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1. Introduction

In this article, we establish some B. Y. Chen inequalities for slant sub-
manifolds M™ in complex space forms M™(c).

In the introduction of the article “Can one live in a best world without
tension?” {1}, B. Y. Chen translates some problems of the world into the
mathematical problems. By a “best world” we mean “a surrounding space
which has the highest degree of homogeneity”. Almost everyone desires to
live in a “best world” without tension. The question is whether “to live in
a best world without tension” is a real posibility.

The final goal of this area of research is to solve following WORLD
PROBLEM: “Determine the best ways of living for all individuals who live
in a best world”.

In order to apply Differential Geometry effectively, we shall assume that
the objects we are going to investigate are Riemannian manifolds (we need
to have metric in order to distinguish the shapes of different individuals).
According to work of Lie, Klein and Killing, the family of Riemannian mani-
folds with the highest degree of homogeneity consists of Euclidean spaces,
Riemannian spheres, real projective spaces and real hyperbolic spaces. Such
spaces have the highest degree of homogeneity because they have the largest
groups of isometries.

Hence, a best world in terms of Differential Geometry is nothing but a
Riemannian space form M™(c) with constant sectional curvature, say c.

What is tension? It is a well-known fact since the time of Laplace that
the tension field of a submanifold is nothing but the mean curvature vector
field. Hence, the amount of tension applied to an individual at a point is
simply measured by the squared mean curvature at that point.
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With this specifications, the problems of the world can be translated into
the following mathematical problems:

PROBLEM 1. Given a Riemannian manifold M, does there exist an iso-
metric embedding z : M — M™(c) such that the squared mean curvature
is zero everywhere?

PROBLEM 2. Given an arbitrary isometric immersion of a Riemannian
manifold M into a Riemannian space form, what are the relationships be-
tween the intrinsic invariants of M and the main extrinsic invariant, namely,
the squared mean curvature?

PROBLEM 3. Does there exist a sharp lower bound of the squared mean
curvature for an isometric embedding of a Riemannian manifold in a Rie-
mannian space form?

PROBLEM 4. Does every intrinsic invariant relate directly with the
squared mean curvature for a submanifold in a Riemannian space form?

2. Preliminaries: Riemannian invariants

The Riemannian invariants of a Riemannian manifold are the intrinsic
characteristics of the Riemanian manifold. In this section we recall a string
of Riemannian invariants on a Riemannian manifold [4].

Let M be a Riemannian manifold. Denote by k(7) the sectional curvature
of M associated with a plane section 7 C T,M,p € M.

For any orthonormal basis {e;, ez, ..., e,} of the tangent space T, M, the
scalar curvature 7 at p is defined by
(2.1) (0) = 3 k(ei Aej).
i<j

We denote by

(2.2) (inf k)(p) = inf{k(7); 7 C T,M,dim7 = 2},
and we introduce the first Chen invariant
(2.3) ém(p) = 7(p) — (inf k)(p).
Let L be a subspace of T, M of dimension r > 2 and {ej, ey, ... ,er} an

orthonormal basis of L. We define the scalar curvature 7(L) of the r-plane
section L by

(2.4) (D)= kleanep), a,B=1,...,r.
a<f
Given an orthonormal basis {e;, ez, ...,e,} of the tangent space T, M,

we simply denote by 71, the scalar curvature of r-plane section spanned
by ei,...,er. The scalar curvature 7(p) of M at p is nothing but the scalar
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urvature of the tangent space of M at p. And if L is a 2-plane section, 7(L)
nothing but the sectional curvature k(L) of L.
For an integer k > 0, we denote by S(n, k) the finite set which consists of

‘k-tuples (n1,n2,...,nk) of integers > 2 satisfyingn; < nandn;+...+nx <
n. Denote by S(n) the set of k-tuples with k > 0 for a fixed n.

For each k-tuples (n;,...,nx) € S(n), we introduce a Riemannian in-
variant defined by
(2.5) §(ny,...,ne) =7(p) — S(ny,...,nk)(p),
where
(2.6) S(ny,...ng) =inf{r(L1) + ...+ 7(Ls)}.

