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THE CLASS OF JOINT DENSITIES UNIQUELLY
DETERMINED BY CONDITIONALS USED
IN GIBBS SAMPLING

Abstract. This work is about uniqueness of joint densities, where the conditionals are
given. We formulate a necessary and sufficient condition for uniqueness of joint densities,
at the same time answering the question risen by Arnold and Press [1] as well as Chan [4].
The theorem is illustrated in a few examples and discussed in context of Gibbs sampling
method.

1. Introduction

Lately, the most dynamically growing Monte-Carlo methods are the ones
based on the Markov chains theory. The most popular of those are Gibbs
sampling and Metropolis methods. They find many applications in statisti-
cal calculations, in evaluations of multidimensional integrals, for example in
estimation of expectations of a-posteriori densities. Most of the Monte-Carlo
methods usage leads to generating samples from joint densities. Gibbs sam-
pling method find an application in generating samples from a-posteriori
densities in Hierarchical Generalized Linear Mixed Models (Hobert and
Casella [(8]).

Gibbs sampling method allows us to generate samples from a density
n(z1,...,Zs) by given conditional densities 7(z;|z;,1 # j) i =1,...,n. Of
course, a density 7(zj,...,Z,) must be uniquely determined by its condi-
tional densities 7(z;|z;,7 # j) i = 1,...,n, for the chain to be ergodic. Even
though it is not a sufficient condition for ergodicity of the chain. Besag [3]
found that a density n(z1,...,z,) is unique by its conditional densities, if
the support of the joint density is a product of some finite sets.

Hobert, Robert and Goutis [9] proposed convergence conditions for Gibbs
sampling. We give conditions for uniqueness of a joint density w(z) by its
conditional densities 7(z;|z;,4 # j), ¢ = 1,...,n. Uniqueness of a joint
density is not a sufficient condition for the ergodicity of the chain. In section
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4 we analyse the example when a joint density 7 is uniquely determined by
its conditional densities but Markov chain generated by Gibbs sampling
method is not ergodic. Besides we proof when the joint density = (z) is
determined uniquely by conditional densities 7(w;|w;,i # j), where w; are
some subvectors of the vector z,1 = 1,...,m < n. Theorems are proved for
o-finite measures.

2. Gibbs sampling method

Let (R™, B("), P) be a probability space with 0 —field B(™ and probability
measure P. Let v be a o—finite measure defined on B{™ such that P is
absolutely continuous with respect to v, and let = be the density of the
measure P with respect to the measure v. Let N € B(™ be the support of
the density 7. Let conditional densities w(z;|z;,¢ # j), ¢ = 1,...,n exist
for all (z,...,z,) € N. Let N; be the support of the conditional density
m(zi|zj,i # j), i = 1,...,n. We define the Markov chain {z(*)} with states
from the set N as follows.

Let (0 = (2(10)’ . (0)) € N be a starting point of the chain.

The first step is deﬁned as follows:

1_51) is the realization from 7T(ZL’1|II)(O) j> 1),
O O
2

is the realization from ‘1r(:152|2:l VT

Jj>2),
(1)

1:51) is the realization from 7r(:z:n|:z:J ,j <m).

, is the realization from 7 (zn_ 1|a:(1) .. 5‘1_) ,:cn )

The k-th step z(¥) = (a:(lk) :vflk)) with given k — 1-th step is defined as
follows:

z(lk) is the realization from w(mllz(k—l),j > 1),
:cgk) is the realization from 7r(:c2|z(k) gk_l),j > 2),
( ) , is the realization from 7 (z,— 1l:c e ,:cf,k)2, ik 1)),

( ) is the realization from 1r(a:n|:c 7 < n).

