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ON CERTAIN RIEMANN SPACE WITH
METRICAL TENSOR WITH SEPARABLE COORDINATES
AND ITS APPLICATIONS

1. Introduction

The purpose of the present paper are properties of following three Rie-
mann spaces: first endowed with metrical tensor with coordinates of func-
tions of time t, second endowed with metrical tensor with coordinates of
functions of radius r and third endowed with metrical tensor with coordi-
nates of functions with separable variables of ¢ and r.

We shall give an application to Einstein’s theory of space-time.

2. Formulas for curvature tensor
Let V be a n-dimensional Riemann space with the metrical tensor

(2'1) (g,\p) = dia'g(glla g22, - .. »grm) where
g =g1i(t,7), g22 = g22(t,7), g3z = gaa(t,7),
944 = T(o)g33(t,7‘), gss = 955(tar)7 ey gnn = gnn(tar)a

2 .3 .4

t=2z! r=22% 0=23 (¢,r6,2%...,2") = (z!,2%,23,2%,...,2") [1]}.

The curvature tensor is as follows:

( —911 51 —g22 2
RLI = Rl.,.,’Rg,ﬂ = Rz.,,,a
Gvvy 9nm
—d11 1 —822 2
(2.2) S Rg,,l = I Ry, = I Ry, = R;’nz,
_ 7933 p3 v _ “up
L go-3 - Joo R oo’ pvp = Juv Rﬁ"”

(v=23,...,n;n=3,4,...,n;0=4,5,...,n; u+1=v=25,6,...,n) (not



830 A. Jakubowicz, H. Kleczewska

sum over v, 1, 0, i, v), where

1 . 3 9% Gug22 . 91195
R} ————(—222—2”+—B+—+ + )
1227 491 I I g22  G11 an 922
1 . gz 9119 91119/
R -1 ( 96 + Jm m o m Y
7 491 gnm 9nn g11 922
1 92 G220 92295
R2 = (_ 9g" + Jm _ m m Y
217 4949 Inn Gnn g 922
1 . 92291 g gi gnqg,
R = (_29/ + m o, dmdn m )
(2.3) 1M 7 490, m 922 g1 Gnn
1 d&T 1 /dT\? 72 2
(3o (B
4933 ao T\ db g1 922
3 1 (—g330u 9329,
R3uu - - y
4933 g1 922
i — 1 <_g##guu _ g:;pgll/u)
BV 4gpp g1 92 /)’

n=3,4,....nyp+1=v=56...,n)

(not sum over 7, y, v). The dot denotes differentiation with respect to ¢, the
comma with respect to r. Remaining coordinates are null.

3. The case of separable variables

Let us take Riemann spaces ‘7, V with metrical tensors

(31) diag(Al,Az,Ag,Aa,A5,...,An),
Ay = Ax(t), (@=1,2,3,5,...,n),
Az = Ay;
(32) diag(B1,Bz,B3,TB3,B5,...,Bn),
B, = B,(r), (a=1,2,3,5,...,n),
T =T(9).
The curvature tensors K, , LY5, (A, 8,0,¢ = 1,2,...,n), Riccitensors
Kyx, Lxx (A =1,2,...,n), scalar curvatures K, L of spaces ‘7, V can be

calculated from (2.3), (2.2).
Let we take a Riemann space V' with the metrical tensor
diag(A1Bi, A2B;, A3 B3, TA3B3, AsBs, ..., AnBy), Az = Ay,

(3:3) As = Au(t),Ba = Bo(r)(a=1,2,3,5,...,n), T =T(9).
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he formulas of the curvature tensor RY; , of Ricci tensor Ryg and of scalar
curvature R of V are as follows:

(34) Rfﬁg aAﬂQKABQ + bAﬁQLAﬂQ (’\’ :Ba 0,9 = 1, 21 s 1n)a
Rax = axx Ky + baaLaa,

2B, AsB, 2A3B, 24, B,
(3.5) 312=T:Kf33 A.B, YK, + A:5; Ll + HLL;W,
A=1,2,...,n;v=5,6,...,n
( b 3 Y )
K L
(3.6) R = -B—1+ A3

where af, o @xx are functions of the variables r; b5, bax are functions of
the variable ¢; K:{’ﬂ o’ Lfa " Kx, Lax, K, L are the coordinates of curvature

tensors, Ricci tensors and scalars curvatures of 17, 1 respectively; all are
calculated from (2.2), (2.3).

