the relative cancellation property if, for a,z,y € X, a < z,y with zxa =
y+*a imply x = y. In this case we can introduce a partial binary operation +
on X as follows: a + b is defined in X and equals ciff c > a and b = c * a.
For the basic properties of + see [DvGr, DvGr 1|; we recall only that + is
commutative, associative, cancellative and has a neutral element 0.

In [DvGr], we have proved that any upwards directed BCK-algebra (i.e.,
given z,y € X there exists z € X with z,y < 2), and in particular, any
bounded commutative BCK-algebra, has the relative cancellation property.

For example, ({0, 00); *gr,0), where

s *g t = max{0, s — t},

s,t € [0,00), (R stands for real numbers) is an example of a commutative
BCK-algebra with the relative cancellation property.

ExaMPLE 2.1. Suppose that (G;+,<,0) is an Abelian f-group with the
positive cone Gt = {g € G : g > 0}. Then (G*;*¢,0) is a commutative
BCK-algebra with the relative cancellation property, where *¢ is defined via

(2.1) uxgv:= (u-v) Vo0,

for u,v € GT. More generally, if Gy is a non-void subset of GT such u *g v
€ Gy for u,v € Gy, then (Go; *g,0) is a commutative BCK-subalgebra of
(G*; %@, 0) having the relative cancellation property.

The later example is in some sense an archetype of commutative BCK-
algebras with the relative cancellation property because of the following
basic representation theorem for commutative BCK-algebras proved in
[DvGr 1, Thm 6.4]:

THEOREM 2.2. Let (X; *,0) be a commutative BCK-algebra with the relative
cancellation property. Then there exists an Abelian £-group (G;+, <,0) and
a non-void subset Gy of the positive cone Gt, Gg generates G*,! such that,
for any u,v € Gy, uxgy € Gy, and there exists a BCK-isomorphism h from
X onto Gy.

We recall that an ideal of a commutative BCK-algebra (X;*,0) is a
non-empty subset I of X such that (i) 0 € I, and (ii) z*xy € [ andy € [
entail z € I.

An ideal I of X is said to be mazimal if it is a proper ideal of X and if
it is not contained in any otber proper ideal of X. We denote by M(X) the

e., for any g € G, there exist g1, ..., gn € Go with g=g+...+gn.
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set of all maximal and prime ideals of X. We recall that it can happen that
M(X) =
Define recursively, for all z,y € X :

z¥y=a, zely=zry,..., s+ y=(z+"y)*xy, n> 1.

An element u of X is said a quasi strong unit for X if, for any z € X,
there exists an integer n > 1 such that z ¥™ v = u. If X possesses a quasi
strong unit, then M(X) # 0.

If M(X) # 0, then the set Rad(X) := ({M : M € M(X)} is said to be
a radical of X. The radical carries an important part of the propositional
system. For example, if Rad(X) = {0}, X is said to be semisimple, and in
this case X can be represented by functions or even by fuzzy sets, [Dvu].

Let n > 1 be an integer and a € X. If a; +...+ay, is defined in X, where
a;=afori=1,...,n, then na:=a; +...+ a,. An element z is said to be
infinitesimal if nz is defined in X for any n > 1. The set of all infinitesimal
elements in X will be denoted by Infinit(X).

In [Dvu 2], we have proved that if X possesses a quasi strong unit, then

(2.2) Rad(X) = Rad(X,) = Infinit(X,),

where X, := {z € X : ¢ < u}. In addition, if z,y € Rad(X), then z + y is
defined in X and z + y € Rad(X).

We denote by BCK the category whose objects are commutative BCK-
algebras and morphisms are BCK-homomorphisms.

Let G; and G; be two Abelian ¢-groups. A mapping h : G; — G2 is
said to be an £-group homomorphism iff h is both a group-homomorphism
and a lattice-homomorphism. In other words, for each a,b € Gy, h{a +b) =
h(a) + h(b), h{a A b) = h(a) A h(b) (as well as for joins).

We denote by LG the category whose objects are pairs (G, Go), where
G is an Abelian Z-group and Gy is a non-void subset of the positive cone
G* of G such that Gy generates G and (Go;*g,0) is a BCK-algebra (in
fact a BCK-subalgebra of (G*; *¢,0), see Example 2.1). A morphism from
(G, Gy) into (G',Gy) is an £-group homomorphism h : G — G’ such that
h(Go) C Gy.

Now let (G, Gp) be an object of LG and define a morphism & from the
category LG into the category BCK as follows

(23) X(G) GO) = (GO; *aG, 0))

where *g is defined via (2.1). Let h be a morphism from (G, Gp) into
(G, Gp). We define X (h) as a mapping from X (G, Gp) into X(G', Gp) via

(2.4) X(h)(a) := h(a), a € Go.

