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ON THE NONDEGENERATE HARMONIC STRUCTURE 
ON CERTAIN APPROXIMATIONS 

OF THE SIERPINSKI CARPET 

Abstrac t . In this paper we prove that certain approximation of Sierpinski carpet 
carries exactly one nondegenerate harmonic structure. This structure, uniquely determined 
by the invariance property, is symmetric with respect to the isometries of the carpet. Also, 
the probabilistic interpretation of our results is given. 

1. Introduction 
In this paper we establish the existence and uniqueness of nondegener-

ate harmonic structure on certain approximations of the Sierpinski carpet 
(definitions to follow). Uniqueness of the nondegenerate harmonic structure 
which is invariant under natural symmetries of the fractal is true for general 
simple nested fractals (SNF's) (see [1], [14]). However, dropping the symme-
try assumption can result in the nonuniqueness. For example, on the Vicsek 
set (the X-fractal) there is a whole one-parametric family of nondegener-
ate harmonic structures, but among these only one is symmetric (see [13]). 
On other fractals (Sierpinski gasket, Lindstrom snowflake) the symmetry 
assumption is not necessary for uniqueness (Sabot [14] discusses this topic 
in detail). 

In this paper we determine that on certain approximations of the Sierpiii-
ski carpet (which is not an SNF) the nondegenerate harmonic structure is 
unique without any a priori symmetry assumptions: the invariance property 
itself yields this uniqueness. 

Nondegenerate harmonic structures on simple nested fractals give raise 
to regular Dirichlet forms on them. On SNF's this approach gives a con-
struction of the Laplace operator as a limit of finite-difference operators 
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(see [5], [6], [9]). Fractals like the Sierpinski carpet lack the nesting prop-
erty and as a consequence such a construction would require more work. 
There are however reasons to believe that the 'reproduced' Dirichlet forms 
(corresponding to finite-difference operators) do converge, with appropriate 
normalizing constants, to a 'nice' symmetric form on the carpet (regularity 
of the limiting Dirichlet form is a problem). See the remark just aftter the 
proof of Theorem 1. 

Existing construction of the Laplace operator on the carpet (or rrather 
the Dirichlet form associated with it), due to Kusuoka and Zhou (see [111]) is 
related to the Brownian motion on the carpet constructed and investigated 
by Barlow and Bass in a series of papers (see [2] for the construction aand [1] 
for an extensive list of references). In particular the question of uniquueness 
still remains open. The uniqueness of the nondegenerate harmonic i struc-
ture on approximation of the carpet can be understood as a hint iiin this 
direction. 

The paper is organized as follows. We devote section 1 to setfcinng th< 
notation and collecting the necessary preliminary facts. The existemc<ce of i 
nondegenerate harmonic structure is shown in section 2 (Theorem 1) aiand it 
uniqueness in section 3 (Theorem 2). We conclude the paper by expjlalainin 
the probabilistic meaning of the obtained results. 

2. Preliminaries 
As we want this paper to be self-contained we start with settiining tl 

notation and some preliminary results. The facts collected here can b«e ie four 
in [1], [4], [8], 

Suppose that Φ = {V>i, · · · , Vte} is the hyperbolic iterated functioonons sy 
tem which defines the Sierpiiiski carpet (see figure 1): 

Vi(x) = i ( x - ( i 0 ) ) + ( i , 0 ) ; 

lfe(x) = £ ( x - ( l , 0 ) ) + (l, 0); 

V3(x) = | ( x - ( U ) ) + ( M ) ; 

= 1)) + (1 ,1) ; 

ife(«) = j ( * - ( } , i ) ) + ( i , i ) ; 

Ψβ(χ) = l ( x - (0, 1)) + (0, 1); 

ips(x) = §x. 
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Figure 1: Transformations that define the Sierpinski carpet 

These mappings are compositions of scaling with factor ^ and transla-
tion. W is the Hutchinson operator associated with these contractions, i.e. 
the mapping acting on subsets of the plane as follows 

8 
R 2 z> A ~ W{A) =f (J M A ) . 

i=l 

By Hutchinson's results we know that if we restrict our attention to compact 
subsets of the plane, W(R2) and endow this space with the HausdorfF metric 
PH, then 

W :(H(R2),PH)-+(n(R2),pH) 

is a contraction with contraction factor Consequently W has a unique 
fixed point C and this fixed point is asymptotically stable — for any compact 
nonempty set A C R 2 we have 

