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ON THE NONDEGENERATE HARMONIC STRUCTURE
ON CERTAIN APPROXIMATIONS
OF THE SIERPINSKI CARPET

Abstract. In this paper we prove that certain approximation of Sierpinski carpet
carries exactly one nondegenerate harmonic structure. This structure, uniquely determined
by the invariance property, is symmetric with respect to the isometries of the carpet. Also,
the probabilistic interpretation of our results is given.

1. Introduction

In this paper we establish the existence and uniqueness of nondegener-
ate harmonic structure on certain approximations of the Sierpinski carpet
(definitions to follow). Uniqueness of the nondegenerate harmonic structure
which is invariant under natural symmetries of the fractal is true for general
simple nested fractals (SNF’s) (see [1], [14]). However, dropping the symme-
try assumption can result in the nonuniqueness. For example, on the Vicsek
set (the X-fractal) there is a whole one-parametric family of nondegener-
ate harmonic structures, but among these only one is symmetric (see [13]).
On other fractals (Sierpiniski gasket, Lindstrem snowflake) the symmetry
assumption is not necessary for uniqueness (Sabot [14] discusses this topic
in detail).

In this paper we determine that on certain approximations of the Sierpin-
ski carpet (which is not an SNF) the nondegenerate harmonic structure is
unique without any e priori symmetry assumptions: the invariance property
itself yields this uniqueness.

Nondegenerate harmonic structures on simple nested fractals give raise
to regular Dirichlet forms on them. On SNF’s this approach gives a con-
struction of the Laplace operator as a limit of finite-difference operators
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(see [5], [6], [9]). Fractals like the Sierpinski carpet lack the nesting prop-
erty and as a consequence such a construction would require more work.
There are however reasons to believe that the ‘reproduced’ Dirichlet forms
(corresponding to finite-difference operators) do converge, with approjpriate
normalizing constants, to a ‘nice’ symmetric form on the carpet (regujlarity
of the limiting Dirichlet form is a problem). See the remark just afteer the
proof of Theorem 1.

Existing construction of the Laplace operator on the carpet (or rrather
the Dirichlet form associated with it), due to Kusuoka and Zhou (see [111]) is
related to the Brownian motion on the carpet constructed and investijgated
by Barlow and Bass in a series of papers (see 2] for the construction aand [1]
for an extensive list of references). In particular the question of uniquueness
still remains open. The uniqueness of the nondegenerate harmonic : struc-
ture on approximation of the carpet can be understood as a hint irin this
direction.

The paper is organized as follows. We devote section 1 to settinng the
notation and collecting the necessary preliminary facts. The existemcice of :
nondegenerate harmonic structure is shown in section 2 (Theorem 1) aiand it
uniqueness in section 3 (Theorem 2). We conclude the paper by explalainin
the probabilistic meaning of the obtained results.

2. Preliminaries

As we want this paper to be self-contained we start with settiining tl
notation and some preliminary results. The facts collected here can bee fe four
in (1], [4], {8}

Suppose that ¥ = {11,...,s} is the hyperbolic iterated functiconnns sy
tem which defines the Sierpinski carpet (see figure 1):
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Figure 1: Transformations that define the Sierpinski carpet

These mappings are compositions of scaling with factor % and transla-
tion. W is the Hutchinson operator associated with these contractions, i.e.
the mapping acting on subsets of the plane as follows

def 8
R?D> A W(A)Z | wi(A)
i=1
By Hutchinson’s results we know that if we restrict our attention to compact
subsets of the plane, H(R?) and endow this space with the Hausdorff metric
PH, then
W (H(R2)1 PH) - (H(Rz)’PH)

is a contraction with contraction factor % Consequently W has a unique

fixed point C and this fixed point is asymptotically stable — for any compact
nonempty set A C R? we have

W™(A) "=5°C in the Hausdorff metric,

C is called he attractor of the system {1,...,¥s}.

In particular we may take A = V{0 = {z,, x5, 3,24}, where z; = (%, 0),
gz = (1,3), z3 = (%,1), T4 = (0,-21;) (midpoints of the edges of the unit
square). Then

v L @)=

in the Hausdorff metric.