The following result has been proved in [Dvu 1j:
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THEOREM 2.3. X is a faithful, full and right-adjoint functor from the cate-
gory LG of Abelian £-groups into the category BCK of commutative BCK-
algebras with the relative cancellation property. Moreover, X is a categorical
equivalence.

Remark 2.4. From Theorem 2.3 we have, in particular, see also [DvGr 1],
that any commutative BCK-algebra with the relative cancellation property
admits a universal group, i.e. a pair (G(X),h), where G(X) is an Abelian
£-group and h is a mapping from X into G(X) preserving the order in X
and +, such that if g : X — G is an order and + preserving mapping into
an £-group G, then there exists a unique group homomorphism ¢’ : G — G,
such that g = ¢’ 0 g. We recall that h is a BCK-embedding. In this case,
X = X(G(X), h(X)).

On the other hand, every commutative BCK-algebra (X;*,0) with the
relative cancellation property can be embedded into a commutative BCK-
algebra (X; *,0), called the BCK-hull of X, such that X is a lattice consisting
of all finite joins of elements from X. Moreover, every element from Xisa
finite sum of elements from X, where the sum is taken in X, [Dvu]. Then
(G(X ),Tz) is a universal group for X, where hisa unique extension of h.

3. Product on commutative BCK-algebras

In many important commutative BCK-algebras, for example, in semisim-
ple MV-algebras, we are able to introduce besides a total BCK-binary op-
eration * and the derived partial addition + also a multiplication as a to-
tal binary operation. For example, if X = [0,1]7, we define (f * g)(w) =
f(w) *g g(w), w € 2. Then we define the product - as a natural multipli-
cation of functions. The derived + is such one that f + g exists in X iff
f(w) + g(w) <1 for any w € 2. Then the natural product is left and right
distributive with respect to the derived +.

Motivating that example, we introduce in the present Section product
BCK-algebras. We show that they are closely connected with ¢-rings. Other
examples of product BCK-algebras are given after Theorem 3.3.

DEFINITION. We say that a commutative BCK-algebra (X;*,0) with the
relative cancellation property admits a product if there is a binary operation
- on X satisfying for all a,b,c € X the following

(i) if @ + b is defined in X, thena-c+b-cand c-a+c- b exist and
(a+b)-c=a-c+b-c,
c-(a+b)=c-a+c-b,

where + is a derived partial operation on X, and we say that X is a
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product BCK-algebra. Sometimes we write X = (X;*,0,-). An element u of
a product BCK-algebra X is said to be a unity, if a-u = u-a = a for any
acX.

A product - on X is

(ii) associative if (a-b)-c=a-(b-c), a,b,c € X,
(ii) commutativeifa-b="5b-a,a,be X.

It is worth saying that if - is a product on X, then

(iv)a:-0=0=0-aq,
(v)ifa<b thenforanyce X,a-c<b-candc-a<c-b

Property (iv) follows easily from the following: a-0 = a-(0+0) = a-0+a-0,
and the cancellation property gives @ - 0 = 0. Similarly, 0-a = 0.

THEOREM 3.1. The class of product BCK-algebras is equationally definable.

Proof. The class of commutative BCK-algebras with the relative cancella-
tion property is equationally definable, [DvGr 1, Thm 5.4]. The condition
(i) is equivalent to the identities, for all ¢,z,y € X,

c-(zx(zAy))=(c-z)*(c- (zAy)),
(Zx(zAy))-c=(z-c)*((zAy)- o)
Hence the class of product BCK-algebras is equationally definable.

We recall that an ¢-ring is a usual ring (R;+, -, 0) with a partial order <
such that (R;+,0, <) is an ¢-group and, if 0 < a and 0 < b, then 0 < a-b.
A function ring or an f-ring is an £-ring such that a Ab = 0 and 0 < ¢ imply
(c-a)Ab=(a-c)Ab=0. An f-ring R is Archimedean if (R;+,0,<) is
Archimedean. For an ¢-ring R we shall write R = (R; +, -, 0, <).

We recall that if unity 1 of an f-ring R is a strong unit, then R is an
f-ring, [Bir, Lem XVII.5.2], and any Archimedean f-ring is commutative and
associative, [Bir, Thm XVII.10]. More about ¢-rings see, e.g., [Bir] or [Fuc].

THEOREM 3.2. Let (R;+,-,0,<) be an (associative) £-ring with § # Ry
C R* such that a,b € Ry entails axgb € Ry and a-b € Ry. Then (X;*,0) :=
X(R, Ry) is a product BCK-algebra with an (associative) product -, which
is the restriction of - to Ry X Ry.