Ly,..., Lk run over all k£ mutually orthogonal subspaces of T,M such that
dlmLJ = 'n,j,j = 1,.. .,k.

We define:
_n¥n+k-1-%% n))
(2.7) d(ny,...ng) = P E;;l ) ,
k
(2.8) b(ny,...nk) = %[n(n ~1) =Y njln; ~ 1))
Jj=1

We denote by H the mean curvature vector, i.e.
1 n
2. == h(ei, e;),
(29) H) = 3 heed)
where h is the second fundamental form of the submanifold M.

3. B. Y. Chen inequalities
B. Y. Chen gave the following inequality for submanifolds in real space
forms.

THEOREM 3.1. Given an m-dimensional real space form M (c) and an n-
dimensional submanifold M, n > 3, we have

-2 2
(3.1) b < = - {n—’f_—l IH|? + (n + l)c}.

The equality case of inequality (3.1) holds at a point p € M if and
only if there exists an orthonormal basis {ej,ez,...,en} of T,M and an
orthonormal basis {ep41,...,em} of T,;'-M such that the shape operators of

Min M (c) at p have the following forms:
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(a 0 0 ... 0
0 b0 ... 0
(3.2) Anpr= |0 O o O by,
\o 0 0 .. p
(5 ’33 g g
12 —hn
(3.3) A, = 0 0 0 ... 0 ,
\o 0 o ..o
where we denote by
(3.4) A=A, ,r=n+1,...,m,
(3.5) hi; = g(h(ei,e;),er),r=n+1,...,m.

By an analogous way we prove an inequality for 6-slant submanifolds M
in complex space forms M (c) of constant holomorphic sectional curvature c.

THEOREM 3.2. Given an m-dimensional complex space form M(C) and a
#-slant submanifold M, dim M =n, n > 3, we have

n—2[ n? 2 9 m C
. < - 0.
(3.6) om < 5 {n—l”H” + (n+ 1+ 3cos 0)4}

The equality case of the inequality (3.6) holds at a point p € M if and
only if there exists an orthonormal basis {ej,ez,...,en} of T,M and an
orthonormal basis {€n41,...,€2m} of TPLM such that the shape operators of

M in M(c) at p have the forms (3.2) and (3.3).
Proof. We recall the Gauss equation for the submanifold M

(3.7  R(X,Y,Z,W)=R(X,Y,Z, W)+ g(h(X,W),h(Y, Z))-
- g(h(X, 2),h(Y,W)), VX,Y,Z,W € T[(TM),

where R denotes the curvature tensor of M (c) and R denotes the curvature
tensor of M.

Since M (c) is a complex space form, then we have

~

(3.8) R(X.Y,Z,W) = Z{g(X,Z)g(Y, W) — o(X,W)g(Y,2)+

+9(JX,2)9(JY, W) — g(JX,W)g(JY, Z) + 29(X, JY)g(Z, W)},
VX,Y,Z,W € I(TM).
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Let p € M and {ej,ez,...,e,} an orthonormal basis of T,M and
{en+1,--.,€2m} an orthonormal basis of T;'M. For X=2Z2=¢,Y=W=
e; from the equation (3.8) it follows that

~ C
(3.9) R(ei ej,€i,€5) = Z{nz —n—g(Jei,e;)g(Jej, €:) + 2g(e; Jej)g(ei, Je;) }
[
= ;{n* —n+33 ¢ (ei ).
(%]

Let M C M(c) a f-slant submanifold, dim M = n = 2k. For X € I'(TM)
we have

JX=PX+FX, PXeI(TM),FX e (T+M).
Let p € M and an orthonormal basis {ej,ez,...,e,} of T, M with e; =

Pegj—1.

Pel,...,egk =
cos @

We have g(Jei,ez) = g(Pey, 25Pe1) = cosf and, in same way,
g(Jes,ei41) =cosf for i =3,5,...,2k— 1.
The relation (3.9) implies that

(3.10) R(es, ej, e, ej) = -:i{'n2 —n + 3ncos? 6}.

Denoting by

n

(3.11) IRI? = D g(h(eire;), hleise;)),

i,j=1
the relation (3.10) implies that
(3.12) E{n2 —n+3ncos? 0} = 2r + |h|? — n? | H|?,
or equivalently,

(3.13) or = n? |H|? - &) + E{nz — 1+ 3ncos? 6}.