Observe that points z1, z2, 23, 4 are fixed points of mappings ¥, ¥3, ¥s,
17 respectively and are the essential fixed points of the system ¥ in the sense
of Vindstrgm ([12]).
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A conductivity matriz on V(© is, by definition (see [1], {3]), a square
matrix 4 = (a;;)f j=1» Whose entries (called ‘conductances between vertices’)
satisfy the following conditions:

L. Vi#j a5 20;
2. Vi#j aij = aj;
4
3.Vi=1,2,3,4 ) a;=0.
=1

We equip V(% with natural graph structure associated with A :
EQ = {(z,z;) 1ai; >0, 4,5 =1,...,4, i # j}.
The matrix A is called irreducible if (V(®, E(o)) is connected as a graph.
The conductivity matrix A gives raise to its Dirichlet form £, ),

for {:VO-R Q0 Z aij - (f(z:) = f(27))?
4j=1

and to its Dirichlet operator A(O) :
2O f(z) % L Za,, — f@), i =1,2,3,4

They are related through:
(1) Vg VO R EQ(f,9) = ~(AD £, 9) 2y

With the iterated functions system ¥ we now ‘reproduce’ the form 820)

to the form 5‘&1), acting on functions ¢ : V(}) = R. This form is defined as
follows:

2) £V (g,9) % zs<°> (9.0 %, g0%5)

(the Dirichlet form associated wnth the ‘reproduced’ conductivity matrix
A® on VW), The Dirichlet operator associated with this form will be de-

noted by A(l)

By R we denote the correspondence 8(0) — 51(41). It is called the repro-
duction map.

Next, if a Dirichlet form £ (or a conductivity matrix A) on V(1) is given,
it can be mapped to a Dirichlet form £® on V(@ in a following way

for f: v LR,
(3) EOf, ) inf{E(g,9): 9: VIV = Ryglyo = f}.
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This infimum is attained on a unique function g, called the harmonic
extension of f with respect to the conductivity matrix A. This harmonic
extension satisfies

glver = f;
(4) for z € VO\VO, AWg(z)=0.
The operation £ — £©) is called the decimation map and will be denoted
> ’g.onsider now the composition DoR. It maps Dirichlet forms on C(V(?)
(= {f : V(O = R}) into Dirichlet forms on C(V(®).
DEFINITION 1. A conductivity matrix A is called a harmonic structure on

V© if it is an ‘eigenform’ of the mapping D o R, i.e. if there exists a real
number A > 0 such that

DoR)ED) = 2. Q.

If this conductivity matrix is nondegenerate, then the harmonic structure is
called nondegenerate, too.

We first prove that on V(%) such a structure exists (theorem 1). This the-
orem does not come as a surprise, as existence of nondegenerate harmonic
structures was established on several graphs (finitely ramified fractals for
example). Another question is if this structure is unique. The general an-
swer is no, see the example of Vicsek set in [13], worked out by Metz. On
the Vicsek set there exists a whole one-parametric family of nondegenerate
harmonic structures. However, among them only one is symmetric. On the
other hand, some other fractals (Sierpinski gasket, Lindstrgm snowflake)
admit only one nondegenerate harmonic structure altogether. It turns out
that the Sierpinski carpet falls into the latter class — there is only one
nondegenerate harmonic structure on it (up to a multiplicative constant of
course).

3. Existence of a nondegenerate harmonic structure

Harmonic structures related to symmetric random walks on symmetric
state-spaces must share their symmetry properties. In this section we show
that a nondegenerate symmetric harmonic structure on V(9 exists. From the
proof it will follow that it is unique up to a multiplicative constant. Moreover
we get the precise value of the eigenvalue A. We have the following:

THEOREM 1. There exists a unique, up to a multiplicative constant, sym-
metric nondegenerate harmonic structure on VO with eigenvalue
11 — /73

Ao = 5 ~ 0.4093...
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Proof. By ‘symmetric’ structures we mean those that remain invariant
under the symmetries of the set V(9. Therefore entries of a symmetric (with
respect to the symmetries of V) conductivity matrix satisfy:
a3 =ay=a2>0
and
a2 =a3 =azy =ay=0£20.
If 3 = 0 then this structure is degenerate: the graph (V(O),Eﬁ)) ) is not
connected.
Suppose then 8 > 0; without loss of generality we can assume § = 1.
Denote the resulting matrix by A, and its Dirichlet form by £(0),
For an arbitrary f : V(© — R, setting B; = f(zi), i=1,2,3,4, we have
E*O)(f, f) = (B2 — B1)? + (B3 — B2)? + (B4 — B3)* + (B1 — Bs)?
a(B3 — B1)? + a(By — By)*.
Consider now the reproduced form £%() defined for f : V() - R
according to (2) by

8
EXD(f, £) =3 €O (foyy, f o).

i=1
We investigate its decimation, DE®(),
Suppose f : V(1) — R is given. We will find
DE*MD(f, f) = inf{€>(1)(g,9) : g : V) - R,
g(.’l:,') = f(:l:,') = B,’,‘i = 1,2,3,4}.