Wn(.4) C in the Hausdorff metric, 

C is called he attractor of the system {φι , . . . ,ψβ}· 
In particular we may take A = V ^ = {x\,x2>xz,xi}, where x\ - (^,0), 

®2 = (1,5), X3 = (5,1), X4 = (0,5) (midpoints of the edges of the unit 
square). Then 

y(n) <kf «j^op ^ 

in the Hausdorff metric. 
Observe that points xi ,x2,x3, X4 are fixed points of mappings ψι,ψζ,ψζ, 

V>7 respectively and are the essential fixed points of the system Φ in the sense 
of T,indstr0m ([12]). 



864 Κ. P i e t r u s k a - P a l u b a 

A conductivity matrix on V ^ is, by definition (see [1], [3]), a square 
matrix A — (aij)fj__lt whose entries (called 'conductances between vertices') 
satisfy the following conditions: 

1. Vt φ j dij > 0; 
2. Vz φ j Oij = a.ji\ 

4 

3. V i - 1 , 2 , 3 , 4 £ > , · = (). 

j= ι 

We equip V^0^ with natural graph structure associated with A : 
e{a = {(χί'χί) '· > = 1, ·· · ,4, ϊφ j}. 

The matrix A is called irreducible if E^) is connected as a graph. 

The conductivity matrix A gives reuse to its Dirichlet form : 

for / : R *$»( / , f ) & I Σ ay · ( / (* , ) - f(x,)? 

and to its Dirichlet operator Δ ^ : 

= \ · ( / t e ) - f M ) , i = 1-2,3,4. 
j=ι 

They are related through: 

(1) V / . s : VW - R £ ^ ( f , g ) = -(A^f,g)L2{vi0)). 

With the iterated functions system Φ we now 'reproduce' the form £ ^ 
to the form acting on functions g : V^1) —» R. This form is defined as 
follows: 

(2) ε { 2 ) ( 9 , 9 ) = Ι Σ ε Α ) ( 9 ο φ ί , 9 
i=l 

(the Dirichlet form associated with the 'reproduced' conductivity matrix 
on 

VW). The Dirichlet operator associated with this form will be de-
noted by 

By % we denote the correspondence • . It is called the repro-
duction map. 

Next, if a Dirichlet form £ (or a conductivity matrix ^4) on V^1) is given, 
it can be mapped to a Dirichlet form £ o n V^0^ in a following way 

for / : V<°> R, 

(3) &°HfJ) ^ in f {€ (g ,g ) : 9 = V™ - R,g\vW = / } . 
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This infimum is attained on a unique function g, called the harmonic 
extension of / with respect to the conductivity matrix A. This harmonic 
extension satisfies 

fflyW = / ; 

(4) for ι € V(1) \ V(0), Δ ^ φ ) = 0. 

The operation Z t—• £(0) is called the decimation map and will be denoted 
by V. 

Consider now the composition Vο71. It maps Dirichlet forms on 
(= {/ : R}) into Dirichlet forms on C(V<°>). 
DEFINITION 1. A conductivity matrix A is called a harmonic structure on 

if it is an 'eigenform' of the mapping V ο TZ, i.e. if there exists a real 
number λ > 0 such that 

If this conductivity matrix is nondegenerate, then the harmonic structure is 
called nondegenerate, too. 

We first prove that on 
such a structure exists (theorem 1). This the-

orem does not come as a surprise, as existence of nondegenerate harmonic 
structures was established on several graphs (finitely ramified fractals for 
example). Another question is if this structure is unique. The general an-
swer is no, see the example of Vicsek set in [13], worked out by Metz. On 
the Vicsek set there exists a whole one-parametric family of nondegenerate 
harmonic structures. However, among them only one is symmetric. On the 
other hand, some other fractals (Sierpmski gasket, Lindstr0m snowflake) 
admit only one nondegenerate harmonic structure altogether. It turns out 
that the Sierp^ki carpet falls into the latter class — there is only one 
nondegenerate harmonic structure on it (up to a multiplicative constant of 
course). 
3. Existence of a nondegenerate harmonic structure 

Harmonic structures related to symmetric random walks on symmetric 
state-spaces must share their symmetry properties. In this section we show 
that a nondegenerate symmetric harmonic structure on V^0' exists. From the 
proof it will follow that it is unique up to a multiplicative constant. Moreover 
we get the precise value of the eigenvalue A. We have the following: 
THEOREM 1. There exists a unique, up to a multiplicative constant, sym-
metric nondegenerate harmonic structure on with eigenvalue 

A0 = 1 1 « 0.4093... 
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Proof . By 'symmetric' structures we mean those that remain invariant 
under the symmetries of the set V^0'. Therefore entries of a symmetric (with 
respect to the symmetries of Vo) conductivity matrix satisfy: 

a13 = °24 = a > 0 
and 

αΐ2 - Ü23 = aj4 = αχ4 = β > 0. 

