

Anatolij Dvurečenskij

## COMMUTATIVE BCK-ALGEBRAS WITH PRODUCT

**Abstract.** We introduce a product on commutative BCK-algebras with the relative cancellation property, i.e., commutative BCK-algebras  $(X; *, 0)$  satisfying the condition for  $x, y, a \in X$ , with  $a \leq x, a \leq y$  and  $x * a = y * a$  we have  $x = y$ . The product is left and right distributive with respect to the partial operation  $+$  derived from the BCK-operation  $*$ . We show that the category of product BCK-algebras is categorically equivalent to the category of  $\ell$ -rings with special properties. Moreover, we study  $\neg$ -ideals and we introduce BCKf-algebras.

### 1. Introduction

BCK-algebras entered mathematics in 1966 due to Imai and Iséki [ImIs] and they met interest of mathematicians, logicians, algebraists, experts in fuzzy sets as well as in quantum structures [Cor], [CST], [Pal], [RoPa], [DvKi]. Recently Dvurečenskij and Graziano [DvGr] introduced a family of commutative BCK-algebras, commutative BCK-algebras with the relative cancellation property, i.e., for  $x, y, a \in X$ , with  $a \leq x, a \leq y$  and  $x * a = y * a$  we have  $x = y$ . MV-algebras introduced by Chang [Cha] form its proper subfamily.

An important representation of commutative BCK-algebras with the relative cancellation property was found in [DvGr 1], where we have shown that they may be represented as BCK-subalgebras of the positive cone of an Abelian  $\ell$ -group. We recall that Bosbach [Bos] has proved an embedding of semiclanes into the positive  $\ell$ -group; our commutative BCK-algebra with the relative cancellation property can be converted into a semiclan. However, we have shown that there is a categorical equivalence between the category

---

1991 *Mathematics Subject Classification*: 03B50, 03G12.

*Key words and phrases*: commutative BCK-algebra, product BCK-algebra,  $\ell$ -rings,  $\ell$ -groups categorical equivalence,  $\neg$ -ideal.

This research was supported by the grant VEGA No 2/4033/98 of the Slovak Academy of Sciences, Slovakia.

of commutative BCK-algebras with the relative cancellation property and the category of Abelian  $\ell$ -groups with some additional properties, [Dvu 1].

For example, the system  $X = [0, 1]^\Omega$  of all fuzzy sets on  $\Omega \neq \emptyset$  has a natural BCK-operation  $*$  defined by  $(f * g)(\omega) := \max\{0, f(\omega) - g(\omega)\}$ ,  $\omega \in \Omega$ . The partial sum  $f + g$  is defined in  $X$  iff  $f \leq 1 - g$ , and  $X$  admits a natural multiplication  $f \cdot g$  which is a total operation and is left and right distributive with respect to the addition  $+$ .

A product on MV-algebras was introduced in [DvDi]. Other attempts to introduce a product can be found also in [DvRi], [Rie], [BDG], and [DiGe]. In the last two papers, the product is defined only on their radicals.

In the present paper, we introduce a product on commutative BCK-algebras with the relative cancellation property as a (total) binary operation  $\cdot$  defined on the BCK-algebra which is left and right distributive with respect to a partial operation  $+$  derived from the BCK-operation  $*$ . We show that product BCK-algebras became from Abelian  $\ell$ -rings, and the category of product BCK-algebras is categorically equivalent to the category of Abelian  $\ell$ -rings with special properties. In addition, we introduce and study BCKf-algebras

## 2. Commutative BCK-algebras

A BCK-algebra is a non-empty set  $X$  with a binary operation  $*$  and with a constant element  $0$  such that the following axioms are satisfied: for all  $x, y, z \in X$ ,

- (BCK-1)  $((x * y) * (x * z)) * (z * y) = 0;$
- (BCK-2)  $(x * (x * y)) * y = 0;$
- (BCK-3)  $x * x = 0;$
- (BCK-4)  $x * y = 0$  and  $y * x = 0$  imply  $x = y$ ;
- (BCK-5)  $0 * x = 0.$

In every BCK-algebra  $X = (X; *, 0)$  we can define a partial order  $\leq$  via  $x \leq y$  iff  $x * y = 0$ ; then  $X$  is a poset with the least element  $0$ . A BCK-algebra  $(X; *, 0)$  is said to be *commutative* if

$$x * (x * y) = y * (y * x), \quad x, y \in X,$$

and in this case,  $x \wedge y = x * (x * y)$ , where  $\wedge$  is a g.l.b.

A BCK-algebra  $(X; *, 0)$  is *bounded* if there is a greatest element  $1$  in  $X$ . The class of bounded commutative BCK-algebras is categorically equivalent to the class of MV-algebras, [FRT].

Let  $(X; *, 0)$  and  $(X_1; *_1, 0_1)$  be two BCK-algebras. A mapping  $f : X \rightarrow X_1$  such that  $f(x * y) = f(x) *_1 f(y)$ ,  $x, y \in X$ , is said to be a *BCK-homomorphism*; it is evident that  $f(0) = 0$ . If  $f$  is injective,  $f$  is said to be

a *BCK-embedding*; if  $f$  is injective and surjective,  $f$  is said to be a *BCK-isomorphism*. It is evident that if  $X$  and  $X_1$  are commutative BCK-algebras, then any BCK-homomorphism from  $X$  into  $X_1$  preserves meets from  $X$ .

According to [DvGr], we say that a commutative BCK-algebra  $(X; *, 0)$  has the *relative cancellation property* if, for  $a, x, y \in X$ ,  $a \leq x, y$  with  $x * a = y * a$  imply  $x = y$ . In this case we can introduce a partial binary operation  $+$  on  $X$  as follows:  $a + b$  is defined in  $X$  and equals  $c$  iff  $c \geq a$  and  $b = c * a$ . For the basic properties of  $+$  see [DvGr, DvGr 1]; we recall only that  $+$  is commutative, associative, cancellative and has a neutral element 0.

In [DvGr], we have proved that any upwards directed BCK-algebra (i.e., given  $x, y \in X$  there exists  $z \in X$  with  $x, y \leq z$ ), and in particular, any bounded commutative BCK-algebra, has the relative cancellation property.

For example,  $([0, \infty); *_{\mathbb{R}}, 0)$ , where

$$s *_{\mathbb{R}} t = \max\{0, s - t\},$$

$s, t \in [0, \infty)$ , ( $\mathbb{R}$  stands for real numbers) is an example of a commutative BCK-algebra with the relative cancellation property.

EXAMPLE 2.1. Suppose that  $(G; +, \leq, 0)$  is an Abelian  $\ell$ -group with the positive cone  $G^+ = \{g \in G : g \geq 0\}$ . Then  $(G^+; *_G, 0)$  is a commutative BCK-algebra with the relative cancellation property, where  $*_G$  is defined via

$$(2.1) \quad u *_G v := (u - v) \vee 0,$$

for  $u, v \in G^+$ . More generally, if  $G_0$  is a non-void subset of  $G^+$  such  $u *_G v \in G_0$  for  $u, v \in G_0$ , then  $(G_0; *_G, 0)$  is a commutative BCK-subalgebra of  $(G^+; *_G, 0)$  having the relative cancellation property.

The later example is in some sense an archetype of commutative BCK-algebras with the relative cancellation property because of the following basic representation theorem for commutative BCK-algebras proved in [DvGr 1, Thm 6.4]:

THEOREM 2.2. *Let  $(X; *, 0)$  be a commutative BCK-algebra with the relative cancellation property. Then there exists an Abelian  $\ell$ -group  $(G; +, \leq, 0)$  and a non-void subset  $G_0$  of the positive cone  $G^+$ ,  $G_0$  generates  $G^+$ ,<sup>1</sup> such that, for any  $u, v \in G_0$ ,  $u *_G v \in G_0$ , and there exists a BCK-isomorphism  $h$  from  $X$  onto  $G_0$ .*

We recall that an ideal of a commutative BCK-algebra  $(X; *, 0)$  is a non-empty subset  $I$  of  $X$  such that (i)  $0 \in I$ , and (ii)  $x * y \in I$  and  $y \in I$  entail  $x \in I$ .

An ideal  $I$  of  $X$  is said to be *maximal* if it is a proper ideal of  $X$  and if it is not contained in any other proper ideal of  $X$ . We denote by  $\mathcal{M}(X)$  the

---

<sup>1</sup>I.e., for any  $g \in G^+$ , there exist  $g_1, \dots, g_n \in G_0$  with  $g = g_1 + \dots + g_n$ .

set of all maximal and prime ideals of  $X$ . We recall that it can happen that  $\mathcal{M}(X) = \emptyset$ .