Let g be the harmonic extension of f (the unique function realizing this
infimum).

According to notations from the figure 2, denoting a; = g(pi), by =
9(gi),ci = g(ri),di = g(si),ei = g(t;) we arrive at the following system
of equations that the values of g must satisfy:
(a1 —B1)+(a1—a)+ (a1 —di)+ (a1 —by) +
h=Bi))+ (b1 —c1)+ (b1 —e1)+ (b —a2) +a

ay —b)+ala —eq) =0,
by —a1) +a(by —d) =0,
(c1—a1)+ (c1 —b1) +afc; — B;) =0,
(d1 - 64) + (d; - a1) + a(d1 - b4) =0,
(e1 — b1) + (e1 — d2) + a(e1 — a2) = 0,

plus the next 15 equations obtained by cyclic substitution (1 — 2, 2 « 3,
3 — 4, 4 — 1). Eliminating e/s and d]s and using symmetry one reaches the

—~ TN o~
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Figure 2: Notation for the proof of Theorem 1

solution:

a1 = ety B + saraitari B2 + sersitiari Bs + sar ity Be
b = Fertai B+ serat T Be + Herontsarty Bo + sarmtsarih Be
a =§1(5a°72$-?5%,t%31+ s B2 +§(£§%)ij3+ 5257 B,

dy =§é%:_g§g:_ﬂ%531+ 325:111 B, '*'3'8'%%2_2%%533*' 3(%%‘534’
€1 =3‘§%Bl+ 3{%32 +§%¢%§%%i—?1733+ 3252111 By,
and so on, cyclically.

Careful computation gives:

(De>®) (£,5) =

= dotlias8)@Batdy) (g, _ B\ )2 4 (By - By)? + (By — By)? + (By — By)?}

+3—2[g%:—i%85‘17-%§)§3—_‘;—5§l {(32 - Bl)(B4 - BS) + (BS - BZ)(BI - B4)}
+8 a+l)(a+3)(11a+23 {(32 —Bl)(B3 —Bz)-i-(Ba —Bz)(B.; - Ba)

Nat NP Batil
+ (Bs — B3)(B1 — Bg) + (B1 — B)(B2 — B1)} -
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In view of the identity
(B2 — B1)(B3 — B2) + (B3 — B2)(Bs — B3) +
(Bs — B3)(By — By) + (By — Ba)(B2 — By) =
—3{(B2 — B1)* + (B3 — B2)? + (Ba — B3)* + (B1 — B4)?}
—(B2 = B1)(B4 — B3) — (B1 — B4)(B3 — Ba)
we have
(De=M) (£, f) =
= Sl {(B2 — B+ (By - B2) + (Bs — By)? + (B - By)?)

8(a+1)?
— syt {(B2 — B1)(Ba — Bs) + (Bs — By)(B1 ~ By)} .
But
(B: — B1)® + (B3 ~ B2)* + (By — B3)* + (B1 - By)* =

7= E4O(f, f) + £&{(B2 — B1)(Ba — Bs) + (B3 — B2)(B1 — Ba)},

SO
(De=) (4, 1) =
= 0162 (£, f) + a2{(B2 — B1)(B4 — Bs) + (B3 — B2)(B1 — By)},
where
_4-6(a+1)(2a+5) 2
M= 9@t 3)Barll) 2+a
and

2a 4 -6(a+1)(2a+5) 3-8(a+1)?
2+a 9a+3)Ba+1l) 9(a+3)(5a+11)|

We are looking for a such that the coefficient a; in the expression above
vanishes. Therefore & must solve the equation

az =

2a
— (2 5) = 1).
(a+2)( a+5)=(a+1)
This equation has only one positive solution,
_V13-1