The chain {z(®¥)}, k =1,2,..., is called the Gibbs sampler. The transition
probability P(z,A) from the state = into any vr—measurable set A is ex-
pressed by the formula P(z, A) = {,[Ti=, 7(vilzj, yk, ¢ < 7,7 > k)v(d(y)),
where y = (y1,...,¥n). The chain {:c(k)}, k = 1,2,.... has the limiting
density m, if it is irreducible and aperiodic.
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Then for all v—measurable sets A C N, the joint density = satisfies the
rollowing condition

| P(z, A)n(z)v(d(z)) = P(A).
N

3. Two theorems about uniqueness of a joint density

' The main result of the paper is a generalization of Besag’s result {3] and
Hobert, Robert and Goutis result [9] on probability measures P absolutely
continuous with respect to some o-finite measures v. These authors consider
the case of v equals Lebesque measure without explicity pointing out to this
special case. The basiq definition [2.2, 9] is hard to understand but our
theorems develop important ideas contained in this definition.

As we pointed out in the introduction, Besag (3] proved that, if N =
Ny x...x N, where N; C R, 1 =1,...,n, are some finite sets, then every
joint density n defined on the support N is unique by its conditional densities
n(zi|lz;,1 # 7), i =1,...,n. In our work we are going to show that results
of [3,9] can be generalized to a wider class of supports. When n = 2 Besag’s
proof shows as follows.

In this case N = Nj X N3, where Ny = {uy,...,un}, No = {v1,...,um}-

From the definition of the conditional density it appears that for all
(u,v) € N comes out the relation

m(u,v) _ w(ujv)r(vju)

m(uy,v1)  w(u|v)m(vrfur)
Let 7* be a density defined on the support N, such that 7*(ulv) = n(u|v)
and 7*(v|u) = w(v|u) for all (u,v) € N. Then it appears

m(u,v) m*(u,v)
2 - 2 7 (u1,v1)’

(u,v)eN 7r(u1, 'l)1) (u,v)EN

from which we obtain m(u1,v;) = #*(u1,v1). Similarly, it is proved that
7(ui, vj) = 7*(u4,vj) for all (u;,v;) € N. Hence 7 = 7*.

To make results of [3,9] wider to any support N € B(™ let us introduce
the following definition.

Let R4 be a relation defined on the set A C N as follows.

DEFINITION 1. A point z € A is in relation R4 to a point y € A which
we write as T R4y, iff there exists a finite sequence of vectors %) e R™,
k =1,...,1 which have only one coordinate different from zero, such that

W =z 4+ e 4,
2kt = H(k) 4 (k+1) ¢ A where k=1,...,1 — 1,
y=2z20e A
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The relation R4 is an equivalence relation.

If Nisof the form N = Ny x...x N, where N; CR,i=1,...,n, then
zRxny holds for all z,y € N. It is possible to construct a support N of a joint
density w(z1,...,Zy), such that N does not have a product form, and such
that Ry for all z,y € N. Notice that if the set N consists of eight points
as shown in figure 1, then the relation z;Ryz; holds for all 4,5 =1,...,7.
However, the point zg is not in relation Ry to any other point in N.

LEMMA 1. If N is a connected and open set, then the relation zRyy holds

forallz,y€e N.
v

rd 7

I3 x4 s w

T1 ..’1:2

.zs
Figure 1: z; Ry z; and the point zg is not in relation Ry to the point z;,4,j =1,...,7

Proof. Because N is a connected and open set, there exists a path L in
N (homeomorphic with interval [0,1]) connecting points z and y, for all
z,y € N. Moreover, the path L can be chosen so that, it consists of intervals
parallel to the axes.

LEMMA 2. Ifv{z € N : v{y € N : z is not in relation Ry to y} > 0} > 0,
then there exists a set B* C N with v(B*) > 0 and v(N \ B*) > 0 such that

(1) ifz € B* thenv{ye N\ B*:zRyy} =0.
Proof. Let B' denote the set satisfying
B ={z e N:v(B)) > 0}.

where B, = {y € N :  is not in relation Ry to y}.
Let B” denote the set satisfying

B' ={z e B :v{ye N:zRyy} > 0}.

Suppose that B” # @ and choose an arbitrary point z € B". Let the set B*
be defined as follows

B* = {y € N : zRny}.