Conversely, let (X;*,0) be a product BCK-algebra with an (associative)
product -. Then there ezists a unique (up to isomorphism) (associative)
£-ring (R;+,-,0,<) with a non-empty set Ry C R* generating Rt as
a group-cone such that a,b € Ry entails a xp b € Ry, a-b € Ry, and
X =2 X(R,Rp), and ¢(a-b) = ¢(a) - ¢(b), a,b € X, where ¢ is a BCK-
isomorphism of X onte X (R, Rp).
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Proof. (1) Let X = X(R, Ry). For a,b € X we have a-b € X which says
that the restriction of - onto X x X defines the (associative) product on the
BCK-algebra X.

(2) Let X be a BCK-algebra with a product -. According to Theorem
2.3, there is an £-group (R;+,0, <) with a BCK-subalgebra Ry and a BCK-
isomorphism ¢ from X onto X (R, Rp). We can define the product - on
X (R, Ry) as follows

#(a) - $(b) i= 4(a-b), a,b € X.
Because X(R, Ry) is generating for the positive cone R* of R, ¢ preserves
all existing + in X, we see that - is a product on X(R, Ryp).

Given g € R* there exist a1,...,a, € X such that g =3}, #(a;). For
any ¢(c), where ¢ € X, we define

(3.1) g-¢(c) =d(ar-c)+ ...+ ¢(an - ).

We claim that (3.1) is defined unambiguously. Indeed, if g = E;"zl ¢(b;), for
some by, ...,b, € X, due to the Riesz decomposition property holding on ¢-
groups [Goo, Prop 2.2], there exist elements ¢;; € X such that a; = Z;’;l Cij
and bj =3 . ;cjforalli,1<i<mnandallj 1<j<m. Then

> ola )= Do) o) = 36 (e )
i=1 i=1 j=1 i=l j=1

—ZZM: c) ZZM c)
i=1 j=1 7j=1i=1

=260 i =) ¢ Z%)
j=1 i=1 j=1

= _¢(b;-c),
j=1

which proves that the extension of - on R* x X(R, Ry) is correct. We now
extend - to R x X(R, Rp) as follows: If g = g; — g2, 91,92 € RT, then

g-¢(c) == g1-¢(c) — g2 ¢(c).
Since if g1 — g2 = h1 — hy for g;,h; € R, 1= 1,2, then g; + hy = h; + g9,
so that by (3.1)
(91 + h2) - ¢(c) = (h1 + g2) - ¢(c)
g1 ¢(c) + ha - ¢(c) = hy - ¢(c) + g2 - #(c)
91 ¢(c) = g2 - ¢(c) = h1 - ¢(c) — ha - $(c).
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Now let c € Rt. Then c = ¢(c1) +...+d(c,), wherec, € X, t=1,...,s
We extend - to R x Rt as follows

g-c:=)Y g-¢(c), gER.

t=1

Ifc=3",_; ¢(dy), using the Riesz decomposition property, we have

Y g-dle) =) g ¢(dw)-
t=1 w=1

It is clear that the “multiplication” - can be extended to whole R x R: If
¢ = c¢; — ¢3, where c;,¢c; € R, then

g-ci=g-c1—g-c.

It is evident that if g, h € R, then g-h € R*, and due to (ii), - is associative
on R, so that (R;+,-,0, <) is an £-ring with the BCK-subalgebra Ry, which
proves Theorem. m

A commutative BCK-algebra (X;*,0) with the relative cancellation
property is said to be Archimedean if the statement “na is defined and na < b
for any n > 1 and for some b € X” implies a = 0. Due to [Dvu], a BCK-
algebra X is Archimedean iff its universal group (G, h) is an Archimedean
{-group. In addition, X is Archimedean if X is semisimple [Dvu|. The con-
verse statement holds for example, if X has a quasi strong unit.

THEOREM 3.3. Let (X;*,0) be a product BCK-algebra with a product -.

(1) Ifa-b=1>b-a, for all a,b € X, then (R;+,-,0,<) from Theorem 3.2
is a commutative £-ring.

(2) If a quasi strong unit u for X is the unity for X, then the £-ring
(R;+,,0,<) from Theorem 3.2 is an f-ring with a strong unit ¢(u)?
which is unity in R.

(3) If X is semisimple with unity u which is a quasi strong unit for a
product -, then the £-ring (R;+,+,0,<) from Theorem 3.2 is a com-
mutative and associative f-ring.

(4) If there is an element e € X which is unity for X, then ¢(e) is unity
in the £-ring (R;+,-,0,<) from Theorem 3.2.

Proof. (1) It follows from the construction of (R;+,-,0) from the proof of
Theorem 3.2.

’A positive element of an f-ring R is a strong unit if, for any g € R, there exists an
integer n > 1 such that --nu < g < nu.
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(2) Since a-u = u-a = a for any a € X, it is possible to show that ¢(1)
from the proof of Theorem 3.2 is unity in R. From [Bir, Lem XVIL5.2] we
conclude that R is an f-ring.