=~ 0.2573...
6

Qg

For this choice of a = ag

(Do R)EXHO) = )y . £20:0)
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with Ay = 11;6@ ~ 0.4093 ... Ay, is the unique (up to a multiplicative con-
stant) symmetric nondegenerate harmonic structure which we were looking
for. O

REMARKS. In the case of simple nested fractals existence of a nondegenerate
harmonic structure on V(9 is sufficient for constructing a regular Dirichlet
form on the complete fractal — as the decimation invariance is honestly
inherited in subsequent steps. See [1], [5], [6], [9], [10]. It is clear that for in-
finitely ramified fractals like the Sierpiniski carpet there is no obvious reason
why the just established one-step decimation invariance should carry over
to next steps. In order to pass to the limit with n one should find proper
constants to normalize with and this is still an open question (for SNF’s the
n-th constant would be just Aj).

4. Uniqueness of the nondegenerate harmonic structure
Now we prove that the harmonic structure from the previous section is
unique not only among the symmetric ones, but altogether unique.

THEOREM 2. Suppose that A is a nondegenerate conductivity matriz on V(®)
such that for some A > 0

(5) (DoR)ED =20,
Then A = Ag and A = Aqy.

Proof. Suppose that A = (a,-j)f’ ;=1 is a conductivity matrix satisfying (5).
First, by [7] we know that the eigenvalue in (5) is uniquely determined
by geometric properties of V) so A = \g = “—‘6\@ (in fact all we will need
for uniqueness is that Ag # 1 and Ao # %)
Irreducibility of A is equivalent to (see [13]):

(Wcv®, eQaw, 1w)=0) = w = v
We have also (see [13]):

1. ker Aﬁ)) consists of constant functions only,
2. If 31, B2, B3, B4 are real numbers such that 8, + 82 + 83 + 34 = 0, then
there exists a unique function gg satisfying

(6) 9(z1) =0, (A @muo B, i=1,234

For brevity we write AQ A g = (61,2, B3, P4).
Let £, g, h be the unique functions on V(9 such that

(7) f@)=0, alfr=q, -1,0,0),
(8) g(zl) =0, Aff)g = (11 0, -1, 0)7
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(9) hz1) =0, ADr=(1,0,0, -1).

Suppose g; : V(1) — R is the harmonic extension of g with respect to
the conductivity matrix A, i.e. the unique function on V(1) such that

gilve =g,
(10) vz e v\ v® ADg(z) =0.

The function g, is realizing the infimum in the variational problem (3),
SO

EP(g1,91) = (Do R)ED (9, 9).

As A and AW are both irreducible, we have (lemma 2.5 of [13]) that

Ve: VO S R Y aD¢) =
zeV(0)
and
Vé: V) SR 3 aD¢z) =0
zeV()
(indeed:

= ,5510)(@ 1y@)

)} -0

In particular, applying these properties to gy o9 (i = 1,...,8) on V(®
and to g, on V), we have

|2,ev(o) Aff)d’(z)' = I(Aff)d% 1y@) @)

< (|9 0)- £ (v, 1yw)

and similarly for the other identity).

(11) Y AD(grow)(z) =0, i=1,...,8,
xEV(O)
(12) Y AQg() =o.
zeV (1)

The invariance property (5) written in terms of the Dirichlet operators can
be read as

13)  2ADg(z) = ADg1(zi) = AP (g1 0 Y1) (z), i = 1,2,3,4.
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Using (10), (11), (12) and (13) we arrive at the following:
A (g1 0%1) = (Ao, ¢4, 0, —¢5 = Xo),
AL (g1 042) = (0,0, ¢4, —cy),

AD (g1 093) = (—c5, 0, ¢, 0),

Aff)(gl o) = (—c¢y, 0, 0, cg),

Aff)(!h os) = (0, —¢cg, —Ao, g + Ao)
AE40)(91 o) = (cg + Ao, —Cg — Ao, 0, 0),
AP (g1 0%7) = (cg + X0, 0, ¢ = do, 0),
quO)(gl og) = (0, cg + Ao, —¢g — A0, 0),

where ¢, is some constant (we will later see that ¢, = —1/2)¢).
Property (6) applied to these equations gives:

grior =(ho+cg)-h—cyg- f+s1,
grovz =¢g-(h—g)+s2,
g1oY3 = —¢cg-g+s3,
g10%4 = —cg - h + 54,

gr1ovs =cg - f+Ao-g—(cg+A)-h+ss,
g1ov6 = (cg + Xo) - f + se,

gioYr = (cg+ Ao) - g+ 37,

g1oYg = (cg+ o) - (9= f) + ss.