Denoting by

2
(3.14) €=2r— nn_ 1 (n-2) ||I:(||2 - %{n2 —n + 3ncos? 8},
we obtain
2 2 n—2 2
= H 1— - h ’
e =n |HI* (1 - 225) - |
ie.,

(3.15) n? ||| = (n - 1)(e + |IAII*).
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Let p e M,nm C T,M,dim7 = 2,7 = sp{e;,ez2}. We define e,y = |g|
and from the relation (3.15) we obtain

(Zh"“) n-( X X kp+e),

i,j=l.nr=n+1l.2m

or equivalently,

(3.16)
n n 2m
(Zhgﬁ”)2 =(n— 1){2 hrt1)2 +Z(h".+1 2+ 3 S hyy)? +e}.
i=1 i=1 1,j=1r=n+2
We invoke now Lemma 3.1 from (3]: “Let ay,...,an,c be n+ 1,1 > 3,

real numbers such that
(Ya) = m-n(Lat+0)
i=1 i=1

Then 2a1a2 > ¢ with the equality holding if and only ifa) + a3 = a3 =
Lo=a.”

By using this Lemma we have from (3.16):

(3.17) hFTREFT > Y (AR ) ) (AP +e

itj i,j=1..nr=n+2..2m

From the Gauss equation for X = Z =¢€;,Y = W = e, we obtain

k(r) = §(1+3cos 8) + Z [h,hG, — (B],)?]
r=n+1l
c n
Z(1+3COS 6) + = [Z(h 12 4 Z > (A )2+e]
t#j i,j=l.nr=n+2..2m
2m 2m
+ Z h1yh3a — Z (h12)?
r=n+2 r=n+1
c 1 n
=Z(1+3c0829)+52h+12 Z > (k)
i%tj i,j=l.nr=n+2..2m
2m 2m
+ Z hi1has — Z (h12)?
r=n+2 r=n+l

= 2(1 +3cos? ) + % Z(hnH Z Z (hi;)

1#£7 r-n+2t J>2
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2m

1 r n+\1 n+12 1
+5 2 (Al +h3)? + D (R + (A3 + 2e

r=n+2 i>2
C 2 €
> 2 hil
> 4(1+3cos 0) + 5
or equivalently,
(3.18) k(m) > (1 + 3cos?8) +

le'i

From the relation (3.13), it follows that
n?(n — 2)

2
W”H” :

(3.19) infk > §(1+3cos20)+r —{n —n+3ncos? 8} -

The relation (3.19) implies that

n—2 n?
620 et

where &y is defined by the formula (2.3).
This relation represents the inequality to prove.
The case of equality at a point p € M holds if and only if it achieves the
equality in the previous inequality and we have the equality in the Lemma:
Rl =0, Vi#5,i,5> 2,
h; =0, Vi#j,4,5>2,r=n+1,...,2m,
LL+hi,=0 Vr=n+2,...,2m,
R =Ry =0, V5> 2,

(n+1 +3c0820)§},

At + h"“ Rl = . = ARt
We may choose {e;, ez} such that h"+l 0 and we denote by a =
hll’b - h221 hfl+l hﬂ+l.

It follows that the shape operators take the desired forms.

Applying Theorem 3.2, we may obtain B. Y. Chen inequality for totally
real submanifolds in complex space forms.

REMARK. For totally real submanifolds we have § = %

COROLLARY. Given an m-dimensional complez space form M (c) and a to-
tally real submanifold M,dim M = n,n > 3, we have
n—2( n?
3.21 om <
(3.21) ws

c
The equality case of inequality (3.21) is identical with the equality case
of inequality (3.6) from Theorem 3.2.

Another B. Y. Chen inequality for submanifolds in real space forms is
given by the following [4]
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THEOREM 3.3. Given an m-dimensional space form M (c) and an n-dimen-
stonal submanifold M,n > 3, we have

(3.22) §(ny,...,nk) < d(ny,...,ne) |H|> + b(ny,...,nk)e.