From the definition of the set B" it follows that v(B*) > 0. Notice that
B, c N\ B* and v(B,) > 0. Hence v(N \ B*) > 0. Finally (1) holds under
the equivalence of the relation Ry.
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Now suppose that B” = 0. Then B* is an arbitrary set satisfying B* C
B, v(B*) > 0, v(N \ B*) > 0. From this we conclude that condition (1)
holds.

The theorem below gives a necessary and sufficient condition for the

uniqueness of a joint density =(zi,...,zn) by conditional densities
m(zilzj, i # j), i=1,...,n.
THEOREM 1. A joint density w(z1,...,Zy) i unique by its conditional den-

sities m(zilzj, i # 5), ¢ =1,...,n, iff for all sets AC N with v(A) =0
(2) v{re N\ A:v{y€ N\ A:zx is not in relation Ry\4 to y} >0} = 0.

Proof. Suppose that (2) holds for all sets A C N with v(A) = 0. Hence for
v-almost all z € N \ A the following condition is satisfied

(3) v{y € N\ A:z is not in relation Ry\4 to y} = 0.

Let 7* be a different density defined on the support N with respect to the
measure v such that

(4) n(zi|zj, 1 # j) = 7' (zilz;,i £ 7),i=1,...,n,

for v—almost all z = (z;,...,z,) € N.
Let A C N be the set defined as follows

A= {z e N: n(zilzj,i # j) # n*(zi|zj,i # j) forany i = 1,...,n}.
For simplicity, N* will be used to denote the set N \ A and R will be used
to denote the relation Ry\ 4. Let z € N* be a point satisfying (4) and such
that
(3) 7*(z) = an(z),

where a > 0.

Since zRy for v—almost all y € N* there exists a finite sequence of
vectors ¢®) € R™ k = 1,...,1 which have only one coordinate different
from zero such that

20 =z 4+ M) e N,

2(k+1) = (k) 4 o(k+1) ¢ N* where k=1,...,0— 1,

y=z0 e N*.
Let my be the number of non-zero coordinate of the vector c*), k=1, ..., 1.
Hence from (5)

T (Zm, |Zi, M1 # 1)7*(zi,m1 # 1) = an(Tm,|zi, m1 # i)w(xi, M1 # 1),
From the above and from the equation (4) it follows that

w*(zi, my # 1) = am(xi, My # 7).
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The coordinates of the vectors z and 2(!) are identical except for the coor-
dinate of the index m;. Hence

w'(z‘(l),ml #1) = a1r(z,-(1),m1 #1).
From the above and from the equation (4) it now follows that

w'(zs,izlzfl),ml # i)w'(zfl),ml #1) = an(z,(,{“zfl),ml # i)n(zfl),ml # 1)

Hence
x*(2) = an(zM).
By induction it can be proved that
(2% = an(2®), k=1,...,L
From this
m*(y) = an(y) for v—almost all y € N*.

By integrating the both sides of the above equation, we obtain a = 1. From
the equation (5) it follows that n(z) = #*(z). The point = was arbitrary
chosen, hence 7(z) = n*(z) for v—almost all z € N.

The reverse proposition is proved by contradiction.

Suppose that there exists a set A C N with v(A) = 0 satisfying

v{ze N\ A:v{y€ N\ A:zis not in relation Ry\4 to y} > 0} > 0,
From Lemma 2 it follows that there exists a set B* C N\ A with v»(B*) > 0
and v(N \ B*) > 0 such that
(6) if z € B* then v{y € (N\ A)\ B* : zRn\4ay} = 0.

The support N; of the density 7 (zs|z;,? # j), ¢ = 1,...,n, is included either
in the set B* or in the set N \ B* with precision of a set zero measure,
because TRy for all z,y € N;.