Define recursively, for all  $x, y \in X$  :

$$x *^0 y = x, \quad x *^1 y = x * y, \dots, \quad x *^{n+1} y = (x *^n y) * y, \quad n \geq 1.$$

An element  $u$  of  $X$  is said a quasi strong unit for  $X$  if, for any  $x \in X$ , there exists an integer  $n \geq 1$  such that  $x *^n u = u$ . If  $X$  possesses a quasi strong unit, then  $\mathcal{M}(X) \neq \emptyset$ .

If  $\mathcal{M}(X) \neq \emptyset$ , then the set  $\text{Rad}(X) := \bigcap \{M : M \in \mathcal{M}(X)\}$  is said to be a *radical* of  $X$ . The radical carries an important part of the propositional system. For example, if  $\text{Rad}(X) = \{0\}$ ,  $X$  is said to be *semisimple*, and in this case  $X$  can be represented by functions or even by fuzzy sets, [Dvu].

Let  $n \geq 1$  be an integer and  $a \in X$ . If  $a_1 + \dots + a_n$  is defined in  $X$ , where  $a_i = a$  for  $i = 1, \dots, n$ , then  $na := a_1 + \dots + a_n$ . An element  $x$  is said to be *infinitesimal* if  $nx$  is defined in  $X$  for any  $n \geq 1$ . The set of all infinitesimal elements in  $X$  will be denoted by  $\text{Infinit}(X)$ .

In [Dvu 2], we have proved that if  $X$  possesses a quasi strong unit, then

$$(2.2) \quad \text{Rad}(X) = \text{Rad}(X_u) = \text{Infinit}(X_u),$$

where  $X_u := \{x \in X : x \leq u\}$ . In addition, if  $x, y \in \text{Rad}(X)$ , then  $x + y$  is defined in  $X$  and  $x + y \in \text{Rad}(X)$ .

We denote by  $\mathcal{BCK}$  the category whose objects are commutative BCK-algebras and morphisms are BCK-homomorphisms.

Let  $G_1$  and  $G_2$  be two Abelian  $\ell$ -groups. A mapping  $h : G_1 \rightarrow G_2$  is said to be an  *$\ell$ -group homomorphism* iff  $h$  is both a group-homomorphism and a lattice-homomorphism. In other words, for each  $a, b \in G_1$ ,  $h(a + b) = h(a) + h(b)$ ,  $h(a \wedge b) = h(a) \wedge h(b)$  (as well as for joins).

We denote by  $\mathcal{LG}$  the category whose objects are pairs  $(G, G_0)$ , where  $G$  is an Abelian  $\ell$ -group and  $G_0$  is a non-void subset of the positive cone  $G^+$  of  $G$  such that  $G_0$  generates  $G^+$  and  $(G_0; *_G, 0)$  is a BCK-algebra (in fact a BCK-subalgebra of  $(G^+; *_G, 0)$ , see Example 2.1). A morphism from  $(G, G_0)$  into  $(G', G'_0)$  is an  $\ell$ -group homomorphism  $h : G \rightarrow G'$  such that  $h(G_0) \subseteq G'_0$ .

Now let  $(G, G_0)$  be an object of  $\mathcal{LG}$  and define a morphism  $\mathcal{X}$  from the category  $\mathcal{LG}$  into the category  $\mathcal{BCK}$  as follows

$$(2.3) \quad \mathcal{X}(G, G_0) = (G_0; *_G, 0),$$

where  $*_G$  is defined via (2.1). Let  $h$  be a morphism from  $(G, G_0)$  into  $(G', G'_0)$ . We define  $\mathcal{X}(h)$  as a mapping from  $\mathcal{X}(G, G_0)$  into  $\mathcal{X}(G', G'_0)$  via

$$(2.4) \quad \mathcal{X}(h)(a) := h(a), \quad a \in G_0.$$

The following result has been proved in [Dvu 1]:

**THEOREM 2.3.**  *$\mathcal{X}$  is a faithful, full and right-adjoint functor from the category  $\mathcal{LG}$  of Abelian  $\ell$ -groups into the category  $\mathcal{BCK}$  of commutative BCK-algebras with the relative cancellation property. Moreover,  $\mathcal{X}$  is a categorical equivalence.*

**Remark 2.4.** From Theorem 2.3 we have, in particular, see also [DvGr 1], that any commutative BCK-algebra with the relative cancellation property admits a *universal group*, i.e. a pair  $(G(X), h)$ , where  $G(X)$  is an Abelian  $\ell$ -group and  $h$  is a mapping from  $X$  into  $G(X)$  preserving the order in  $X$  and  $+$ , such that if  $g : X \rightarrow G_1$  is an order and  $+$  preserving mapping into an  $\ell$ -group  $G_1$ , then there exists a unique group homomorphism  $g' : G \rightarrow G_1$  such that  $g = g' \circ g$ . We recall that  $h$  is a BCK-embedding. In this case,  $X = \mathcal{X}(G(X), h(X))$ .

On the other hand, every commutative BCK-algebra  $(X; *, 0)$  with the relative cancellation property can be embedded into a commutative BCK-algebra  $(\widehat{X}; *, 0)$ , called the *BCK-hull* of  $X$ , such that  $\widehat{X}$  is a lattice consisting of all finite joins of elements from  $X$ . Moreover, every element from  $\widehat{X}$  is a finite sum of elements from  $X$ , where the sum is taken in  $\widehat{X}$ , [Dvu]. Then  $(G(X), \widehat{h})$  is a universal group for  $\widehat{X}$ , where  $\widehat{h}$  is a unique extension of  $h$ .

### 3. Product on commutative BCK-algebras

In many important commutative BCK-algebras, for example, in semisimple MV-algebras, we are able to introduce besides a total BCK-binary operation  $*$  and the derived partial addition  $+$  also a multiplication as a total binary operation. For example, if  $X = [0, 1]^\Omega$ , we define  $(f * g)(\omega) = f(\omega) *_{\mathbb{R}} g(\omega)$ ,  $\omega \in \Omega$ . Then we define the product  $\cdot$  as a natural multiplication of functions. The derived  $+$  is such one that  $f + g$  exists in  $X$  iff  $f(\omega) + g(\omega) \leq 1$  for any  $\omega \in \Omega$ . Then the natural product is left and right distributive with respect to the derived  $+$ .

Motivating that example, we introduce in the present Section product BCK-algebras. We show that they are closely connected with  $\ell$ -rings. Other examples of product BCK-algebras are given after Theorem 3.3.

**DEFINITION.** We say that a commutative BCK-algebra  $(X; *, 0)$  with the relative cancellation property admits a *product* if there is a binary operation  $\cdot$  on  $X$  satisfying for all  $a, b, c \in X$  the following

(i) if  $a + b$  is defined in  $X$ , then  $a \cdot c + b \cdot c$  and  $c \cdot a + c \cdot b$  exist and

$$(a + b) \cdot c = a \cdot c + b \cdot c, \\ c \cdot (a + b) = c \cdot a + c \cdot b,$$

where  $+$  is a derived partial operation on  $X$ , and we say that  $X$  is a

product BCK-algebra. Sometimes we write  $X = (X; *, 0, \cdot)$ . An element  $u$  of a product BCK-algebra  $X$  is said to be a *unity*, if  $a \cdot u = u \cdot a = a$  for any  $a \in X$ .

A product  $\cdot$  on  $X$  is

- (ii) *associative* if  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ ,  $a, b, c \in X$ ;
- (iii) *commutative* if  $a \cdot b = b \cdot a$ ,  $a, b \in X$ .

It is worth saying that if  $\cdot$  is a product on  $X$ , then

- (iv)  $a \cdot 0 = 0 = 0 \cdot a$ ,
- (v) if  $a \leq b$ , then for any  $c \in X$ ,  $a \cdot c \leq b \cdot c$  and  $c \cdot a \leq c \cdot b$ .

Property (iv) follows easily from the following:  $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$ , and the cancellation property gives  $a \cdot 0 = 0$ . Similarly,  $0 \cdot a = 0$ .