If β = 0 then this structure is degenerate: the graph .E^) is not 
connected. 

Suppose then β > 0; without loss of generality we can assume β = 1. 
Denote the resulting matrix by Aa and its Dirichlet form by 

For an arbitrary / : R, setting Bi = /(x t), i = 1, 2,3,4, we have 

t a ' { 0 ) ( f , / ) = (B2 - ßi)2 + (B3 - B2)2 + (B4 - B3)2 + (Bi - B4)2 

a(B3-B1)2 + a(B4-B2)2. 

Consider now the reproduced form £ Q · ^ , defined for / : V'1 ' —> R 
according to (2) by 

i=l 

We investigate its decimation, 
Suppose / : V ^ —» R is given. We will find 

V € a ' M ( f , f ) = wi{e*>W(g,g) : g : V™ - R , 

ff(xi) = f(xi) = Bi,i = 1,2,3,4}. 

Let g be the harmonic extension of / (the unique function realizing this 
infimum). 

According to notations from the figure 2, denoting a* = g{pi),bt = 
jC» = g(ri),di = g(si),ei = g(tj) we arrive at the following system 

of equations that the values of g must satisfy: 
(αχ - B\) + (αϊ - ci) + (ax - d\) + (ai - 64) + a(ai - 61) + a(ai - e4) = 0, 
(61 - Bi) + (61 - ci) + (61 - βι) + (61 - a2) + a{bi - aj) + a{b 1 - d2) = 0, 

(ci - ai) + (ci - 61) + a(ci - Bi) = 0, 
(di - e4) + (di - ai) + a(d\ - 64) = 0, 
(ei - 61) + (ei - d2) + a(e 1 - a2) = 0, 

plus the next 15 equations obtained by cyclic substitution (1 <— 2, 2 «— 3, 
3 <— 4, 4 <— 1). Eliminating ê s and d'{s and using symmetry one reaches the 
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Figure 2: Notation for the proof of Theorem 1 

solution: 

_ _ 7o a+42a+59 ρ , (3a+7)(a+l) D , 2(a+l)(a+2) D , 3a a+20a+29 ρ 
0 l - 3 ( a + 3 ) ( 5 a + l l ) + 3<α+3)($α+1ΐ)ft + 3(a+3)(5a+ll) ft + 3(α+3)(5α+1ΐ) ft' 
l _ 7α2+42α+59 ρ , 3β2+20α+29 ρ , 2(α+1)(α+2) ρ , (3α+7)(α+1) ρ 
0 1 - 3(α+3)(5α+1ΐ) ft + 3(α+3)(5α+1ΐ) + 3(α+3)(5α+1ΐ)f t + 3(β+3)(δβ+1ΐ) 

C l = Z(a+3)tsZ+U) + 5S+TTß2 + 3 (a+3H5a+ll ) B 3 + 3 5 + Ü Ä * ' 
. _ (a+3)(3a+7) ρ 2(a+l) ρ , (ο+1)(3ο+5) ρ 7α+13 ρ 

"1 3(α+3;(5α+1ΐ) 1 3 (5α+1ΐ )^2 + 3 ( α + 3 $ ( 5 α + 1 ΐ ) + 3 ( 5 β + 1 ΐ ) ^ ' 

e l 3 ( 5 α + Π ) β 2 + 3 i a i 3 i i ^ + l ! ) - g 3 + 3 * £ ϋ ί ) β 4 · 

and so on, cyclically. 