Constants sy, ..., sg can be determined from compatibility conditions (such
as for example g; o ¥1(z2) = g1 0 ¥2(z4)). However, since their value will be
irrelevant for our purposes we skip this computation.

Next, we have

(14)

LEMMA 1. The following relations
(16) f(z3) = g(=z2), f(z4) = h(z2), h(z3) = g(z4)
hold true.

Proof. Consider the Dirichlet form 8510) and recall that f, g, h satisfy (7),
(8) and (9). Therefore

ED(f,9) = (-A0f,9) = 9(z2) = (-2 f,9) = f(=3),
and similarly for the other equalities. O
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For later use we note

ED(f,£) = f(x2), ED(S,9) = 9(=2),
(1) £(9,9) = g(z3), EL(f,h) = h(za),
EQ (k. k) = h(za), EL (. 9) = g(za).
As g; agrees with g on V(© and g(z;) = 0, we have the following com-
patibility conditions:
9(z2) = (910 P1(z2) — g1 0 ¥1(z1)) + (91 0 Y2(z3) — 91 0 Y2(z4))
+H@r1¥3(z2) — 91 0 ¥3(z1)),
(along the edge (z1,z3)),
9(z3) — 9(z2) = (91 0 Y3(z3) — g1 0 Y3(z2)) + (91 © Ya(z4) — 91 0 Ya(z1))
+(91 0 ¥5(z3) — 91 © ¥5(z2)),
(along the edge (x5, z3)),
9(z4) = (91 0 Y1(z4) — g1 0 Y1(21)) + (91 © ¥s(Z3) — 91 0 Ps(22))
+(g1 0 Y7(z4) — g1 0 P1(71)),
(along the edge (z;,z4)),
9(z3) — 9(z4) = (91 0 ¥7(z3) — 91 0 Y7(24)) + (91 0 ¥6(z2) — 91 0 Y6(z1))
+(g1 0 ¥5(z3) — g1 0 ¥5(z4))
(along the edge (x4, z3)).

Substituting (15) for the values of g; o ¥;, using (16) and rearranging we
obtain:

1+ cg).‘)(5'f'2) + 699(33) - 2c99($4) =
= —cgf(x2) + (Ao + cg)h(z2) — coh(z4),

(=14 Ao — 2¢9)g(z2) + (1 + ¢g — Ao)g(z3) + (Ao + ¢cg)g(za) =
= —cgf(Z2) + (Ao + cg)h(z2) — cgh(z4),

(2¢4 + 2X0)g(z2) — (cg + A0)g(z3) + (1 — cg — Ao)g(z4) =
(cg + X0) f(z2) — cgf(z4) + (Ao + cg)h(z4),

~cgg(z2) + (1 — cg — 2X0)9(z3) + (2cg + 320 — 1)g(z4) =
(cg + Ao)f(z2) — cgf(x4) + (Ao + cg)h(z4).

Comparing the first equation with the second and the third equation
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with the fourth we arrive at:
(2 + 3¢y — Ao)g(z2) — (1 — Ao)g(z3) — (3cg + Ao)g(z4) = 0,
(3¢g + 2X0)g(z2) — (1 — Ao)g(z3) + (2 ~ 3cg — 4X0)g(z4) = 0.
Since 2 — 3)\g # 0 and Ao # 1, these equations yield

(18) 9(z2) = g(z4) and g(z3) = 29(z2).
Recall now that Aff)g = (1, 0,-1,0), so
a12 9(z2) + a13 9(z3) + @14 9(z4) = 1,
—(a12 + ap3 + a24)g(z2) + a23 g(z3) + a2q 9(z4) = 0,
a24 9(22) + a34 9(z3) — (a14 + 624 + a3s)g(z4) = 0.
Substitute (18) in these equations, obtaining
(19) a12 = ag3 and aj4 = ayg.

Applying this reasoning to functions f, §, h defined by

(20) Fza)=0, AVF=1(0,1, -1,0),
(21) g(z2) =0, aDg=1(0,1,0, -1),
(22) h(z2) =0, ADR=(-1,1,0,0)

we conclude that
a3 = a34 and a12 = ay14.