**THEOREM 3.1.** *The class of product BCK-algebras is equationally definable.*

**P r o o f.** The class of commutative BCK-algebras with the relative cancellation property is equationally definable, [DvGr 1, Thm 5.4]. The condition (i) is equivalent to the identities, for all  $c, x, y \in X$ ,

$$\begin{aligned} c \cdot (x * (x \wedge y)) &= (c \cdot x) * (c \cdot (x \wedge y)), \\ (x * (x \wedge y)) \cdot c &= (x \cdot c) * ((x \wedge y) \cdot c). \end{aligned}$$

Hence the class of product BCK-algebras is equationally definable. ■

We recall that an  *$\ell$ -ring* is a usual ring  $(R; +, \cdot, 0)$  with a partial order  $\leq$  such that  $(R; +, 0, \leq)$  is an  *$\ell$ -group* and, if  $0 \leq a$  and  $0 \leq b$ , then  $0 \leq a \cdot b$ . A *function ring* or an *f-ring* is an  $\ell$ -ring such that  $a \wedge b = 0$  and  $0 \leq c$  imply  $(c \cdot a) \wedge b = (a \cdot c) \wedge b = 0$ . An  $\ell$ -ring  $R$  is Archimedean if  $(R; +, 0, \leq)$  is Archimedean. For an  $\ell$ -ring  $R$  we shall write  $R = (R; +, \cdot, 0, \leq)$ .

We recall that if unity 1 of an  $\ell$ -ring  $R$  is a strong unit, then  $R$  is an f-ring, [Bir, Lem XVII.5.2], and any Archimedean f-ring is commutative and associative, [Bir, Thm XVII.10]. More about  $\ell$ -rings see, e.g., [Bir] or [Fuc].

**THEOREM 3.2.** *Let  $(R; +, \cdot, 0, \leq)$  be an (associative)  $\ell$ -ring with  $\emptyset \neq R_0 \subseteq R^+$  such that  $a, b \in R_0$  entails  $a *_R b \in R_0$  and  $a \cdot b \in R_0$ . Then  $(X; *, 0) := \mathcal{X}(R, R_0)$  is a product BCK-algebra with an (associative) product  $\cdot$ , which is the restriction of  $\cdot$  to  $R_0 \times R_0$ .*

*Conversely, let  $(X; *, 0)$  be a product BCK-algebra with an (associative) product  $\cdot$ . Then there exists a unique (up to isomorphism) (associative)  $\ell$ -ring  $(R; +, \cdot, 0, \leq)$  with a non-empty set  $R_0 \subseteq R^+$  generating  $R^+$  as a group-cone such that  $a, b \in R_0$  entails  $a *_R b \in R_0$ ,  $a \cdot b \in R_0$ , and  $X \cong \mathcal{X}(R, R_0)$ , and  $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$ ,  $a, b \in X$ , where  $\phi$  is a BCK-isomorphism of  $X$  onto  $\mathcal{X}(R, R_0)$ .*

**Proof.** (1) Let  $X = \mathcal{X}(R, R_0)$ . For  $a, b \in X$  we have  $a \cdot b \in X$  which says that the restriction of  $\cdot$  onto  $X \times X$  defines the (associative) product on the BCK-algebra  $X$ .

(2) Let  $X$  be a BCK-algebra with a product  $\cdot$ . According to Theorem 2.3, there is an  $\ell$ -group  $(R; +, 0, \leq)$  with a BCK-subalgebra  $R_0$  and a BCK-isomorphism  $\phi$  from  $X$  onto  $\mathcal{X}(R, R_0)$ . We can define the product  $\cdot$  on  $\mathcal{X}(R, R_0)$  as follows

$$\phi(a) \cdot \phi(b) := \phi(a \cdot b), \quad a, b \in X.$$

Because  $\mathcal{X}(R, R_0)$  is generating for the positive cone  $R^+$  of  $R$ ,  $\phi$  preserves all existing  $+$  in  $X$ , we see that  $\cdot$  is a product on  $\mathcal{X}(R, R_0)$ .

Given  $g \in R^+$  there exist  $a_1, \dots, a_n \in X$  such that  $g = \sum_{i=1}^n \phi(a_i)$ . For any  $\phi(c)$ , where  $c \in X$ , we define

$$(3.1) \quad g \cdot \phi(c) = \phi(a_1 \cdot c) + \dots + \phi(a_n \cdot c).$$

We claim that (3.1) is defined unambiguously. Indeed, if  $g = \sum_{j=1}^m \phi(b_j)$ , for some  $b_1, \dots, b_m \in X$ , due to the Riesz decomposition property holding on  $\ell$ -groups [Goo, Prop 2.2], there exist elements  $c_{ij} \in X$  such that  $a_i = \sum_{j=1}^m c_{ij}$  and  $b_j = \sum_{i=1}^n c_{ij}$  for all  $i$ ,  $1 \leq i \leq n$  and all  $j$ ,  $1 \leq j \leq m$ . Then

$$\begin{aligned} \sum_{i=1}^n \phi(a_i \cdot c) &= \sum_{i=1}^n \phi\left(\left(\sum_{j=1}^m c_{ij}\right) \cdot c\right) = \sum_{i=1}^n \phi\left(\sum_{j=1}^m (c_{ij} \cdot c)\right) \\ &= \sum_{i=1}^n \sum_{j=1}^m \phi(c_{ij} \cdot c) = \sum_{j=1}^m \sum_{i=1}^n \phi(c_{ij} \cdot c) \\ &= \sum_{j=1}^m \phi\left(\sum_{i=1}^n c_{ij} \cdot c\right) = \sum_{j=1}^m \phi\left(\left(\sum_{i=1}^n c_{ij}\right) \cdot c\right) \\ &= \sum_{j=1}^m \phi(b_j \cdot c), \end{aligned}$$

which proves that the extension of  $\cdot$  on  $R^+ \times \mathcal{X}(R, R_0)$  is correct. We now extend  $\cdot$  to  $R \times \mathcal{X}(R, R_0)$  as follows: If  $g = g_1 - g_2$ ,  $g_1, g_2 \in R^+$ , then

$$g \cdot \phi(c) := g_1 \cdot \phi(c) - g_2 \cdot \phi(c).$$

Since if  $g_1 - g_2 = h_1 - h_2$  for  $g_i, h_i \in R^+$ ,  $i = 1, 2$ , then  $g_1 + h_2 = h_1 + g_2$ , so that by (3.1)

$$\begin{aligned} (g_1 + h_2) \cdot \phi(c) &= (h_1 + g_2) \cdot \phi(c) \\ g_1 \cdot \phi(c) + h_2 \cdot \phi(c) &= h_1 \cdot \phi(c) + g_2 \cdot \phi(c) \\ g_1 \cdot \phi(c) - g_2 \cdot \phi(c) &= h_1 \cdot \phi(c) - h_2 \cdot \phi(c). \end{aligned}$$

Now let  $c \in R^+$ . Then  $c = \phi(c_1) + \dots + \phi(c_s)$ , where  $c_t \in X$ ,  $t = 1, \dots, s$ . We extend  $\cdot$  to  $R \times R^+$  as follows

$$g \cdot c := \sum_{t=1}^s g \cdot \phi(c_t), \quad g \in R.$$

If  $c = \sum_{w=1}^v \phi(d_w)$ , using the Riesz decomposition property, we have

$$\sum_{t=1}^s g \cdot \phi(c_t) = \sum_{w=1}^v g \cdot \phi(d_w).$$

It is clear that the “multiplication”  $\cdot$  can be extended to whole  $R \times R$ : If  $c = c_1 - c_2$ , where  $c_1, c_2 \in R^+$ , then

$$g \cdot c := g \cdot c_1 - g \cdot c_2.$$

It is evident that if  $g, h \in R^+$ , then  $g \cdot h \in R^+$ , and due to (ii),  $\cdot$  is associative on  $R$ , so that  $(R; +, \cdot, 0, \leq)$  is an  $\ell$ -ring with the BCK-subalgebra  $R_0$ , which proves Theorem. ■

A commutative BCK-algebra  $(X; *, 0)$  with the relative cancellation property is said to be *Archimedean* if the statement “ $na$  is defined and  $na \leq b$  for any  $n \geq 1$  and for some  $b \in X$ ” implies  $a = 0$ . Due to [Dvu], a BCK-algebra  $X$  is Archimedean iff its universal group  $(G, h)$  is an Archimedean  $\ell$ -group. In addition,  $X$  is Archimedean if  $X$  is semisimple [Dvu]. The converse statement holds for example, if  $X$  has a quasi strong unit.

**THEOREM 3.3.** *Let  $(X; *, 0)$  be a product BCK-algebra with a product  $\cdot$ .*

- (1) *If  $a \cdot b = b \cdot a$ , for all  $a, b \in X$ , then  $(R; +, \cdot, 0, \leq)$  from Theorem 3.2 is a commutative  $\ell$ -ring.*
- (2) *If a quasi strong unit  $u$  for  $X$  is the unity for  $X$ , then the  $\ell$ -ring  $(R; +, \cdot, 0, \leq)$  from Theorem 3.2 is an f-ring with a strong unit  $\phi(u)$ <sup>2</sup> which is unity in  $R$ .*
- (3) *If  $X$  is semisimple with unity  $u$  which is a quasi strong unit for a product  $\cdot$ , then the  $\ell$ -ring  $(R; +, \cdot, 0, \leq)$  from Theorem 3.2 is a commutative and associative f-ring.*
- (4) *If there is an element  $e \in X$  which is unity for  $X$ , then  $\phi(e)$  is unity in the  $\ell$ -ring  $(R; +, \cdot, 0, \leq)$  from Theorem 3.2.*

**Proof.** (1) It follows from the construction of  $(R; +, \cdot, 0)$  from the proof of Theorem 3.2.

---

<sup>2</sup>A positive element of an  $\ell$ -ring  $R$  is a *strong unit* if, for any  $g \in R$ , there exists an integer  $n \geq 1$  such that  $-nu \leq g \leq nu$ .