Careful computation gives: 

(νεα·ν) ( / , / ) = 

= 4 ( [ 3 ( a ) ) 3 ) | ^ n ) 3 ) { ( * " ft)2 + ( f t - ft)2 + ( f t - ft)2 + ( f t " ft)2} 

+32ιΚ^431('ιΓ)5) m - *o(ft - ft) + (ft - ftXft - ft)} 
+ 8 (Κ3?ο )1^%α+Τΐ)3 ) { ( ^ 2 - ft)(ft " ft) + (ft - ftXft - ft) 

+ (ft - ftXft - ft) + (ft - ftXft - ft)}. 
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In view of the identity 

(B2 - B0(B3 - B2) + (B3 - B2)(B4 - Ba) + 

(B4 - BsXBi - B4) + (B! - B4)(B2 - Bi) = 

{(B2 - βχ)
2 + (B3 - B2)

2 + (B4 - B3)
2 + (B1 - B4)

2} 

~{B2 - B0(B4 - B3) - (Bl - B4)(B3 - B2) 

we have 

(/,/) = 
= ^Kil^ff {(*» - Β,Ϋ + (Β, - £2)

2 + (Β< - Β3γ + - β4)
2} 

-9(α + ΐΓ(5αΐ ι ι ) - Β,){Β4 - Β3) + (Β3 - Β2)(Βι - Β4)} . 

But 

(Β2 - Βλ)
2 + (Β3 - Β2)

2 + (Β4 - Β3)
2 + (Ä! - ß4)

2 = 

/ ) + - β , ) { Β 4 - Β3) + (ß3 - ß 2 ) (ß i - £ 4 » , 
so 

(2>£β·(1)) ( / , / ) = 

= αι^Ω·(°)(/, / ) + α2{(Β2 - ß ! ) (ß 4 - Β3) + (Β3 - B2){Bi - Β4)}, 

where 
_ 4 · 6(α + 1)(2α + 5) 2 

0 1 ~ 9(α + 3)(5α + 11) ' 2 + α 
and 

2α 4 · 6(α + 1)(2α + 5) 3 · 8(α + I)2 

α2 = 2 + α 9(α + 3)(5α +11) 9(α + 3)(5α + 11) 

We are looking for α such that the coefficient a2 in the expression above 
vanishes. Therefore α must solve the equation 

2a 
_ ( * , + . , _ « , + 1). 

This equation has only one positive solution, 

y/73- 7 
α 0 = — ~ 0.2573 . . . 

6 
For this choice of a = ao 

(Po κ)εαο'{0) = χ0·ε
αα'{0) 
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with λ0 = « 0 .4093. . . Aa0 is the unique (up to a multiplicative con-
stant) symmetric nondegenerate harmonic structure which we were looking 
for. • 

REMARKS. In the case of simple nested fractals existence of a nondegenerate 
harmonic structure on V 0̂̂  is sufficient for constructing a regular Dirichlet 
form on the complete fractal — as the decimation invariance is honestly 
inherited in subsequent steps. See [1], [5], [6], [9], [10]. It is clear that for in-
finitely ramified fractals like the Sierpinski carpet there is no obvious reason 
why the just established one-step decimation invariance should carry over 
to next steps. In order to pass to the limit with η one should find proper 
constants to normalize with and this is still an open question (for SNF's the 
n-th constant would be just Aq). 

4. Uniqueness of the nondegenerate harmonic structure 
Now we prove that the harmonic structure from the previous section is 

unique not only among the symmetric ones, but altogether unique. 
THEOREM 2. Suppose that A is a nondegenerate conductivity matrix on 
such that for some λ > 0 

(5) ( Γ ο n ) e f = \ - s f . 

Then X — XQ and A — Aao. 

Proof . Suppose that A = ( a , j ) ^ = 1 is a conductivity matrix satisfying (5). 
First, by [7] we know that the eigenvalue in (5) is uniquely determined 

by geometric properties of , so λ = λ0 = (in fact all we will need 
for uniqueness is that λο φ 1 and λο ψ §). 

Irreducibility of A is equivalent to (see [13]): 

(W C €{°\lw, l w ) = 0)=*W = 

We have also (see [13]): 

1. ker Δ ^ consists of constant functions only, 
2. If ßi,ß2,ß3,ß\ are real numbers such that ßi + ß2 + ßz + ßi — 0, then 

there exists a unique function gp satisfying 

(6) g(Xl) = 0, ( Δ ^ Ν χ . ) = ßi, i = 1, 2, 3,4. 

For brevity we write A ^ g = ( Α , & , & , Α ι ) . 
Let / , g, h be the unique functions on such that 

(7) f(xi) = 0, Δ ^ / = (1, - 1 , 0, 0), 

(8) S(*I) = 0, Δ ^ = (1, 0 , - 1 , 0 ) , 
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(9) Μ*ι) = 0, Δ ^ Λ = (1, 0, 0, -1 ) . 