Next we prove a generalization of Theorem 3.2 in terms of Chen invari-
ants.

THEOREM 3.4. Given an m-dimensional complez space form M (¢) and an
n-dimensional 0-slant submanifold Mn > 3, we have

(3.23) 6(ny,...,n) < d(ny,...,ne) |H|? + b(ny, ..., nk)

o

k
29€ 24€
+ 3n cos 0§ -6 Ezlmj cos 05,

where nj = 2m; + p;,p; € {0,1},Vi=1,...,k.

Let ﬁ(c) be a complex space form, dimgc ﬁ(c) =mand M C H(c) an
n-dimensional submanifold.

For any p € M and for any X € T,M, we have JX = PX + FX,PX €
T,M,FX € T’;LM .

Let {e),...,en} be an orthonormal basis of T,M. We put

(3.24) IPI* = > g*(Pese;).
i,j=1
Let L C T, M be a subspace of T,M,dim L = r. We put
(3.25) Y(L) = Z 9°(Pui, u;),
1<i<j<r
where {u1,...,u,} is an orthonormal basis of L.

In order to prove Theorem 3.4, we will use the following Lemma [4].

LEMMA. Let 1\7(c) be a complez space form, dimc M(c) =mand M C M(c)
an n-dimensional submanifold. Let ny, ..., ny be integers > 2 satisfyingn; <
n,ni+...+nx <n. Forpe M, let L; C T,M a subspace of T,M, dimL; =
n;,Vj =1,...,k. Then we have

k

(3.26) (p) = 3 7(L;) < dlny,...,ne) |H|?
i=1

k k
+1[ n—1) =Y n —1)+3”P||2—GZ\I’(LJ')]C.
= Pt
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roof of Lemma. From the Gauss equation for the submanifold M, denoting
y R the curvature tensor of M(c) and denoting by R the curvature tensor
f M, we obtain the relation

(38) R(X,Y,Z,W)= g{g(X,Z)g(Y, W) - g(X, W)g(Y, Z)+
+g(JX, Z)g(JY, W) — g(JX,W)g(JY, Z) + 2¢(X, JY)g(Z, JW)},
VX,Y,Z,W € [(TM).

Let M (c) be an m-dimensional complex space form with dimc M (c) =
m and M an n-dimensional submanifold with n > 3. Let p € M and
{e1,...,en} an orthonormal basis of T, M; from the previous relation for
X=2=¢;,Y =W =¢ej, we have

(3.27) 2r = n? |H| ~ b + {n(n — 1) + 3]|P|I*} 5.
Denoting by

(3.28) n=2r—2d(m,...,ne) [H|* - {n(n - 1)+ 3]IPI*}5,

we obtain

(3.29) n? | H| = (n+ A2,

where we denote
(3.30) y=n+k-)Y n;
From the Gauss equation we obtain

(331) T(L.'i) = {nJ( 1)+6\IJ(L } + Z Z [ha,ct,hﬂ,ﬁ, ajﬂj)zl'

r=n+la;<G;
We shall prove that

(3.32) Z Z Z (he o, hp,8, — (hays,)?) 2
j=lr=n+la;<B;
where 7 is defined by the relation (3.28).
Let p€ M and {ey, ..., e} an orthonormal basis of T,M; let Ly, ..., L
be k mutually orthogonal subspaces of T, M, dim L; = n;, defined by:
L, =sp{e1,...,en },
L; = sp{eﬂﬁ-l’ ce- ’eﬂx+n2}’

Mld

Lk = sp{en1+...+nk_1+1, vy en1+...+n‘,_1+nk}-
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Let eny1 = 1_[’ €nt1 € T M. We denote by a; = h'”’1 =g(h(ei, €;),ent1)
and from the relation (3. 29) we obtain