(2) Since  $a \cdot u = u \cdot a = a$  for any  $a \in X$ , it is possible to show that  $\phi(1)$  from the proof of Theorem 3.2 is unity in  $R$ . From [Bir, Lem XVII.5.2] we conclude that  $R$  is an f-ring.

(3) According to (2),  $R$  is an f-ring. Due to the semisimplicity of  $X$  we infer that  $(R; +, 0)$  is an Archimedean  $\ell$ -group, and by [Bir, Thm XVII.10], the multiplication  $\cdot$  on  $R$  is commutative and associative.

(4) It is evident. ■

To illustrate our notions, we investigate the possibility of the existence of product BCK-algebras. It is evident that every BCK-algebra under the trivial product, i.e.,  $a \cdot b = 0$  for all  $a, b \in X$ , is a product BCK-algebra, called a zero-BCK-algebra. Other product BCK-algebras with non trivial product we can obtain as follows.

Let  $a$  be an element of  $X$ . If there exists a greatest integer  $n$  such that  $na := a + \dots + a$  is defined in  $X$ ,  $ord(a) := n$ ; if  $na$  is defined in  $X$  for any integer  $n \geq 1$ , we put  $ord(a) = \infty$ .

A non-zero element  $a$  of  $X$  is said to be an *atom* of  $X$  if  $b \leq a$ ,  $b \in X$  imply  $b = 0$  or  $b = a$ . A BCK-algebra  $X$  is said to be *atomic* if given a non-zero element  $b$  of  $X$  there is an atom  $a$  in  $X$  such that  $a \leq b$ .

A BCK-algebra  $(X; *, 0)$  is said to be *implicative* if  $x * y = (x * y) * y$ ,  $x, y \in X$ . Such BCK-algebras have the relative cancellation property and they can be embedded onto a BCK-algebra  $(\mathcal{S}; \setminus, \emptyset)$ , where  $\mathcal{S}$  is a usual ring of subsets of a non-void set  $\Omega$ , and  $\setminus$  is the set-theoretical difference, [MeJu, Thm VII.2.7].

**THEOREM 3.4.** *A finite commutative BCK-algebra  $(X; *, 0)$  with the relative cancellation property admits a product with unity  $u$  if and only if  $X$  is implicative. If it is the case, then  $a \cdot b = a \wedge b$ ,  $a, b \in X$ .*

**P r o o f.** Suppose that  $X$  is implicative and define  $a \cdot b := a \wedge b$  for all  $a, b \in X$ . Then  $\cdot$  is a product in question.

Conversely, assume that the product  $\cdot$  satisfies  $a \cdot u = a = u \cdot a$  for any  $a \in X$ .

First, let  $X$  be a bounded BCK-algebra with the greatest element 1. Then  $1 \cdot 1 \leq 1 = 1 \cdot u \leq 1 \cdot 1$  which proves  $1 \cdot 1 = 1$ . For any  $a \in X$ , we denote by  $a^* = 1 * a$ . Then  $a \cdot 1 \geq a \cdot u = a$  and  $1 \cdot a \geq u \cdot a = a$ . In addition,  $a + a^* = 1 = 1 \cdot 1 = (a + a^*) \cdot 1 = a \cdot 1 + a^* \cdot 1 \geq a + a^*$ , which entails  $a \cdot 1 = a$ . By symmetry, we have  $1 \cdot a = a$  for any  $a \in X$ , and in addition,  $1 = 1 \cdot u = u$ .

The finiteness of  $X$  yields that  $X$  is atomic. If  $a$  and  $b$  are two different atoms, then  $(na) \wedge (mb) = 0$  whenever  $na$  and  $mb$  are defined in  $X$ , [Dvu, Thm 7.2] Therefore  $((na) \vee (mb)) - (na) = (mb) - ((na) \wedge (mb)) = (mb)$  so that  $na + mb$  is defined in  $X$  and  $na + mb = (na) \vee (mb)$ .

Given an atom  $a$ , let  $j_a(x)$  denote the greatest integer  $n$  such that  $na$  is defined in  $X$  and  $na \leq x$ . Since  $X$  is finite,  $j_a(x)$  is finite for any atom  $a$  and for any element  $x$ , and the element  $x$  of  $X$  can be uniquely expressed in the form

$$x = j_{a_1}(x)a_1 + \dots + j_{a_k}(x)a_k,$$

where  $a_1, \dots, a_k$  denote the set of all atoms in  $X$ .

Assume again that  $a$  and  $b$  are two different atoms. Hence  $a \cdot b \leq a \cdot 1 = a$  and  $a \cdot b \leq 1 \cdot b = b$  which gives  $a \cdot b \leq a \wedge b = 0$ . Similarly  $a \cdot a \leq a$  which entails  $a \cdot a \in \{0, a\}$ .

If  $X$  is not implicative, then there is an atom  $a$  of  $X$  such that  $n := \text{ord}(a) \geq 2$ . If  $a \cdot a = a$ , then  $(na) \cdot (na) = n^2(a \cdot a) = n^2a$  which yields  $n = \text{ord}(a) \geq n^2$ . If  $a \cdot a = 0$ , then  $0 \neq a = a \cdot 1 = a \cdot (\text{ord}(a_1)a_1 + \dots + \text{ord}(a_k)a_k) = 0$  which is again absurd. Consequently, on  $X$ , which is not implicative, there is no product in question.

Assume now that  $X$  is a finite BCK-algebra which is not necessarily bounded. In any rate, the BCK-hull  $\widehat{X}$  of  $X$  is due to finiteness of  $X$  bounded and finite. If  $(G(X), h)$  is a universal group for  $X$ , then by Theorem 3.2,  $G(X)$  is an  $\ell$ -ring. By Remark 2.4,  $\widehat{h}(\widehat{X})$  is closed under the product in  $G(X)$ , because if  $x, y \in \widehat{X}$ , then  $x = x_1 + \dots + x_n, y = y_1 + \dots + y_m$ , where  $x_i, y_j \in X$ ; then  $x \cdot y = \sum_{i,j} x_i \cdot y_j \in \widehat{X}$ .

Therefore,  $\widehat{X}$  is a finite product BCK-algebra. It is clear that  $u$  is unity in  $\widehat{X}$ , too. Due to the first part of the present proof,  $\widehat{X}$  has to be implicative, so that,  $X$  is implicative.

Assume now that  $X$  is implicative, and without loss of generality, let  $X$  be bounded, and let  $a \cdot a = 0$  for some atom  $a$  of  $X$ . Then  $a = a \cdot 1 = a \cdot (a + a^*) = a \cdot a^* = a \cdot (\sum_{a_i \neq a} a_i) = 0$ , which is absurd. Hence  $a \cdot a = a$  for any atom  $a$ . Therefore  $x \cdot y = (j_{a_1}(x)a_1 + \dots + j_{a_k}(x)a_k) \cdot (j_{a_1}(y)a_1 + \dots + j_{a_k}(y)a_k) = j_{a_1}(x \wedge y)a_1 + \dots + j_{a_k}(x \wedge y)a_k = x \wedge y$  for any  $x, y \in X$ . ■

**COROLLARY 3.5.** (i) *A product  $\cdot$  with unity on a non-implicative BCK-algebra  $X$  can exists only if  $X$  is an infinite BCK-algebra. For example, on  $([0, \infty); *_{\mathbb{R}}, 0)$  we can define a usual product of real numbers.*

(ii) *From the proof of the previous theorem we conclude that if  $u$  is a unity for a product  $\cdot$  on a bounded product BCK-algebra  $X$ , then  $1 = u$ .*

#### 4. Product BCK-algebras and categorical equivalence

Denote by  $\mathcal{PBCK}$  the category of product BCK-algebras, i.e., its objects are BCK-algebras with product, and morphisms are BCK-homomorphisms of product BCK-algebras preserving also  $\cdot$ .