Suppose —• R is the harmonic extension of g with respect to 
the conductivity matrix A, i.e. the unique function on V^1' such that 

Si|y(°> = 

(10) V i € F ( 1 ) \ F ( 0 ) δ!1
1 )

5(ι) = 0. 

The function gi is realizing the infimum in the variational problem (3), 
so 

Sijt)(gi,gi) = (Vo'R.)e<£)(g,g). 

As A and are both irreducible, we have (lemma 2.5 of [13]) that 

and 

R £ A{°U(x) = 0 
xevw 

V<t>: V w -» R £ Δ{αΦ{*) = 0 
iev<»> 

(indeed: 

Σ , 6 ν ο = |<A5V,1V(o)>W(O),| = W | 

< ( | 4 0 ) ( ^ ^ ) - 4 0 ) ( i v ( o , , i v ( o , ) | ) " = o 

and similarly for the other identity). 
In particular, applying these properties to gi ο ί/;, (i = 1 , . . . , 8) on V ^ 

and to <7i on V'1), we have 

(11) 5 2 ο ipi)(x) = 0, i = 1 , . . . , 8, 
iev(°) 

(12) 5 2 Δ^<7ι(Χ) = 0. 
x€VW 

The invariance property (5) written in terms of the Dirichlet operators can 
be read as 

(13) λοAfg ix i ) = A ^ g i i x i ) = Δ ^ ^ ι ο ^ - i ) ( x i ) , t = 1,2,3,4. 
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Using (10), (11), (12) and (13) we arrive at the following: 

(14) 

Δ^(<7Ι οψι) = 

δ ! Ι 0 ) ( Λ Ο ^ ) = 

Δ ^ ( 5 i oV3) = 

Δ ί } ( J I O W = 

Δ^(<?ι ο ψ5) = 

Δ ! ί ) ( 5 ι ο ^ ) = 

Δ*? ( j i o ^ ) = 

Δ Ϊ ) ( ? ι ο ν 8 ) = 

(λο, Cg, Ο, -c9 - λο), 

(Ο, Ο, Cg, -Cg), 

(~Cg, Ο, Cg, 0), 

(~Cg, Ο, 0, Cg), 

(Ο, — Cg, —λο ,Cg + λο) 

(Cg + λθ, — Cg — λθ, Ο, 0), 

(Cg + λθ, Ο, — Cg — λθ, 0), 

(Ο, Cg + λθ, — Cg — λθ, 0), 

11 later see that cg = — 1/2λο). 

(15) 

where cg is some constant (we wi 
Property (6) applied to these equations gives: 

9i ° Φι = (λ0 + cg) • h - cg • f + sx, 

gioxl>2 = Cg· ( h - g ) + s2, 

91 ° V»3 = -cg • g + s3, 

9l°i>4 = -Cg · h + S4, 

91 ° V»5 = Cg • f + λο · 9 - {Cg + λο) · h + s5, 

91 ° Ψ6 = (Cg + λο) · / + S6, 

91 ο V>7 = (Cg + λο) · 9 + s7, 

91°Φ& = (Cg + λο) ( g - f ) + s». 

Constants S i , . . . , ss can be determined from compatibility conditions (such 
as for example 51 ο φ\(ΐ2) = 9ι ο ^2(^4))· However, since their value will be 
irrelevant for our purposes we skip this computation. 

Next, we have 

LEMMA 1. The following relations 

(16) / (x 3) = ff(x2), / (x 4 ) = h(x2), h(x3) = g(xi) 
hold true. 

Proof . Consider the Dirichlet form and recall that f,g,h satisfy (7), 
(8) and (9). Therefore 

4 0 ) ( / -S ) = ( - Δ Γ / . 5 ) = 9{X2) = ( - Δ ^ / , 5 ) = / (x 3), 
and similarly for the other equalities. • 

(0). 
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For later use we note 

0̂)(/,/) = f { x i ) , s $ H f , g ) = g{x7), 

(17) ε ^ ( 9 , 9 ) = g(x3), 4 0 ) ( / , h ) = h(x2), 

£{°\h,h) = h(x4), £^(h,g) = g(x4). 