(3.33) (Za) = yln+ S (hE)? +E(hn+1 Z Z

i=1 i#£j r=n+2i,j=1
We denote by D;,j =1,...,k the sets:
Dl = {1,...,1’11},

D, = {n1 +1,...,m +n2},
De={nmi+...+nk1+1,...,010+ ... + ng_1 + nk}.
Also, we denote by

bl =a,

b2=a2+...+an1,

b3 =Qn,41+ ...+ Cnytng,

bet1 = Gnyt. dng a1t oo Cnydngtodne_1+neo
bk+2 = Qny4...4ng+1,

b-7+1 = an.
Then the relation (3.33) implies that
7+l v+1
(Zb) =+ 2 b5+ (G F Y Y
i#j r=n+21,j=1
-2 z Qq,08, —...— 2 Z Ga, 88,
a1<B; ax <P

with aj,ﬂj € Dj,Vj =1,...,k.
Applying Lemma 3.1. from [3] we have

Z Qq, 06, + ...+ Z Ga, 0B, 2 l[n+z hn+1 Z Z ]

a1<fy ar<Bx 1#7 r=n+2i,j=1
The previous relation implies that

2m

k
Z Z Z [h"‘JaJh»GJ'ﬁ: (haJﬁJ) ]
j=lr=n+la;<g;
2m
2 g+ % Z Z ( Z Z °’J°'J Z g

r=n+1(a,B)gD? r=n+2a;€D;
where we denote by D? = (D, x D) U... U (Dy x Dy).
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Thus we have proved the relation (3.32). From the relation (3.31), we
obtain
k . k c
D oT(Ly) 2 5 + Y _{nj(n; ~ 1) +6¥(Ly)}g = 7~ d(ma,...,m) 1 HII®
2 =1 8

k
~{n(n ~ 1) +3[1PI"}5 + Y {ns(n; ~ 1)+ 6¥(L;)}5,

or equivalently,
k
c
=Y 7(L;) <d(n,...,n) |HI* + gln(n—1)+3 1P|
j=1

k
=Y {nj(n; — 1)+ 6¥(L;)}}.

=1
This relation represents the inequality to prove, or equivalently,

C
(3.34) §(ny,...,mk) < d(na,...,ne) [|H| +b(na, . M) g

k
+ <{3IIPI* - 6> w(Ly).
j=1

Proof of Theorem 3.4. Let M (c) be a complex space form, dime M(c) = m
and M C M(c) a #-slant n-dimensional submanifold, n > 3,n = 2k. Let
p € M and {ey,...,e,} an orthonormal basis of T, M.

For any X € T,M we have JX = PX + FX,PX e T,M,FX € T,;LM.

We choose e; = colsO

We have g(Pej,e2) = g(Pei, 25Pe1) = cosf and, in same way,
g(Je;, eiy1) =cosf for i = 3,5,...,2k — 1.

It follows that ||P||*> = ncos?#.

Let p € M and {ey,...,en} an orthonormal basis of T, M; let Ly,...,Lx
be k mutually orthogonal subspaces of T, M, dim L; = n;, defined by:

L, = sp{e1,...,en,},

L, = 3p{6m+1a cy€nydny}y

1
Pel,. oy B2k = mPezk_l.

Lk = 3p{6n1+...+nk_1+1) . )en1+...+nk_1+ru,}-

In same way, it follows that ¥(L;) = mjcos?6, where n; = 2m; +
wi,p; €{0,1},Vi=1,... k.

From (3.26) we obtain inequality (3.23).
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COROLLARY. Given an m-dimensional complez space form M (c) and a to-
tally real submanifold M,dim M = n,n > 3 we have

C
(3.35) §(na,...,mk) < d(ny, ..., k) |H|I? + b(ny, .. \Tk) 7

References

[1] B.Y.Chen, Can one live in a best world without tension, K.U. Leuven, preprint.

(2] B.Y.Chen, Geometry of Slant Submanifolds, K.U. Leuven, 1990.

[3] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds,
Arch. Math. 60 (1993), 568-578.

[4] B. Y. Chen, Some new obstructions to minimal and Lagrangian isometric immer-
sions, Japan. J. Math. (to appear).

[5] B.Y.Chen, F. Dillen, L. Verstraelen and L. Vrancken, Totally real submani-
folds of CP™ satisfying a basic equality, Arch. Math. 63 (1994), 553-564.

FACULTY OF MATHEMATICS
UNIVERSITY OF BUCHAREST
Str. Academiei 14

70109 BUCHAREST, ROMANIA

Received October 21st, 1998.