We denote by  $\mathcal{PR}$  the category whose objects are pairs  $(R, R_0)$ , where  $R$  is an Abelian  $\ell$ -ring and  $R_0$  is a non-void subset of the positive cone  $R^+$

of  $R$  such that  $R_0$  generates  $R^+$  and  $(R_0; *_R, 0)$  is a product BCK-algebra under  $\cdot$ . A morphism from  $(R, R_0)$  into  $(R', R'_0)$  is an  $\ell$ -group homomorphism  $h : R \rightarrow R'$ , preserving  $\cdot, \wedge, \vee$ , such that  $h(R_0) \subseteq R'_0$ .

We denote by  $\mathcal{X}_R$  a morphism from  $\mathcal{PR}$  into  $\mathcal{PBCK}$  defined by  $\mathcal{X}_R(R, R_0) = (R_0, *_R, 0, \cdot)^3$ , and  $\mathcal{X}_R(f) := f|R_0$ .

**THEOREM 4.1.**  *$\mathcal{X}_R$  is a faithful and full functor from  $\mathcal{PR}$  to  $\mathcal{PBCK}$ .*

**Proof.** Let  $h_1$  and  $h_2$  be two morphism from  $(R, R_0)$  into  $(R', R'_0)$  such that  $\mathcal{X}_R(h_1) = \mathcal{X}_R(h_2)$ . Then  $h_1(a) = h_2(a)$  for any  $a \in \mathcal{X}_R(R, R_0)$ . Since  $\mathcal{X}_R(R, R_0)$  generates  $R^+$  and  $R$ , we have that  $h_1(g) = h_2(g)$  for any  $g \in R$  which proves that  $\mathcal{X}_R$  is faithful.

To prove that  $\mathcal{X}_R$  is a full functor, suppose that  $f$  is a morphism from  $\mathcal{X}_R(R, R_0)$  into  $\mathcal{X}_R(R', R'_0)$ . Since  $\mathcal{X}_R(R, R_0)$  generates  $R$ , due to the Riesz decomposition property,  $f$  can be uniquely extended to a group-homomorphism  $\widehat{f}$  from  $R$  into  $R'$ .

**CLAIM 1.**  $\widehat{f}$  is a lattice-homomorphism. The proof will proceed in several steps.

*Step 1.*  $f$  preserves meets in  $\mathcal{X}_R(R, R_0)$ . This follows from the observation that  $a \wedge b = a * b$  which entails  $f$  preserves meets in  $\mathcal{X}_R(R, R_0)$ .

*Step 2.* Let  $a, b, u_0 \in R^+$ . If  $\widehat{f}(a \wedge b) = \widehat{f}(a) \wedge \widehat{f}(b)$  and if  $\widehat{f}(u_0 \wedge (b - (a \wedge b))) = \widehat{f}(u_0) \wedge \widehat{f}(b - (a \wedge b))$ , then

$$\widehat{f}((a + u_0) \wedge b) = \widehat{f}(a + u_0) \wedge \widehat{f}(b).$$

Indeed, we have  $(a \wedge b) + [u_0 \wedge (b - (a \wedge b))] = ((a \wedge b) + u_0) \wedge b = (a + u_0) \wedge (b + u_0) \wedge b = (a + u_0) \wedge b$ .

Therefore

$$\begin{aligned} \widehat{f}((a + u_0) \wedge b) &= \widehat{f}(a \wedge b) + \widehat{f}(u_0 \wedge (b - (a \wedge b))) \\ &= (\widehat{f}(a) \wedge \widehat{f}(b)) + [\widehat{f}(u_0) \wedge (\widehat{f}(b) - (\widehat{f}(a) \wedge \widehat{f}(b)))] \\ &= ((\widehat{f}(a) \wedge \widehat{f}(b)) + \widehat{f}(u_0)) \wedge \widehat{f}(b) \\ &= (\widehat{f}(a) + \widehat{f}(u_0)) \wedge (\widehat{f}(b) + \widehat{f}(u_0)) \wedge \widehat{f}(b) = \widehat{f}(a + u_0) \wedge \widehat{f}(b). \end{aligned}$$

*Step 3.*  $\widehat{f}(a \wedge b) = \widehat{f}(a) \wedge \widehat{f}(b)$  whenever  $a \in R^+$  and  $b \in \mathcal{X}_R(R, R_0)$ .

Since  $\mathcal{X}_R(R, R_0)$  is generating for  $R^+$ ,  $a$  is of the form  $a = a_1 + \dots + a_n$  for some  $a_1, \dots, a_n \in \mathcal{X}_R(R, R_0)$ . The proof will follow mathematical induction on  $n$ .

If  $n = 1$ , the statement is trivial. Suppose now that the statement holds for any  $a' = a_1 + \dots + a_i$  with  $1 \leq i \leq n$ . Put  $a = a_1 + \dots + a_n$ ,  $u_0 = a_{n+1}$ .

---

<sup>3</sup>We recall that  $*_R$  is understood as that defined by (2.1).

Then there exist  $v_1, \dots, v_k \in \mathcal{X}_R(R, R_0)$  such that  $b = (v_1 + \dots + v_k) + (a \wedge b)$ . Since  $v := v_1 + \dots + v_k \leq b$ ,  $v \in \mathcal{X}_R(R, R_0)$ . Hence  $v = b - (a \wedge b)$ . Since  $\widehat{f}$  preserves meets in  $\mathcal{X}_R(R, R_0)$ , we have  $\widehat{f}(u_0 \wedge v) = \widehat{f}(u_0) \wedge \widehat{f}(v)$ , so that  $\widehat{f}(u_0 \wedge (b - (a \wedge b))) = \widehat{f}(u_0) \wedge \widehat{f}(b - (a \wedge b)) = \widehat{f}(u_0) \wedge (\widehat{f}(b) - (\widehat{f}(a) \wedge \widehat{f}(b)))$  when we have used induction hypothesis. By Step 1,  $\widehat{f}((a + u_0) \wedge b) = \widehat{f}(a + u_0) \wedge \widehat{f}(b)$ , that is,  $\widehat{f}((a_1 + \dots + a_{n+1}) \wedge b) = \widehat{f}(a_1 + \dots + a_{n+1}) \wedge \widehat{f}(b)$  for any  $n$ .

*Step 4.*  $\widehat{f}(a \wedge b) = \widehat{f}(a) \wedge \widehat{f}(b)$  whenever  $a, b \in R^+$ .

Let  $a = a_1 + \dots + a_n$ ,  $b = b_1 + \dots + b_k$ . The proof will follow complete induction on  $k$ .

If  $k = 1$ , we apply Step 3. Suppose now that the assertion holds for any  $j$  with  $1 \leq j \leq k$ . Put  $B = a$ ,  $A = b_1 + \dots + b_k$ ,  $u_0 = b_{k+1}$ . By Step 3,  $\widehat{f}(u_0 \wedge (B - (A \wedge B))) = \widehat{f}(u_0) \wedge \widehat{f}(B - (A \wedge B))$  and  $\widehat{f}(A \wedge B) = \widehat{f}(A) \wedge \widehat{f}(B)$ . Therefore the conditions of Step 1 are satisfied, so that  $\widehat{f}((A + u_0) \wedge B) = \widehat{f}(A + u_0) \wedge \widehat{f}(B)$  which proves  $\widehat{f}((a_1 + \dots + a_n) \wedge (b_1 + \dots + b_{k+1})) = \widehat{f}(a_1 + \dots + a_n) \wedge \widehat{f}(b_1 + \dots + b_{k+1})$  for each  $n$  and each  $k$ .

*Step 5.*  $\widehat{f}(a \wedge b) = \widehat{f}(a) \wedge \widehat{f}(b)$  whenever  $a, b \in R$ . There exist  $a', a'', b', b'' \in R^+$  such that  $a = a' - a''$  and  $b = b' - b''$ . By Step 4,  $\widehat{f}((a' + b'') \wedge (b' + a'')) = \widehat{f}(a' + b') \wedge \widehat{f}(b' \wedge a'')$ . Subtracting  $\widehat{f}(b'')$  and  $\widehat{f}(a'')$  we obtain the assertion in question.

**CLAIM 2.**  $\widehat{f}$  preserves the product  $\cdot$  in  $R$ .

Let  $a, b \in R^+$ . There exist  $a_1, \dots, a_n, b_1, \dots, b_m \in \mathcal{X}_R(R, R_0)$  such that  $a = a_1 + \dots + a_n$  and  $b = b_1 + \dots + b_m$ . Then  $a \cdot b = \sum_{i=1}^n \sum_{j=1}^m a_i \cdot b_j$  and  $a_i \cdot b_j \in \mathcal{X}_R(R, R_0)$ . Calculate  $\widehat{f}(a \cdot b) = \sum_{i=1}^n \sum_{j=1}^m \widehat{f}(a_i \cdot b_j) = \sum_{i=1}^n \sum_{j=1}^m \widehat{f}(a_i) \cdot \widehat{f}(b_j) = (\sum_{i=1}^n \widehat{f}(a_i)) \cdot (\sum_{j=1}^m \widehat{f}(b_j)) = \widehat{f}(a) \cdot \widehat{f}(b)$ .