As gi agrees with g on V ^ and g(x\) = 0, we have the following com-
patibility conditions: 

2) = (51 0 ^1(22) - 9 1 ° Φι(χι)) + (3i ° ^2(23) ~ 9ι° 1MX4)) 
+(51^3(12) ~ 9ι° ·φ3{χι)), 

(along the edge (xi,x2)), 

9(x3) ~ 5(2:2) = (91 ο ψ3(χ3) ~ 9i° ^3(12)) + (31 ο ^4(14) - 9i 0 Φα{χl)) 

+(5i 0 ^5(13) ~ 9i° ^5(12)), 

(along the edge (x2, £3)), 

5(14) = (31 ο -φι(χ4) - ο ^ i ( x i ) ) + (31 ο ψ6{χ3) - 3ι ο ψ%{χ2)) 

+(9ι 0 ·ΦΊ(Χ4) - 3 ι ° ΦΙ{χι)), 

(along the edge (21 , 14)) , 

9(x3) - 9(24) = (91 0 ^7(13) - 31 0 ^7(14)) + (5i 0 Vfcfo) - 3i ο ι)) 
+(31 0 ^5(13) - 3ι 0 faM) 

(along the edge (14, X3)). 

Substituting (15) for the values of 31 0 ^ , using (16) and rearranging we 
obtain: 

(1 + cg)g(x2) + cgg(x3) - 2cgg{xA) = 

= ~Cgf(X2) + (λ0 + Cg)h(X2) ~ Cgk{X4), 

( - 1 + λ 0 - 2 c g ) g ( x 2 ) + (1 + c s - Xo)g(x3) + (λο + cg)g( 1 4 ) = 

= -Cgf{X2) + ( λ 0 + Cg)h{X2) - Cgh(x4), 

(2Cg + 2A0)3(Z2) - (Cg + Xo)g{x3) + (1 - C g - Xo)g(xi) = 

(cg -I- A0)/(X2) - Cgf{x4) + (λο + cs)/i(x4), 

-cgg(x2) + (1 - c g - 2X0)g(x3) + (2c g + 3λ0 - 1)3(24) = 

(cg + Xo)f{x2) - c a / ( x 4 ) + (λ0 + cg)h(x4). 

Comparing the first equation with the second and the third equation 



Nondegencrate harmonic structure 873 

with the fourth we arrive at: 

(2 + 3cg - λ 0 )3(ΐ2) - (1 - λ 0 )ρ(ι 3 ) - (3cg + X0)g(x4) = 0, 

( 3 c g + 2Xo)g(x2) - (1 - Xo)g(x3) + (2 - 3 c g - 4 A 0 ) g ( x 4 ) = 0 . 

Since 2 — 3λο φ 0 and λο φ 1, these equations yield 

(18) g(x2) = g(x4) and 5(13) = 25(2:2)· 

Recall now that A^g = (1, 0, - 1 , 0 ) , so 

012 5(2:2) + 013 g(x 3) + Ol4 5(^4) = 1, 

- (ai2 + a 2 3 + 024)5(12) + 0235(2:3) + 0245(^4) = 0, 

o24 g(x 2) + 034 g(x 3) - (014 + 024 + 034)0(2:4) = 0. 

Substitute (18) in these equations, obtaining 

(19) ai2 = 023 and 014 = 034. 

Applying this reasoning to functions f,g,h defined by 

(20) / ( x 2 ) = 0, Δ ^ ) / = ( 0 , 1 , - 1 , 0 ) , 

(21) 5(2:2) = 0, Δ!10)5 = ( 0 , 1 , 0 , - 1 ) , 

(22) Ä(x2) = 0, Δ ^ Λ = ( - 1 , 1, 0, 0) 

we conclude that 

023 = 034 and oi2 = 014. 

The last relations together with (19) give 
(23) ai2 = 023 = 034 = αχ4· 

As a corollary we obtain that (we know that the picture is symmetric) 

(24) Cg = - i V 

To complete the proof it remains to be shown that 

013 = o24-
Without loss of generality we may assume that 

(25) Oi2 = 023 = 0 3 4 = Ο14 = 1, Ο13 = 7 > 0, o24 = <5 > 0. 