The last relations together with (19) give
(23) a1z = a3 = a3y = ay.
As a corollary we obtain that (we know that the picture is symmetric)

1
24 = —=Ap.
( ) Cq 2 0

To complete the proof it remains to be shown that
a13 = azq.
Without loss of generality we may assume that
(25) a2=ax3=au=a4=1, a13=72>0,a2¢4=62>0.

Consider 8&1)( 91, 91)- Since the structure is assumed to be invariant, one
has

(26) ED(g1,91) = Ao -5,(40)(9,9)-
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Explicit formulae for g, are known (equations (15)), so in view of (24)
we obtain that

(27) £Q(g1,91) 25 (91 0 %i,91 0 %)

1=1
*° (2691, £) + 469(g,g) + 260 (h, b)

~36D(£,9) + 269 (£,h) - 3 (h,9)]

Solving the problems (7), (8), (9) with conductances given by (25) we
get:
2+6)2+7v) -1
41+8)(1+7)

f(z3) = h(zs) = ——

f(z2) = h(z4) =

TS
(28) flas) = haw) = gt 2L,
o(22) = g(za) = @ o
g(z3) = 1+7

Comparing (26) and (27), in view of (17) we obtain that
A3(2f (z2) +29(z3) + f(z4) = 39(za)] = Dog(z3).

Using (28) and rearranging we obtain that
o [l_}_ 22+68)(2+17) - 1+6(2+7)] _
°" 12 4(1+ 6) -
Similar reasoning performed for f, g, h (defined by (20), (21), (22)) leads
to identical equation, but with § and < interchanged:
1 2(24+68)(2+79) -~ 1+'y(2+5)]
o =+ =1.
0 [2 41 +7)

(29)

(30)

Therefore
22+6)24+7)-1+7(2+68) 22+6)(2+7)-1+6(2+1)
(1+1) - (1+86) ’

and further
(6 —7)[5+4(y +6) + 378 = 0.
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Since v and é are not allowed to be negative, we end up with
v =24
and the proof of Theorem 2 is completed. O

5. The probabilistic interpretation

Let (2, M, P) be a given probability space. Suppose that (X,?°'(0))n20 is

the random walk on V(9 associated with the irreducible conductivity matrix
Aqy, i.e. the discrete time Markov chain on V() with transition probabilities:

a;j . oy
Pij=T—— =1’21314a 1 y
il S J #7
1

def
P12 =DP14=P21 = P23 =P32 =P34 =P4,3 = P41 = P2 = 3555
d
PL3=Paa=pa1=Pa2 = pa= T

SO

This Markov chain is then ‘reproduced’ to a Markov chain (X,?°'(l)),,20
on V1), Its transition probabilities basically coincide with those on the
O-level, with ‘choice of small square we are about to enter’ added. Rigorously
speaking, its transition probabilities are as follows. Let z € V(1. Then
z = v;(zx) for some i € {1,...8} and = € V(@ If there is only one such 1,
then for y € V(1) we have

) _ J Py for y = i(zk),

i 0 else.

If there are two distinct indices 7, ¢, and two different zx,, zx, such that
T = ¥;, (zk,) = ¥i; (zk,), then
3Pk, for y = vy, (),
(1) —

Pry = \ 3Pk, for y = vy, (z1),
0 else.

REMARK. The construction above can be carried out for an arbitrary irre-
ducible conductivity matrix A.

We will now be keeping track of successive hits of V(%) by the random
walk (X3°’(1))n20. Let o = inf{n > 0 : X320 ¢ V(© \ {Xg"’(l)}}. Then
{Tw} given by

To=0
Tw1=Tp+0r,00, n=0,1,2,...

is the sequence of successive hits o f V(0 by the random walk (X,?°'(1)),,20

Set
fij=Pa, [X20W =15], i,j=1,2,3,4
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The invariance of the Dirichlet form associated with A,, translated in terms

of the transition probabilities means that p; ; = p;;, so that the distribu-

tions of the Markov chains (Xff°.‘(°), Jn>0 and (X;:‘(l))nzo are identical. It

means that the random walk (X,T°'(O)),,ZO is decimation invariant. Our re-
sult (Theorem 2) says that it is the unique decimation invariant random
walk on V(0.
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