Let n* be a density defined on the support N with respect to measure v
satisfying

() an(z), for v — almost all z € B*,
' (z) =
a*n(z), for v — almost all z € N \ B*,

where a is a positive constant such that 1—-aP(B*) > 0, and a* = S5+ -
The conditional densities 7*(z;|z;,% # j) are given by the formula

*(z)

N, T (E, - Ty (d(24))

‘K.(ZE,'IIJ',’I: ?é .7) = S

— an(z) Y
B afy, m(z1,. .., zn)v(d(zi)) = w(zilzj, i # 5),
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for v—almost all z € B*, and by the formula

. N 7*(z)
7 (zilz;,1 # j) = I, (21, ., To)v(d(z:))

a*n(z) o

= =z ‘, 1 ,

a* §y, m(z1,. .., zn)v(d(2:)) (zilz5,2 # 7)
for v—almost all z € N\ B*. This implies that 7 (z;|z;j, 1 # j) = 7*(zilz;,i #
j)yi=1,...,n for v—almost all £ € N, and consequently, that the condi-

tional densities m(z;|z;,i # j), i =1,...,n, do not determine uniquely the
joint density 7(z;,...,Z,). Thus the theorem is proved.
COROLLARY 1. A joint density w(zi,...,Z5) 8 unique by its conditional

densities w(z;|zj,i # j), i =1,...,n, if its support is a connected and open
set.

The proof follows from Lemma 1 and Theorem 1.

In the literature there are also considered some modifications of the
above defined Gibbs sampling method. Let w; = (Zn;_,+1,-..,Zn;), Where
i=1....,mand 0 = ng < n; < ... < Nyp-1 < Ny, = n. Let W; be a
subspace of R™ generated by vectors such of the form (Oni_l,w;,On_n_. )7,
where 0. denotes n;—dimentional vector of zeros, i = 1,...,m.

Define the k-th state w® = (w{¥, ... w{¥)) of Markov’s chain {w®)} as

follows:

() (k-1)

is the realization from 7 (w;|w;,” ', 5 > 1),
§ ) is the realization from w(wglw(k) gk 1),_7' > 2),
,(:) 1 is the realization from w(wm_llw(k) ,wf,’f) 2,w$,’f l)),

w¥) is the realization from w(wmlw ,j < m).

If the chain {w(")}, is irreducible and aperiodic, then its limiting density
is m. Now we give a necessary and sufficient condition for the joint density
7(Z1,...,Zn) to be unique by its conditional densities 7 (w;|w;,i # j), i =
1,...,m.

Let R be a relation defined on the set A C N as follows.

DEFINITION 2. A point z € A is in relation R} to a point y € A iff there
exists a finite sequence of vectors c(¥), k =1,...,l, which belong to one of
spaces W;, i =1,...,m, such that

D =z 4D e 4,
26+ = (k) 4 o(k+)) ¢ A where k=1,...,1-1,
y=:0e A
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The following theorem can be proved similarly as Theorem 1.

THEOREM 2. A joint density w(z1,...,Zn) is unique by its conditional den-
sities w(w;|w;,1 # j), i=1,...,m, iff for all sets A C N with v(A) =0

(7) v{ze N\A:v{y€ N\ A:zis not in relation Ry, 4 to y} >0} = 0.

This modification of the Gibbs sampling method can be used when the
components of the vectors w;, 1 = 1,...,m, are strongly correlated. It can
also find applications when Markov’s chain generated by the ordinary Gibbs
sampling method is not ergodic.

4. Examples

We illustrate Theorem 1 in six examples. In examples 1, 2 and 4 a joint
density is not determined uniquely by its conditional densities. In example 6
a joint density is determined uniquely by its conditional densities. In example
3 and 5 we construct a set N and consider two different measures on this
set N. In the first case a joint density m with support N is not determined
uniquely by its conditional densities, in the second case a joint density is
determined uniquely.

EXAMPLE 1. First we analyse the example presented by Athreya, Doss, and
Sethuraman [2]. They constructed two different densities 7 and n* with
respect to Lebesque measure, with identical conditional densities.

The joint density m(z,z2) is defined as follows
%p(zl) for z9 =z, +1

7r(a:1,a:2) = {

%p(zl) for zg =z -1

where p(z) = %exp(—l:z:|).
The support N of the density m(z;,z2) is the set consists of two parallel
lines zo =z, +1 and 23 = z; — 1.