(3) According to (2), R is an f-ring. Due to the semisimplicity of X we
infer that (R;+,0) is an Archimedean ¢-group, and by [Bir, Thm XVIIL.10],
the multiplication - on R is commutative and associative.

(4) It is evident. m

To illustrate our notions, we investigate the possibility of the existence
of product BCK-algebras. It is evident that every BCK-algebra under the
trivial product, i.e., a-b = 0 for all a,b € X, is a product BCK-algebra,
called a zero-BCK-algebra. Other product BCK-algebras with non trivial
product we can obtain as follows.

Let a be an element of X. If there exists a greatest integer n such that
na :=a+ ...+ a is defined in X, ord(a) := n; if na is defined in X for any
integer n > 1, we put ord(a) = 0.

A non-zero element a of X is said to be an atomof X if b<a,be X
imply b = 0 or b = a. A BCK-algebra X is said to be atomic if given a
non-zero element b of X there is an atom a in X such that a <b.

A BCK-algebra (X;*,0) is said to be implicative if z xy = (z x y) x y,
z,y € X. Such BCK-algebras have the relative cancellation property and
they can be embedded onto a BCK-algebra (S;\, 0), where S is a usual ring
of subsets of a non-void set (2, and \ is the set-theoretical difference, [MeJu,
Thm VIL.2.7].

THEOREM 3.4. A finite commutative BCK-algebra (X; *,0) with the relative
cancellation property admits a product with unity u if and only if X is
implicative. If it is the case, then a-b=aAb, a,be X.

Proof. Suppose that X is implicative and define a-b := aAbforalla,b € X.
Then - is a product in question.

Conversely, assume that the product - satisfies a - u = a = u - a for any
a€ X.

First, let X be a bounded BCK-algebra with the greatest element 1.
Then1-1<1=1-u<1-1 which proves1-1 = 1. For any a € X, we
denote by a* = 1%a. Thena-1>a-u=aand 1-a > u-a = a. In addition,
a+a*=1=1.-1=(a+a*)-1=a-14+a*-12> a+ a* which entails
a1 = a. By symmetry, we have 1-a = a for any a € X, and in addition,
1=1-u=u.

The finiteness of X yields that X is atomic. If a and b are two different
atoms, then (na) A (mb) = 0 whenever na and mb are defined in X, [Dvu,
Thm 7.2] Therefore ((na) V (mb)) — (na) = (mb) — ((na) A (mb)) = (mb) so
that na + mb is defined in X and na + mb = (na) vV (mb).
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Given an atom a, let j,(z) denote the greatest integer n such that na is
defined in X and na < z. Since X is finite, j,(z) is finite for any atom a
and for any element z, and the element z of X can be uniquely expressed
in the form

T = ja,(x)a1 + ...+ Jo, (z)ak,
where a,, ..., a; denote the set of all atoms in X,

Assume again that a and b are two different atoms. Hence a-b < a-1=a
anda-b<1-b=> which givesa-b < aAb=0. Similarly a - a < a which
entails a - a € {0,a}.

If X is not implicative, then there is an atom a of X such that n =
ord(a) > 2. If a - a = a, then (na) - (na) = n?(a - a) = n%a which yields
n=orda) >n? Ifa-a=0,then0#a=a-1=a-(ord(ay)a; + ...+
ord(ar)ar) = 0 which is again absurd. Consequently, on X, which is not
implicative, there is no product in question.

Assume now that X is a finite BCK-algebra which is not necessarily
bounded. In any rate, the BCK-hull X of X is due to finiteness of X bounded
and finite. If (G(X), h) is a universal group for X, then by Theorem 3.2,
G(X) is an f-ring. By Remark 2.4, E()? } is closed under the product in
G(X), because if z,y € X,thenz =1 +...+In, y=y1+...+Ym, where
zi,y; € X;thenz .y = Zi’ja:,- ‘Y € X.

'Therefore, X is a finite product BCK-algebra. It is clear that u is unity
in X, too. Due to the first part of the present proof, X has to be implicative,
so that, X is implicative.

Assume now that X is implicative, and without loss of generality, let
X be bounded, and let a - a = 0 for some atom a of X. Thena =a-1 =
a-(a+a*)=a-a" =a- (3,4, i) =0, which is absurd. Hence a-a = a for
any atom a. Therefore = -y = (jo,(z)a1 + ... + Jo, (T)ak) - (Ja, (Y)a1 + ...+
Jax(Wak) = Ja,(AY)ar + ...+ Ja(cAY)ag =z Ayforany z,y € X. n

COROLLARY 3.5. (i) A product - with unity on a non-implicative BCK-
algebra X can exists only if X is an infinite BCK-algebra. For example,
on ([0, 00); *r,0) we can define a usual product of real numbers.