If now  $a, b \in R$ , then  $a = a_1 - a_2$  and  $b = b_1 - b_2$ , where  $a_1, a_2, b_1, b_2 \in R^+$ . Then  $\widehat{f}(a \cdot b) = \widehat{f}(a_1 \cdot b_1 + a_1 \cdot b_2 - a_2 \cdot b_1 + a_2 \cdot b_2) = \widehat{f}(a_1 \cdot b_1) - \widehat{f}(a_1 \cdot b_2) - \widehat{f}(a_2 \cdot b_1) + \widehat{f}(a_2 \cdot b_2) = \widehat{f}(a_1) \cdot \widehat{f}(b_1) - \widehat{f}(a_1) \cdot \widehat{f}(b_2) - \widehat{f}(a_2) \cdot \widehat{f}(b_1) + \widehat{f}(a_2) \cdot \widehat{f}(b_2) = \widehat{f}(a) \cdot \widehat{f}(b)$ .

Consequently, we have proved that  $\widehat{f}$  is a morphism from  $(R; +, \cdot, 0, \leq)$  into  $(R'; +, \cdot, 0, \leq)$  such that  $\mathcal{X}_R(\widehat{f}) = f$ . ■

**THEOREM 4.2.** *The functor  $\mathcal{X}_R$  defines a categorical equivalence of the category  $\mathcal{PR}$  of  $\ell$ -rings and the category  $\mathcal{PBCK}$  of product BCK-algebras.*

**P r o o f.** According to [MaL, Thm IV.4.1], to prove that  $\mathcal{X}_R$  is an equivalence of the categories in question, it is necessary and sufficient to show that  $\mathcal{X}_R$  is faithful and full, and each object  $X$  from  $\mathcal{PBCK}$  is isomorphic to  $\mathcal{X}_R(R, R'_0)$  for some object  $(R, R_0)$  in  $\mathcal{PR}$ .

Due to Theorem 4.1,  $\mathcal{X}_{\mathcal{R}}$  is faithful and full, and by Theorem 3.2, there exists an object  $(R, R_0)$  in  $\mathcal{PR}$  such that  $\mathcal{X}_{\mathcal{R}}(R, R_0)$  is isomorphic with  $X$  which proves Theorem. ■

**Remark 4.3.** Theorem 4.2 holds also for the category of product BCK-algebras which are also associative. In this case  $\mathcal{APR}$  has to be the category of associative elements from  $\mathcal{PR}$ .

Finally we compare product BCK-algebras and MV\*-algebras introduced in [BDG]. We recall that Cornish [Cor] introduced so-called conical BCK-algebras, which by [Dvu 1, Rem 3.4] can be defined by the equivalent way: A commutative BCK-algebra  $(X; *, 0)$  is said to be *conical* iff it is with the relative cancellation property and if  $x + y$  is defined in  $X$  for all  $x, y \in X$ . It is possible to show that  $\mathcal{X}(G, G_0)$  is conical iff  $G_0 = G^+$ , and due to Cornish [Cor] the category of conical BCK-algebras is categorical equivalent to the category of all Abelian  $\ell$ -groups.

Denote by  $\mathcal{PCBCK}$  the category of all product conical BCK-algebras, and by  $\mathcal{PCBCK}_u$  the category of all product conical BCK-algebras whose objects are pairs  $(X, u)$ , where  $u$  is a fixed quasi strong unit such that  $u \cdot u \leq u$ , and morphisms is any BCK-homomorphism preserving the product and fixed quasi strong units.

An MV-algebra  $(M; \oplus, \odot, *, 0, 1)$  is said to be *perfect* if, for each element  $x \in M$ , either  $x \in \text{Rad}(M)$  or  $x^* \in \text{Rad}(M)$ .

According to [BeDi], we say that a perfect MV-algebra  $M$  is with *principal radical* if there is an element  $a \in \text{Rad}(M)$  such that the ideal of  $M$  generated by  $a$  coincides with  $\text{Rad}(M)$ . The category  $\text{MV}_{pr}$  of perfect MV-algebras with principal radical is a category whose objects are pairs  $(M, a)$ , where  $M$  is a perfect MV-algebra with a fixed element  $a \in \text{Rad}(M)$  generating  $\text{Rad}(M)$ , as an ideal, and morphisms are MV-homomorphisms preserving fixed elements  $a$  in radicals.<sup>4</sup> Due to [BeDi, Prop 27], this category is equivalent with the category  $\text{MV}$  of all MV-algebras, or equivalently with the category of all unital Abelian  $\ell$ -groups (Mundici's representation).

We recall that in [BDG] an MV\*-algebra  $M$  has been introduced, which can be defined equivalently as follows:  $M$  is a perfect MV-algebra with a binary operation  $* : \text{Rad}(M) \times \text{Rad}(M) \rightarrow \text{Rad}(M)$  such that (i) it is associative, (ii)  $a * (b + c) = (a * b) + (a * c)$ ,  $(b + c) * a = (b * a) + (c * a)$ ,  $a, b, c \in \text{Rad}(M)$ .

Now let  $\text{MV}_p^*$  be the category of MV\*-algebras whose morphisms are MV-homomorphisms preserving a binary operation  $*$  on radicals. According to [DiLe, Thm 3.5], the category  $\text{MV}_p$  of perfect MV-algebras is categorically equivalent with the category of all  $\ell$ -groups (not necessarily unital),

---

<sup>4</sup>We recall that any MV-homomorphism maps radicals into radicals, use (2.2).

and  $\text{MV}_p^*$  is categorically equivalent to the category of all associative  $\ell$ -rings [BDG, Thm 2.6] (not necessarily unital). Let  $\text{MV}_{pr}^*$  denote the category having as objects pairs  $(A, g)$ , where  $A$  is a perfect  $\text{MV}^*$ -algebra with principal radical with a distinguished generator  $g$  such that  $g * g \leq g$ , and morphisms are  $\text{MV}_{pr}^*$ -homomorphisms preserving the distinguished generator of the radical.

Finally, let  $\mathcal{R}$  denote the category of associative  $\ell$ -rings, where the objects are associative  $\ell$ -rings, and let  $\mathcal{R}_u$  be the category of associative  $\ell$ -rings with a fixed strong unit  $u$  such that  $u \cdot u \leq u$ , i.e., objects are pairs  $(R, u)$ , where  $u$  is a fixed strong unit in  $R$ , and morphisms are  $\ell$ -rings morphisms preserving fixed strong units.

**THEOREM 4.4.** (1) *The categories  $\text{MV}_p^*$  of perfect  $\text{MV}^*$ -algebras,  $\text{PCBCK}$  of product conical BCK-algebras, and  $\mathcal{R}$  of associative  $\ell$ -rings are categorically equivalent.*

(2) *The categories  $\text{MV}_{pr}^*$ ,  $\text{PCBCK}_u$ , and  $\mathcal{R}_u$  are categorical equivalent.*

**P r o o f.** It follows ideas developed in above and in [BDG], and from the observation that an element  $u$  of  $X$  is a quasi strong unit iff the ideal of  $X$  generated by  $u$  is equal to  $X$ . ■

## 5. Ideals in product BCK-algebras and BCKf-algebras

Let  $X$  be a product BCK-algebra. A non-empty subset  $I$  of  $X$  is said to be a  $\cdot$ -ideal of  $X$  if

- (i)  $0 \in I$ ;
- (ii)  $a * b \in I$ ,  $a \in X$ , and  $b \in I$ , entail  $a \in I$ ;
- (iii)  $a \in I$  and  $b \in X$  entail  $a \cdot b \in I$  and  $b \cdot a \in I$ .

We denote by  $\mathcal{I}_p(X)$  the set of all  $\cdot$ -ideals of  $X$ .

Let  $(R; +, \cdot, 0, \leq)$  be an  $\ell$ -ring. An L-ideal of  $R$  is a non-void subset  $J$  of  $R$  such that

- (i)  $x, y \in J$  entails  $x \pm y \in J$ ;
- (ii)  $x \in R$ ,  $y \in J$ ,  $|x| \leq |y|$  entail  $x \in J$ ;
- (iii)  $x \in J$  and  $y \in R$  entail  $x \cdot y \in J$  and  $y \cdot x \in J$ .