Consider £^(51 ,51) . Since the structure is assumed to be invariant, one 
has 
(26) 4 % ι > 3 ι ) = λ 0 · 4 % > 3 ) · 



874 Κ. Pietruska-Paluba 

Explicit formulae for g\ are known (equations (15)), so in view of (24) 
we obtain that 

8 
(27) 

t=l 

λ2 
= Υ [ 2 s f { f , / ) + 4 5 ) + 2 h ) 

- 3 £ f { f , g ) + 2 S f { f , h ) - 3€^\h,g)} . 

Solving the problems (7), (8), (9) with conductances given by (25) we 
get: 

f(x2) = /l(l4) = 

(28) 

/ ( * 3 ) = h(x3) = 

f(x 4) = h(x2) = 

(2 + g)(2 + 7 ) - l 
4 ( l + i ) ( l + 7) ' 

1 

2(1 + 7 ) ' 

1 + 6(2 + 7 ) 

g(x 2) = g(x 4) = 

4(1 + 6)(1 + 7 ) ' 

1 

2(1 + 7 ) ' 

9(x3) = 
1 

1 + 7 
Comparing (26) and (27), in view of (17) we obtain that 

Ag(2/(x2) + 25(13) + f(x4) - 3g( i 4 ) ] = λ 0 g(x 3 ) · 

Using (28) and rearranging we obtain that 

(29) λο 
1 2(2 + 6)(2 + 7) - 1 + 6(2 + 7) 
2 4(1 + 6) 

= 1. 

Similar reasoning performed for f,g, h (defined by (20), (21), (22)) leads 
to identical equation, but with 6 and 7 interchanged: 

(30) · 

1 2(2 + 6)(2 + 7) - 1 + 7(2 + 6) 
2 + 4(1 + 7) 

= 1. 

Therefore 
2(2 + 6)(2 + 7) - 1 + 7(2 + δ) 2(2 + 6){2 + 7) - 1 + <5(2 + 7) 

and further 
(1 + 7) (1 + i ) 

( 6 - 7 ) [ 5 + 4 ( 7 + 6) + 37i] = 0. 
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Since 7 and δ are not allowed to be negative, we end up with 
7 = δ. 

and the proof of Theorem 2 is completed. • 

5. The probabilistic interpretation 
Let (Ω, Μ , P) be a given probability space. Suppose that (Χί0''°')η>ο is 

the random walk on V^0^ associated with the irreducible conductivity matrix 
AQO, i.e. the discrete time Markov chain on V<°> with transition probabilities: 

Pij = ^r^·—, h3 = 1,2,3,4, i φ], 
l^kjii Oik so 

def χ 
Pi,2 = Pi,4 = P2,l = P2,3 = P3,2 = P3,4 = P4,3 = P4,l = P2 = 2+^ ' 

def on Pi,3 = P2,4 = P3,l = Pi,2 = P3 = 2+5^· 

This Markov chain is then 'reproduced' to a Markov chain (Xn°'^)n>o 
on V^1). Its transition probabilities basically coincide with those on the 
0-level, with 'choice of small square we are about to enter* added. Rigorously 
speaking, its transition probabilities are as follows. Let χ G V^1'. Then 
ι = ipi(xic) for some i 6 {1,.. . 8} and x* € V ^ . If there is only one such i, 
then for y e V ^ we have 

(υ _ f w f o r y = 

Ρ χ · ν [ 0 else. 
If there are two distinct indices ti, 12 and two different χ*,, x ^ such that 

ζ = ^h(xki) = V'tj(zjfcj), then 
' \Pkul for y = ipixin), 

\Pki,l for y = ipi3{xt), 

0 else. 

p(1) = 

REMARK. The construction above can be carried out for an arbitrary irre-
ducible conductivity matrix A. 

We will now be keeping track of successive hits of VM by the random 
walk (JC' (1 ))„>o· Let σ = inf{n > 0 : € V<°> \ {Χ£0,(1)}}. T h e n 

{Tn} given by 
T0 = 0 
Γ„+χ = Tn + θΤη ο (τ, η = 0,1,2, . . . 

is the sequence of successive hits ο f V<°> by the random walk (X£0,(1))n>o· 
Set 

Pij = PXi = Xj] , i,j = 1,2,3,4. 
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The invariance of the Dirichlet form associated with Aao translated in terms 
of the transition probabilities means that p i j = p,j , so that the distribu-
tions of the Markov chains ) n > o and are identical. It 

means that the random walk (Xn°'^)n>o is decimation invariant. Our re-
sult (Theorem 2) says that it is the unique decimation invariant random 
walk on 
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