(it) From the proof of the previous theorem we conclude that if u is a
unity for a product - on a bounded product BCK-algebra X, then 1 = u.

4. Product BCK-algebras and categorical equivalence

Denote by PBCK the category of product BCK-algebras, i.e., its objects
are BCK-algebras with product, and morphisms are BCK-homomorphisms
of product BCK-algebras preserving also -.

We denote by PR the category whose objects are pairs (R, Rp), where
R is an Abelian /-ring and Ry is a non-void subset of the positive cone R
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of R such that Ry generates R* and (Rg; *g,0) is a product BCK-algebra
under -. A morphism from (R, Ry) into (R', Rj) is an £-group homomorphism
h: R — R/, preserving -, A, V, such that h(Rg) C Ry.

We denote by Xr a morphism from PR into PBCK defined by Xz (R, Ry)
= (RO, *R, Oa ')3 ) and XR(f) = .HRO
THEOREM 4.1. X is a faithful and full functor from PR to PBCK.

Proof. Let hy and hs be two morphism from (R, Ry) into (R', Rj,) such
that Xr(h1) = Xr(h2). Then hi(a) = ha(a) for any a € Xr(R, Rp). Since
Xr(R, Ry) generates R and R, we have that h,(g) = ha(g) for any g € R
which proves that X is faithful.

To prove that X'z is a full functor, suppose that f is a morphism from
Xr(R, Ry) into Xgr(R', Ry). Since Xr(R, Ry) generates R, due to the Riesz
decomposition property, f can be uniquely extended to a group-homomor-
phism f from R into R'.

CLAM 1. f is a lattice-homomorphism. The proof will proceed in several
steps.

Step 1. f preserves meets in Xz (R, Ry). This follows from the observation
that a A b = a * b which entails f preserves meets in Xz (R, Rp).

Step 2. Let a,b,ug € R*. If f(aAb) = f(a) A f(b) and if f{ug A (b —
(a A b)) = f(uo) A f(b— (aAb)), then

F((a +uo) Ab) = fla+ug) A F(b).
Indeed, we have (a Ab)+ [ug A (b—(aAb))] = ((aAD)+ug) Ab= (at+ug)A
(b+u0)/\b= (a+u0) Ab.
Therefore

F((a +uo)Ab) = fla Ab) + Fluo A (b— (a AD)))

= (fla) A F(B)) + [F(uo) A (F(b) ~ (Fla) A F(B)))]

= ((fla) A F(b)) + Fluo)) A F(b)

= (fla) + F(uo)) A(F(b) + Fluo)) A F(B) = Fla +uo) A F(B).

Step 3. f(a Ab) = f(a) A f(b) whenever a € Rt and b € Xz (R, Rp).

Since Xg (R, Ry) is generating for R, a is of the forma = a, +...+a,, for
some ay,...,a, € Ar(R, Rp). The proof will follow mathematical induction
on n.

If n = 1, the statement is trivial. Suppose now that the statement holds
foranye' =a1+...4+a;withl<i<n. Puta=a;+...+an, up=any1.

3We recall that * g is understood as that defined by (2.1).
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Then there exist vy, ..., v € A (R, Rp) such that b = (v1+...+vk)+(aAb).
Since v := v; +. + vg < b, v € Xr(R, Ro) Hence v = b — (a A'b). Since
f preserves meets in XR(R Ry), we have f (uo Av) = (uo) Af ( ), so that

fluo A (b= (anb))) = Fluo) A F(b—(anb)) = F(uo) A (F(b) - (F(a) A F(B)))
when we have used induction hypothesis. By Step 1, f ((a + ug) A b) =
fla+ug) A f(b), thatis, f((a1+...+ans1)AD) = fla1 +...+ans1) A F(B)
for any n.

Step 4. fla Ab) = F(a) A F(b) whenever a,b € R*.

Leta=a1+...4an, b=01 + ...+ br. The proof will follow complete
induction on k.

If K = 1, we apply Step 3. Suppose now that the assertion holds for any
_Lwith1<j<k PutB—a,A-—b1+ +bk,uo—bk+1 ByStep3
fluoA(B—(AAB))) = fluo) A f(B—(AAB)) and f(AAB) = f(A)Af(B).
Therefore the conditions of Step 1 are satisfied, so that f F((A+up) AB) =
f(A + up) A f(B) which proves f((a1 + ...+ an)) A(b1 + ... + bry1)) =
Flay+...+ an) A by + ...+ bxt1) for each n and each k.

Step 5. F(aAb) = F(a)AF(b) whenever a,b € R. There exist a/,a", ¥/, b" €
Rt such that a = o’ —a” and b = b —b". By Step 4, f((a' +b")A (Y +a")) =
7l +b) A F(¥' Aa”). Subtracting f(b") and f(a”') we obtain the assertion
in question.

CLAIM 2. fpreserves the product - in R.