We denote by  $\mathcal{I}_L(R)$  the set of all L-ideals of  $R$ .

Let  $(X; *, 0)$  be a commutative BCK-algebra with the relative cancellation property and let  $(G(X), h)$  be its universal group. Given a subset  $I$  of  $X$ , let  $h_0(I)$  be the  $\ell$ -ideal of  $G(X)$  generated by the image  $h(I)$  of  $I$  in  $G(X)$ .

**THEOREM 5.1.** *Let  $(R; +, \cdot, 0, \leq)$  be an  $\ell$ -ring with  $\emptyset \neq R_0 \subseteq R^+$  such that  $a, b \in R_0$  entails  $a *_R b \in R_0$  and  $a \cdot b \in R_0$ , and let  $X = \mathcal{X}_{\mathcal{R}}(R, R_0)$ . Then*

the correspondence  $\Phi$  defined by

$$(5.1) \quad \Phi(I) := h_0(I), \quad I \in \mathcal{I}_p(X),$$

where  $h$  is the embedding of  $X$  into  $R$ , is an order-isomorphism from the set  $\mathcal{I}_p(X)$  of  $\cdot$ -ideals of the product BCK-algebra  $X$ , ordered by inclusion, onto  $\mathcal{I}_L(R)$ . The inverse isomorphism  $\Psi$  is given by

$$(5.2) \quad \Psi(H) := X \cap H, \quad H \in \mathcal{I}_L(R).$$

**Proof.** In [Dvu 2, Thm 2.5] we have proved that the mappings (5.1) and (5.2) define inclusion isomorphisms between the set of ideals of  $X$  and  $\ell$ -ideals of  $R$ . We show that they preserve also “ $\cdot$ -ideal property”.

We assert that  $x \in \Phi(I)$  iff  $x = x_1 + \dots + x_j - y_1 - \dots - y_k$ , where  $x_i, y_s \in I$ . It is clear that if  $x$  has a given form, then  $x \in \Phi(I)$ . Conversely, let  $x \in \Phi(I)$ . Assume that  $x \geq 0$ . Then there exist  $x_1, \dots, x_n \in X$  such that  $x = x_1 + \dots + x_n$ . We show that  $x_1, \dots, x_n \in I$ . The proof will follow mathematical induction on  $n$ . If  $n = 1$ , the statement is evident. Assume thus that whenever  $x \in \Phi(I)$  and  $x = x_1 + \dots + x_i$  for  $i \leq n$ , then  $x_1, \dots, x_i \in I$ . Now let  $x = x_1 + \dots + x_n + x_{n+1}$ . Then  $0 \leq x_{n+1} \leq x$  so that  $x_{n+1} \in \Phi(I)$  and  $x - x_{n+1} \in \Phi(I)$  and by induction  $x_1, \dots, x_n \in I$ . Hence  $x - x_1 = x_2 + \dots + x_{n+1}$  which proves also  $x_{n+1} \in I$ .

If  $x$  is an arbitrary element of  $\Phi(I)$ , then  $x = x^+ - x^-$  and  $x^+, x^- \in \Phi(I)$ , so that  $x = x_1 + \dots + x_j - y_1 - \dots - y_k$ .

Now let  $x \in \Phi(I)$  and  $y \in R$ , then  $x = x_1 + \dots + x_j - y_1 - \dots - y_k$  and  $y = u_1 + \dots + u_s - v_1 - \dots - v_k$ , where  $x_1, \dots, x_j, y_1, \dots, y_k \in I$  and  $u_1, \dots, u_s, v_1, \dots, v_k \in X$ . Then evidently  $x \cdot y, y \cdot x \in \Phi(I)$ , which proves that  $\Phi$  preserves  $\cdot$ -ideals. ■

A product BCK-algebra  $X$  is said to be a *BCKf-algebra* if, for all  $a, b, c \in X$ ,

$$(5.3) \quad a \wedge b = 0 \text{ implies } (a \cdot c) \wedge b = 0 = (c \cdot a) \wedge b.$$

For example, any linearly ordered product BCK-algebra is a BCKf-algebra.

**THEOREM 5.2.** *Let  $(R; +, \cdot, 0, \leq)$  be an  $\ell$ -ring with  $\emptyset \neq R_0 \subseteq R^+$  such that  $a, b \in R_0$  entails  $a *_R b \in R_0$  and  $a \cdot b \in R_0$ . Let  $X = \mathcal{X}_R(R, R_0)$ . Then  $X$  is a BCKf-algebra if and only if  $R$  is an  $f$ -ring.*

**Proof.** One direction is trivial. Suppose now that  $X$  is a BCKf-algebra, and let for  $a, b, c \in R$  we have  $a \wedge b = 0$  and  $c \geq 0$ . Let  $x \leq a \cdot c$  and  $x \leq b$  and express  $a = \sum_i a_i$ ,  $b = \sum_j b_j$ , and  $c = \sum_k c_k$ , where  $a_i, b_j, c_k \in X$ .

Since  $x \leq \sum_{i,k} a_i \cdot c_k$ , the Riesz decomposition property, [Goo, Prop. 2.2] entails  $x = \sum_{i,k} c_{ik}$ , where  $c_{ik} \leq a_i \cdot c_k$ . Then  $c_{ik} \leq \sum_j b_j$  and applying again the Riesz decomposition property, we have  $c_{ik} = \sum_j c_{ijk}$  where  $c_{ijk} \leq b_j$ .

for any  $i$  and any  $k$ . Since  $a_i \wedge b_j = 0$ , we conclude that  $c_{ijk} \leq a_i \cdot c_k$  and  $c_{ijk} \leq b_j$ , so that  $c_{ijk} = 0$  for all  $i, j, k$ . Hence,  $c_{ik} = 0$  for all  $i, k$  which yields  $x = 0$ .

In a similar way we can prove that  $(c \cdot a) \wedge b = 0$ . ■

**COROLLARY 5.3.** *In any BCKf-algebra  $X$  we have for all  $a, b, c \in X$*

$$\begin{aligned} a \cdot (b \vee c) &= (a \cdot b) \vee (a \cdot c) \\ (b \vee c) \cdot a &= (b \cdot a) \vee (c \cdot a) \\ a \cdot (b \wedge c) &= (a \cdot b) \wedge (a \cdot c) \\ (b \wedge c) \cdot a &= (b \cdot a) \wedge (c \cdot a) \\ a \wedge b = 0 &\Rightarrow a \cdot b = 0. \end{aligned}$$

**Proof.** Use Theorem 5.2 and [Bir, Cor XVII.5.1, Lem XVII.5.1]. ■

Given a non-void subset  $A$  of  $X$ , we define

$$A^\perp := \{a \in X : a \wedge x = 0 \text{ for any } x \in A\}.$$

**THEOREM 5.4.** *Let  $(R; +, \cdot, 0, \leq)$  be an  $\ell$ -ring with  $\emptyset \neq R_0 \subseteq R^+$  such that  $a, b \in R_0$  entails  $a *_R b \in R_0$  and  $a \cdot b \in R_0$ . Let  $X = \mathcal{X}_R(R, R_0)$ . Then  $X$  is a BCKf-algebra if and only if, for every subset  $A$  of  $X$ , the set  $A^\perp$  is a  $\cdot$ -ideal of  $X$ .*

**Proof.** Let  $X$  be a BCKf-algebra. Let  $a * b \in A^\perp$ ,  $b \in A^\perp$  and  $x \in A$ . Then  $a \wedge b \in A^\perp$ . We show that  $a \in A^\perp$ . Let  $z \leq a$  and  $z \leq x$ . Then  $z \leq a = a \wedge b + a * b$ . The Riesz decomposition property entails that  $z = z_1 + z_2$ , where  $z_1 \leq a \wedge b$  and  $z_2 \leq a * b$ . Since we also have  $z_2 \leq x$ , we conclude  $z_2 = 0$ , and  $z_1 \leq a \wedge b \in A^\perp$ , consequently,  $z_1 = z_2 = 0 = z$  which yields  $a \in A^\perp$ .

Take now  $a \in A^\perp$ ,  $b \in X$ , and  $x \in A$ . Then  $a \wedge x = 0$ , which gives  $(a \cdot b) \wedge x = (b \cdot a) \wedge x = 0$ .