Ig T

A )
<

Figure 2: the point z is not in relation Ry to the point y
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Conditional densities 7(z;|z2) and n(z2|z;) are given by

plz2 + 1)
for 2y =27 +1
p(z2 +1) + p(z2 — 1) e
m(z1]z2) = (22— 1) ,
P\T2 forz1 =251
p(z2 +1) + p(z2 - 1)
L forzpo=z;+1
m(z2|T1) = { 2 !
3 forzp=11-1

The density 7* with the support N is defined as follows

lp z1)f (@1 [z)) for zo =z, +1

7*(z1, T2) 2 Sl
1L,IT2) = ’
Lp(@1)f (21 — [21]) for z =12, -1
2 Cz1—[21]

where f(z) is a density function with the support [0,1), ¢ =
Y cocmeco Pm + 1), 7 € [0,1].

Hence 7*(z1|z2) = 7(z1]|z2) and n*(z3)z1) = w(z2|z;) for almost all
(z1,z2) €N.

Let £ € N be an arbitrary point in N. There exist only a countable
number of points z; € N, such that zRyz, i1 = 1,2,.... There are shown
some points 21, 22, 23, 24,y € N in figure 2, such that zRyz;,2 = 1,...,4,and
the point z is not in relation Ry to the point y. It follows from Theorem 1
that the joint density 7(z;, z2) is not determined uniquely by its conditional
densities 7(z;|z2) and w(z3|z1).

EXAMPLE 2. Let N be the edge of the square, showed in figure 3. Let 4a be
the length of edge of the square. As we see in figure 3, the point z (arbitrary
chosen) is not in relation Ry to the point y. The only points related to the
point z are the points z;, 2z, and z3. It follows from Theorem 1 that every
joint density w(z1,x2) defined on the support N, is not determined uniquely
by its conditional densities 7(z;|z3) and 7 (z3]z;).

We construct two joint densities defined on N with respect to Lebesque
measure, having identical conditional densities. Let the density = be defined
as follows m(z1,z2) = }a for v—almost all (z1,z2) € N. Its conditional
densities are given by

1
m(zy|z2) = 3 for v—almost all (z1,z2) € N,

w(z2)zy) = % for v—almost all (z;,z3) € N.
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zy
FARN
31
P4 22
Y

Figure 3: the point z is not in relation Ry to the point y

Let the density n* be defined as follows

1 1
( 5—2-:131 + %’ for zp =z1+a, ;€ [-a,0)
1 1
_5__2“ + % for zo = —z1 + a, z € [0,a)
(21, 22) = J 1 v
—mxl + 32 for z; = z; — a, z; € [0,a)
1 1
| oaT + 7 for zo = —z; —a, ) € [—a,0).

Hence w(zi|z2) = 7n*(z1]z2) and w(z2]z1) = #*(z2lz;) for v—almost all
(:l:l,.’ltz) €EN.

EXAMPLE 3. Let us modify the support from the previous example. Let N
be the edge of the square showed in figure 4. Let the set I consists of four
points A(0,0), B(0,a), C(a,a) and D(a,0). Define Lebesque measure on
the set N. Let us see that the set I has zero measure. The point z is not
in relation Ry\; to the point y (fig. 4). Hence, every joint density m(z1,z2)
defined on the support N, is not determined uniquely by its conditional
densities w(z1|z2) and m(z2|x;).
Now, suppose that there exists a distribution F satisfying

F=pF3+qFGC1 0<paq<1

where Fj is a singular distribution with respect to Lebesque measure, Fy is
an absolutely continuous distribution with respect to Lebesque measure. If
the distribution Fy is concentrated on the set I and the distribution F,. is
uniform on the set N \ I then zRp\ 4y for every set A C N, v(A4) =0 and
all z,y € N\ A. In this case the joint density n(z) with distribution F is
uniquely determined by its conditional densities w(z1|z;) and #(z2|z1).

As we can see the uniqueness of a joint density 7 does not depend as
strongly on the shape of the support, as on its placement in the coordinate
system.
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T3

21 22

a T

Figure 4: If F = pF, + qFac, 0 < p,q <1 then zRy\ 4y for every set A C N, v(4) =0
and all z,y € N\ A.