Let a,b € R*. There exist ay,...,an, b1,...,bm € Xr(R, Ry) such that
a=a+...+a, andb=b;+...+b,. Thena b = 2;;122":1(1{ .
b and a; - b; € Xr(R, Rp). Calculate fla - b) = Y1 e Fla: - bj) =
S S Fla) - F6) = (Do Flad) - (T F63)) = Fla) - 7).

Ifnow a,b € R, then a = a;—a; and b = by —by, where a1, az,b1,b2 € RT.
Then f(a b) ((L]_ b1+a1 b2—a2 b1+(12 bz) f(a1 bl) (a1 bz) f(az
b1) + flaz - b2) = fla1)- f(br) — Flar) - (b2) — Faz) - F(br) + Flaz) - F(b2) =

7la) 7). )

Consequently, we have proved that f is a morphism from (R;+,-,0, <)
into (R';+,-,0, <) such that Xr(f) =

THEOREM 4.2. The functor Xr defines a categorical equivalence of the ca-
tegory PR of £-rings and the category PBCK of product BCK-algebras.

Proof. According to [MaL, Thm IV .4.1], to prove that X'z is an equivalence
of the categories in question, it is necessary and sufficient to show that Xz is
faithful and full, and each object X from PBCK is isomorphic to Xz (R, Rg)
for some object (R, Rp) in PR.
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Due to Theorem 4.1, X is faithful and full, and by Theorem 3.2, there
exists an object (R, Rp) in PR such that Xr(R, Rp) is isomorphic with X
which proves Theorem. m

Remark 4.3. Theorem 4.2 holds also for the category of product BCK-
algebras which are also associative. In this case APR has to be the category
of associative elements from PR.

Finally we compare product BCK-algebras and MV*-algebras introduced
in [BDG]. We recall that Cornish [Cor] introduced so-called conical BCK-
algebras, which by [Dvu 1, Rem 3.4] can be defined by the equivalent way:
A commutative BCK-algebra (X; *,0) is said to be conical iff it is with the
relative cancellation property and if z 4y is defined in X for all z,y € X. It
is possible to show that X(G, Gy) is conical iff Gg = G, and due to Cornish
[Cor] the category of conical BCK-algebras is categorical equivalent to the
category of all Abelian ¢-groups.

Denote by PCBCK the category of all product conical BCK-algebras, and
by PCBCK,, the category of all product conical BCK-algebras whose objects
are pairs (X, u), where u is a fixed quasi strong unit such that v -z < u, and
morphisms is any BCK-homomorpshim preserving the product and fixed
quasi strong units.

An MV-algebra (M; ®,®,*,0,1) is said to be perfect if, for each element
z € M, either z € Rad(M) or z* € Rad(M).

According to [BeDi], we say that a perfect MV-algebra M is with prin-
cipal radical if there is an element a € Rad(M) such that the ideal of M
generated by a coincides with Rad(M). The category MV, of perfect MV-
algebras with principal radical is a category whose objects are pairs (M, a),
where M is a perfect MV-algebra with a fixed element a € Rad(M) gen-
erating Rad(M), as an ideal, and morphisms are MV-homomorphisms pre-
serving fixed elements a in radicals.? Due to [BeDi, Prop 27|, this category
is equivalent with the category MV of all MV-algebras, or equivalently with
the category of all unital Abelian ¢-groups (Mundici’s representation).

We recall that in [BDG} an MV*-algebra M has been introduced, which
can be defined equivalently as follows: M is a perfect MV-algebra with a
binary operation * : Rad(M) x Rad(M) — Rad(M) such that (i) it is
associative, (ii) a* (b+c) = (axb)+ (ax¢), (b+c)*xa = (bxa) + (c*a),
a,b,c € Rad(M).

Now let MV;, be the category of MV™*-algebras whose morphisms are
MV-homomorphisms preserving a binary operation * on radicals. According
to [DiLe, Thm 3.5], the category MV, of perfect MV-algebras is categor-
ically equivalent with the category of all {-groups (not necessarily unital),

4We recall that any MV-homomorphism maps radicals into radicals, use (2.2).
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and MV; is categorically equivalent to the category of all associative £-rings
[BDG, Thm 2.6] (not necessarily unital). Let MV, denote the category hav-
ing as objects pairs (A4, g), where A is a perfect MV*-algebra with principal
radical with a distinguished generator g such that g *x ¢ < g, and mor-
phisms are MV;,.-homomorphisms preserving the distinguished generator of
the radical.

Finally, let R denote the category of associative ¢-rings, where the objects
are associative £-rings, and let R, be the category of associative £-rings with
a fixed strong unit u such that u-u < u, i.e., objects are pairs (R, u), where u
is a fixed strong unit in R, and morphisms are ¢-rings morphisms preserving
fixed strong units.