THEOREM. When the Riemann spaces ‘7, V are local-Euclidean, or Ricci flat
(for Ry2 = 0 in (3.5)), or with null scalar curvature, then the Riemann space
V is local- Euclidean, or Ricci flat, or with null scalar curvature respectively.

Proof. The theorem follows immediately from formulas (3.4), (3.5), (3.6).

4. An application to Einstein’s theory of space-time
Let be a space-time with the following metrical tensor

(4.1) diag(A1B1, —A2B3, —A3 B3, —T A3 B3).

We shall investigate a particular case of (4.1), namely for A; =1, By = 1,
Ay = Az = S?(t), By = By(r), B3 = Bs(r), T = sin’ 0. Then the space-time
has the following metrical tensor:
(4.2) diag(1, —S?B;, —S% B3, —§?B3sin? §).

We give a solution of Einstein’s equation on the space-time with metrical
tensor (4.2).

We shall use a method analogous to Friedman’s solution in (1], {2].

On the base of the formulas in (2.3) for n = 4 we obtain the following
four independence coordinates of the curvature tensor for (4.2)

R 122 — SSBZ, R133 SSB3,

+_

B’B Bf
2 _ 203
(45 B;B; — 2By B, B; )

1
(4'3) R233 - 4B

12 Biliz -2
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By the method in [1], [2] we obtain the for space-time (4.2) and the
curvature tensor (4.3) the following system of two equations of Einstein’s
equation

3§ 1
- = 3x(e+3p),
(g 5 2 3By 3B,B, BP 1 1
&L 0d2 3 283 _ o2
S$+25 - 15,8, T 8B2B, T 1B, B T 2B, ~ 2P

Next after the elimination S we obtain the following equation
81rG

(4.5) S? 4 k(r) = 052,
» = —8nG, G-gravitationconstant, where
_ " 1! 2
(4.6) k(r) = 3Bs | 3B:B; | By -

8B;B; | 16BIB, '« 8B,BI @ 4B;
The differential equation (4.5) assumes the following form:
A2

?’

where k(r) is defined in (4.6), A? = M‘l A>0.

Equation (4.7) will be called the generalized equation of the Friedman’s
equation. To solve equation (4.7), we take the following parametrical solution

(4.8)

t= 1«12(-:(i:i')322 \ﬁ — k(r)sin? % + m arcsin (\/E(Tsin %))
Y

S = A%sin® £
sin )

(4.7) $? + k(r) =

for 0 < k(r) < -—;—, where 9 is parameter.

ExAMPLE 1. For the generalized Reissner-Nordstrom space-time (2]

. —52 2,2 _ 52,2 gin?
diag it —-S°r“sin“0),
E

(4.9) K

E=1—T?0+ ;O,ro,K=constans, 0 >0
we obtain

5K?r§ TKrd

4 _ 0 _ 0
(4.10) k(r) o y + (2K +1)— 21‘ [ I,
therefore the solution (4.8) for ro, K = constans surface (t S) = r=m(t,S)

over the plane {(¢,S) :t > 0,S > 0}. Since k(r) > 0, we call the model (4.8)
with relatives (4.9), (4.10) the generalized closed Friedman’s model [2].
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XAMPLE 2. For the space-time of Robertson—Walker [1]
2

1— kr?’
n the base of (4.6) we obtain k(r) = k = constans. Since £k > 0,s0 k =1

d we obtain on the plane {(t,R) :t > 0, R > 0} a curve, which is cycloid,
o it represents a closed model of Friedman.

4.11) diag(1, —R?*r?,—R?r%sin’ @), R = R(t), k = constans

COROLLARY. The solution (4.8) with (4.6) represents a generalized closed
Friedman model.
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