Conversely, assume that for any non-void  $A \subseteq X$ ,  $A^\perp$  is a  $\cdot$ -ideal of  $X$ . Let  $a \wedge b = 0$ ,  $c \in X$ . Then  $a \in \{b\}^\perp$ . Since  $\{b\}^\perp$  is a  $\cdot$ -ideal of  $X$ ,  $a \cdot a$ ,  $c \cdot a \in \{b\}^\perp$ , i.e.,  $(a \cdot c) \wedge b = (c \cdot a) \wedge b = 0$ . ■

**THEOREM 5.5.** *The class of BCKf-algebras is equationally definable.*

**Proof.** Any product BCK-algebra is equationally definable, Theorem 3.1. The implication (5.1) is equivalent to the identities

$$\begin{aligned} (c \cdot (x * (x \wedge y))) \wedge (y * (x \wedge y)) &= 0, \\ ((x * (x \wedge y)) \cdot c) \wedge (y * (x \wedge y)) &= 0. \end{aligned}$$

Hence the class of BCKf-algebras is equationally definable. ■

**COROLLARY 5.6.** *Any BCKf-algebra is a subdirect product of subdirectly irreducible BCKf-algebras.*

**Proof.** It follows from Theorem 5.5 and [Bir, Thm VIII.15]. ■

**PROPOSITION 5.7.** *Any subdirectly irreducible BCKf-algebra is linearly ordered.*

**Proof.** Let  $X$  be an irreducible BCKf-algebra and suppose that  $X$  is not linearly ordered. Then there exist two non-zero elements  $a, b \in X$  such that  $a \wedge b = 0$ . Put  $I = \{b\}^\perp$  and  $J = I^\perp$ . Then  $I \cap J = \{0\}$ , and  $a \in I$  and  $b \in J$ . By Theorem 5.4,  $I$  and  $J$  are both  $\sim$ -ideals of  $X$ . The irreducibility of  $X$  entails that  $I = \{0\}$  or  $J = \{0\}$  which is a contradiction. Therefore,  $X$  is linearly ordered. ■

**THEOREM 5.8.** *A product BCK-algebra is a BCKf-ring if and only if it is a subdirect product of linearly ordered product BCK-algebras.*

**Proof.** By Corollary 5.6 and Proposition 5.7, any BCKf-algebra is a subdirect product of linearly ordered product BCK-algebras.

Conversely, any linearly ordered product BCK-algebra is an BCKf-algebra. By Theorem 5.5, (5.1) holds in every subdirect product of linearly ordered BCKf-algebras, i.e.,  $X$  is a BCKf-algebra whenever  $X$  is a subdirect product of linearly ordered product BCK-algebras. ■

A weaker form of BCKf-algebras are *almost BCKf-algebras*, i.e., such product BCK-algebras  $X$  that  $a \wedge b = 0$ ,  $a, b \in X$ , imply  $a \cdot b = 0$ . Similarly, an associative  $\ell$ -ring  $R$  is said to be an *almost f-ring* if  $x \wedge y = 0$  implies  $x \cdot y = 0$ . We recall that not every almost f-ring has to be an f-ring [Bir, § XVII.6].

A non-zero element  $u$  of a BCK-algebra  $X$  is a *weak unit* if  $u \wedge a \neq 0$ . Similarly a non-zero positive element  $u$  of an  $\ell$ -algebra  $R$  is a weak unit if  $x \wedge u \neq 0$  for any positive element  $x \in R$ .

**THEOREM 5.9.** *Let  $(R; +, \cdot, 0, \leq)$  be an associative  $\ell$ -ring with  $\emptyset \neq R_0 \subseteq R^+$  such that  $a, b \in R_0$  entails  $a *_R b \in R_0$  and  $a \cdot b \in R_0$ . Let  $X = \mathcal{X}_R(R, R_0)$ . Then  $X$  is an associative almost BCKf-algebra if and only if  $R$  is an almost f-ring. If  $X$  has a unity  $e$ , then  $X$  is an almost BCKf-algebra if and only if  $e$  is a weak unit for  $R$ .*

**Proof.** One direction is evident. Suppose now that  $X$  is an almost BCKf-algebra, and let  $a \wedge b = 0$  for  $a, b \in R$ . Then  $a = \sum_i a_i$  and  $b = \sum_j b_j$ , where  $a_i, b_j \in X$ . Since  $a_i \wedge b_j = 0$  for all  $i, j$ , we have  $a \cdot b = \sum_{i,j} a_i \cdot b_j = 0$ .

Now let  $e$  be a unity for  $X$ . Then  $e$  is a unity for  $R$ , and  $e$  is a weak unit for  $X$  iff  $e$  is a weak unit for  $R$ . Applying [Bir, Thm XVII.12],  $R$  is an almost f-ring iff  $e$  is a weak unit for  $R$ . ■

**Acknowledgement.** The author is very indebted to the referee for his valuable suggestions.

### References

- [BeDi] L. P. Belluce and A. Di Nola, *Yosida type representation for perfect MV-algebras*, Math. Log. Quart. 42 (1996), 551–563.
- [BDG] L. P. Belluce, A. Di Nola and G. Georgescu, *Perfect MV-algebras and  $\ell$ -rings* (to appear).
- [Bir] G. Birkhoff, *Lattice Theory*, Amer. Math. Soc. Coll. Publ., Vol 25, Providence, Rhode Island, 1967.
- [Bos] B. Bosbach, *Concerning semiclans*, Arch. Math. 37 (1981), 316–324.
- [Cha] C. C. Chang, *Algebraic analysis of many valued logics*, Trans. Amer. Math. Soc. 88 (1958), 467–490.
- [Cor] W. H. Cornish, *Lattice ordered groups and BCK-algebras*, Math. Japonica 4 (1980), 471–476.
- [CST] W. H. Cornish, T. Sturm and T. Traczyk, *Embedding of commutative BCK-algebras into distributive lattice BCK-algebras*, Math. Japonica 29 (1984), 309–320.
- [DiDv] A. Di Nola and A. Dvurečenskij, *Product MV-algebras*, Multi-Valued Logic (to appear).
- [DiGe] A. Di Nola and G. Georgescu, *Ideals,  $\ell$ -rings and MV-algebras*, preprint.
- [DiLe] A. Di Nola and A. Lettieri, *Perfect MV-algebras are categorical equivalent to abelian  $\ell$ -groups*, Studia Logica 53 (1994), 417–432.
- [Dvu] A. Dvurečenskij, *Commutative BCK-algebras and lattice ordered groups with universal property*, India J. Math. (to appear).
- [Dvu 1] A. Dvurečenskij, *On categorical equivalences of commutative BCK-algebras*, Studia Logica 64 (2000), 1–16.
- [Dvu 2] A. Dvurečenskij, *Ideals of commutative BCK-algebras*, Ricerche Mat. (to appear).
- [DvGr] A. Dvurečenskij and M. G. Graziano, *Remarks on representations of minimal clans*, Tatra Mt. Math. Publ. 15 (1998), 31–53.
- [DvGr 1] A. Dvurečenskij and M. G. Graziano, *Commutative BCK-algebras and lattice ordered groups*, Math. Japonica 49 (1999), 159–174.
- [DvKi] A. Dvurečenskij and H. S. Kim, *On connections between BCK-algebras and different posets*, Studia Logica 60 (1998), 421–439.
- [DvRi] A. Dvurečenskij and B. Riečan, *Weakly divisible MV-algebras and product*, J. Math. Anal. Appl. 234 (1999), 202–222.
- [FRT] J. M. Font, A. J. Rodríguez and A. Torrens, *Wajsberg algebras*, Stochastica 8 (1984), 5–31.
- [Fuc] L. Fuchs, *Partially Ordered Algebraic Systems*, Pergamon Press, Oxford-London-New York-Paris, 1963.
- [Goo] K. R. Goodearl, *Partially Ordered Abelian Groups with Interpolation*, Math. Surveys and Monographs No. 20, Amer. Math. Soc., Providence, Rhode Island, 1986.
- [ImIs] Y. Imai and K. Iséki, *On axiom systems of propositional calculi*, Proc. Japan Acad. 42 (1966), 19–22.

- [MaL] S. Mac Lane, *Categories for the Working Mathematician*, Springer-Verlag, New York, Heidelberg, Berlin, 1971.
- [MeJu] J. Meng and Y. B. Jun, *BCK-Algebras*, Kyung Moon Sa Co., Seoul, 1994.
- [Pal] M. Pałasiński, *Some remarks on BCK-algebras*, Math. Seminar Notes Univ. Kobe 8 (1980), 137–144.
- [Rie] B. Riečan, *On the product MV-algebras*, Tatra Mt. Math. Publ. 16 (1999), 143–149.
- [RoTr] A. Romanowska and T. Traczyk, *On commutative BCK-algebras*, Math. Japonica 25 (1980), 567–583.

MATHEMATICAL INSTITUTE  
SLOVAK ACADEMY OF SCIENCES  
Štefánikova 49  
814 73 BRATISLAVA, SLOVAKIA  
E-mail: dvurecen@mat.savba.sk

*Received February 1st., 1999.*