THEOREM 4.4. (1) The categories MV}, of perfect MV*-algebras, PCBCK of
product conical BCK-algebras, and R of associative £-rings are categorically
equivalent.

(2) The categories MV, PCBCK,, and R, are categorical equivalent.

Proof. It follows ideas developed in above and in [BDG], and from the
observation that an element v of X is a quasi strong unit iff the ideal of X
generated by u is equal to X. m

5. Ideals in product BCK-algebras and BCKf-algebras
Let X be a product BCK-algebra. A non-empty subset I of X is said to
be a --ideal of X if
@oer
(i) axbel,ac X,and b€ I, entail a € [;
(i) aeIand b€ X entaila-be T and b-a€ I.

We denote by Z,(X) the set of all -ideals of X.
Let (R;+,-,0, <) be an ¢-ring. An L-ideal of R is a non-void subset J of
R such that

(i) z,y € J entails z + y € J;
(i) ze R, ye J, |z| < |y| entail z € J;
(i) ze Jandye Rentailz-yeJandy -z € J.

We denote by I (R) the set of all L-ideals of R.

Let (X;*,0) be a commutative BCK-algebra with the relative cancel-
lation property and let (G(X), h) be its universal group. Given a subset I
of X, let ho(I) be the £-ideal of G(X) generated by the image h(I) of I in
G(X).

THEOREM 5.1. Let (R;+,-,0,<) be an £-ring with @ # Ry C R* such that
a,b € Ry entails axgb € Ry and a-b € Ry, and let X = Xr(R, Ry). Then
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the correspondence & defined by
(5.1) (1) = ho(D), I € T,(X),

where h is the embedding of X into R, is an order-isomorphism from the
set To(X) of --ideals of the product BCK-algebra X, ordered by inclusion,
onto I (R). The inverse isomorphism ¥ is given by

(5.2) W(H):= XNH, HeI,(R).

Proof. In [Dvu 2, Thm 2.5] we have proved that the mappings (5.1) and
(5.2) define inclusion isomorphisms between the set of ideals of X and ¢-
ideals of R. We show that they preserve also “:-ideal property”.

We assert that z € &(I) if z = 21+ ... +2; —y1 — ... — Yk, where
z;,ys € I. It is clear that if 2 has a given form, then z € $(I). Conversely,
let z € S(I). Assume that z > 0. Then there exist z1,...,z, € X such
that z = 21 + ... + z,. We show that z;,...,2, € I. The proof will follow
mathematical induction on n. If n = 1, the statement is evident. Assume
thus that whenever z€#(I) and x=x,+...4+z; fori<n, thenz,,...,z; €1.
Nowlet z =z1+ ...+ Zn + Zpt1. Then 0 < 241 < z s0 that z,4q € $(1)
and z — 2,41 € $(I) and by induction z,,...,z, € I. Hence z — z; =
Zg + ...+ Zpy1 which proves also z,41 € 1.

If z is an arbitrary element of #(I), then z = z* —z~ and z*,z2~ € &(I),

sothat z=z14+...+2; —y1 — ... — Yk
Nowlet c € #(I)and y € R, thenz =zy 4+ ...+ z; —y1 — ... — Yk
andy=u +...+us ~ vy —... — v, where zy,...,2;,91,...,yx € I and

UL,y ..., Usy V1,...,U € X. Then evidently z -y, y -z € &(I), which proves
that & preserves --ideals. m

A product BCK-algebra X is said to be a BCKf-algebra if, for all
a,bce X,

(5.3) aAb=0implies (a-c) Ab=0=(c-a)Ab.
For example, any linearly ordered product BCK-algebra is a BCKf-algebra.

THEOREM 5.2. Let (R;+,+,0,<) be an £-ring with § # Ry C Rt such that
a,b € Ry entails axgb € Ry and a-b € Ry. Let X = Xr(R,Rg). Then X
is a BCKf-algebra if and only if R is an f-ring.

Proof. One direction is trivial. Suppose now that X is a BCKf-algebra,
and let for a,b,c € RwehaveaAb=0andc¢>0.Letz <a-candz <b
and express a = Y . a;, b= Zj b;, and ¢ = ), cx, where a;,b;,cr € X.
Since z < ), ; a;-ck, the Riesz decomposition property, [Goo, Prop. 2.2]
entails z = Zi' x Cik, where cix < a;-cx. Then cix, < ). b; and applying again
the Riesz decomposition property, we have c; = ij cijk Where ci;r < b;
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for any < and any k. Since a; A b; = 0, we conclude that c¢;;x < a; - cx and
cijk < bj, so that c;x = 0 for all 4, j, k. Hence, c;x = 0 for all ¢,k which
yields z = 0.