EXAMPLE 4. Let N C R? be the set consists of two separate squares K1
and K2 (fig. 5)

73

K2

a+6

K1

a a+é I

Figure 5: a point z is not in relation Ry to a point y for all z € K1 and y € K2

This way defined the set N disappoints the assumption of Theorem 1
because a point z is not in relation Ry to a point y for all points z € K'1 and
y € K2. That is why every joint density m(z1, z2) defined on the support N is
not determined uniquely by its conditional densities m(z;|z2) and 7(z2|z).
Define two different joint densities 7 and n* with respect to Lebesque
measure. Let the density n be defined as follows 7(z1, z2) = '2—3;7 for v—almost
all (z1,z2) € N. The conditional densities are given by
m(z1]z2) = 1 for v—almost all (z1,22) € N,
m(xz2|z1) = 1 for v—almost all (z1,22) € N.

We define the joint density n* as follows
7 (z1,22) = Z%g for v—almost all (z;,z2) € K1,
T (z1,Z2) = 74%7 for v—almost all (z1,z2) € K2.
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Hence n(z1|z7) = #*(z1|z2) and n(z2|z1) = #*(z2|z1) for v—almost all
z€N.

EXAMPLE 5. Now we analyse the example 2.1 [9]. Let N be the set consisting
of two squares, K1 and K2 (fig. 6). Let A(0,a) and B(2a,a) be two points
from the set N. Let ] = AB € N be the interval from the point A to
the point B. Notice that if the set N is measurable with respect to two-
dimensional Lebesque measure then the set I has zero measure and a point
z € K} is not in relation Ry\ to a point y € K3 (fig. 6). In this case, a joint
density n(z) with support N is not determined uniquelly by its conditional
densities 7 (z1|z2) and 7(z2|z,) (see example 2.1 [9]).

T3

2a

* K2

21

22

K1

He

a 2a T

Figure 6: If F = pF, + qFac, 0 < p,q <1 then zRp\ 4y for every set AC N, v(A4) =0
and all z,y € N\ A, but Gibbs chain is not ergodic.

Now, suppose that there exists a distribution F satisfying
F = pFs +qF,, 0<p,g<1

where F; is a singular distribution with respect to Lebesque measure, Fg,
is an absolutely continuous distribution with respect to Lebesque measure.
If the distribution F, is uniform on the support I and the distribution Fj.
is uniform on the support N \ I then zRy\4y for every set A C N with
zero measure and all z,y € N \ A. In this case the joint density w(z) with
distribution F is uniquely determined by its conditional densities 7(z1|z2)
and 7(z2|z1). Suppose now that the chain in the k-th step stays at the point
z(®) = (:c(lk),:rgk)) € K1\ I. In the k + 1-th step we generate value a:gk“)
from the density W(zglz(lk)). The value zg’”l) = a is generated with zero
probability. Hence transition probability P(:c("),I ) from the state k) to
the set I is zero. We conclude that P(z(**1) ¢ K2|z(¥)) = 0 for v—almost
all z(¥) € K (see example 2.1 [9]). That is why Markov chain generated by
Gibbs sampling method is not ergodic, in both cases. The example shows
that uniqueness of a joint density is not a sufficient condition for the ergod-
icity of the chain.
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EXAMPLE 6. Let N be the set consisting of two squares, K1 and K2 (fig. 7)

i

(M2
[~

K2

K1

(14
=]

a a+é I

Figure 7: zRyy forall z,y € N

We can see that zRyy for all z,y € N. Hence every joint density =
defined on the support N, is determined uniquely by its conditional densities
n(z1|z2) and m(z2|z1). In this case, the Markov chain generated by Gibbs
sampling algorithm is ergodic.

We have shown a few examples, which let us understand the idea of
theorems and will help with such a planning of the experiment that Markov’s
chain generated by Gibbs sampling method, would be ergodic.
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gestion the problem. The author thank the Editor for many constructive
comments that lead to substantial improvements.
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