In a similar way we can prove that (c-a)Ab=0. =

COROLLARY 5.3. In any BCKf-algebra X we have for all a,b,c € X
a-(bve)=(a-b)V(a-c)
(bve)-a=(b-a)V(c-a)
a-(bAc)=(a-b)A(a-c)
(bAc)-a=(b-a)A(c-a)
aAb=0=a-b=0.

Q

O

Proof. Use Theorem 5.2 and [Bir, Cor XVIL5.1, Lem XVIL5.1]. =

Given a non-void subset A of X, we define
At :={a€ X :aAz=0forany z € A}.

THEOREM 5.4. Let (R;+,-,0,<) be an £-ring with @ # Ry C R* such that
a,b € Ry entails axpb € Ry and a-b € Ry. Let X = Xr(R, Ry). Then X
is a BCKf-algebra if and only if, for every subset A of X, the set ALt is a
--tdeal of X.

Proof. Let X be a BCKf-algebra. Let axb € A+, b € A+ and z € A.
Then a A b € AL. We show that a € AL. Let z < a and 2z < z. Then
z < a = aAb+axb. The Riesz decomposition property entails that z = 27+ 25,
where z; < aAband z3 < a *b. Since we also have zo < z, we conclude
20 =0,and z; < aAb € AL, consequently, 2; = 25 = 0 = z which yields
ac A+

Take now a € AL, b € X, and z € A. Then a A z = 0, which gives
(a-)Az=(b-a)Az=0.

Conversely, assume that for any non-void A C X, At is a —ideal of X.
Let aAb=0,c € X. Then a € {b}*. Since {b}* is a -ideal of X, a - a,
c-a€ {b}t ie,(a-c)Ab=(c-a)Ab=0.u

THEOREM 5.5. The class of BCKf-algebras is equationally definable.

Proof. Any product BCK-algebra is equationally definable, Theorem 3.1.
The implication (5.1) is equivalent to the identities

(c-(zx(zAy)))A(y*(zAy)) =0,
((zx(zAy))-)A(y*(zAy)) =0
Hence the class of BCKf-algebras is equationally definable. =
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COROLLARY 5.6. Any BCKf-algebra is a subdirect product of subdirectly ir-
reducible BCKf-algebras.

Proof. It follows from Theorem 5.5 and [Bir, Thm VIIL.15]. =

PROPOSITION 5.7. Any subdirectly irreducible BCKf-algebra is linearly or-
dered.

Proof. Let X be an irreducible BCKf{-algebra and suppose that X is not
linearly ordered. Then there exist two non-zero elements a,b € X such that
aAb=0 Put I={b}*: and J = I*. Then INJ = {0}, and a € I and
b € J. By Theorem 5.4, I and J are both --ideals of X. The irreducibility of
X entails that I = {0} or J = {0} which is a contradiction. Therefore, X is
linearly ordered. =

THEOREM 5.8. A product BCK-algebra is a BCKf-ring if and only if it is a
subdirect product of linearly ordered product BCK-algebras.

Proof. By Corollary 5.6 and Proposition 5.7, any BCKf-algebra is a sub-
direct product of linearly ordered product BCK-algebras.

Conversely, any linearly ordered product BCK-algebra is an BCKf-alge-
bra. By Theorem 5.5, (5.1) holds in every subdirect product of linearly
ordered BCKf-algebras, i.e., X is a BCKf-algebra whenever X is a subdirect
product of linearly ordered product BCK-algebras. =

A weaker form of BCKf-algebras are almost BCKf-algebras, i.e., such
product BCK-algebras X that aAb =0, a,b € X, imply a-b = 0. Similarly,
an associative f-ring R is said to be an almost f-ring if z A y = 0 implies
z -y = 0. We recall that not every almost f-ring has to be an f-ring [Bir,
§ XVILG).

A non-zero element u of a BCK-algebra X is a weak unit if u A a # 0.
Similarly a non-zero positive element u of an £-algebra R is a weak unit if
z A u # 0 for any positive element z € R.

THEOREM 5.9. Let (R; +,-,0, <) be an associative £-ring with § # Ry C R*
such that a,b € Ry entails axpb € Ry and a-b € Ry. Let X = Xr(R, Ro).
Then X ts an associative almost BCKf-algebra if and only if R is an almost
f-ring. If X has a unity e, then X is an almost BCKf-algebra if and only if
e is a weak unit for R.

Proof. One direction is evident. Suppose now that X is an almost BCKf-
algebra, and let aAb=0for a,b € R. Thena =} .a;,and b= E]- b;, where
a;,b; € X. Since a; Ab; =0 for all 4,5, we have a - b = Zm.ai b = 0.

Now let e be a unity for X. Then e is a unity for R, and e is a weak
unit for X iff e is a weak unit for R. Applying [Bir, Thm XVIL.12], R is an
almost f-ring iff e is a weak unit for R. =
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