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PROJECTIVE COLLINEATION AS A PRODUCT
OF SPECIAL HARMONIC HOMOLOGIES

Abstract. The problem of decomposition of a projective collineation into special har-
monic homologies i.e. homologies with the fixed center and homologies with fundamental
hyperspaces containing the fixed points, is considered. We prove that for every harmonic
homology of the n-dimensional projective space there exists j < 3 such that the harmonic
homology is a product of j harmonic homologies from the given class.

1. Introduction

The problem of decomposition of a projective collineation into any spe-
cial collineations was considered in many papers, for instance Cater [1],
Ellers (2], Witczynski [4], [6], and many others.

In this paper we deal with the n-dimensional projective space P"(F),
where F = R or F = C, and we present the decomposition of a projective
collineation f into harmonic homologies satisfying some conditions presented
below.

Let s; and a3, a3, ..., a, be fixed projectively independent points belong-
ing to P*(F). Let ®(n) be the class of harmonic homologies of the space
P™(F) with the centre in the point s;. Let ¥(n) be the class of harmonic ho-
mologies of the space P™(F) with fundamental hyperspaces including points
az,as,...,an. Let O(n) = ®(n) U ¥(n).

We introduce some auxiliary notation.

Let Z(z1,z2,...,zx) denote the subspace generated by points z,
Zo,..., Tk € Pn(F)
Let
f . (al,ag, e ,ak) — (bl,bg,. .. ,bk)
denote that f(a;) = b;, i =,2,...,k, where f is a projective collineation of
P™(F).

Let fo,u denote a harmonic homology with the centre a and the funda-
mental hyperspace H. Matrices of collineations will be denoted by G, H,
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2. Decomposition of a harmonic homology into harmonic homolo-
gies belonging to the class 6(n)
Witczynski has proved the following theorem.

THEOREM 1. (Witczyniski (1981)) For every harmonic homology f..un of
P™(F) there ezists j < 7, such that fo u is a composition of j transforma-
tions from the class O(n). L

Using the same arguments we obtain the following corollary.

COROLLARY 1. For every harmonic homology f, u of P"(F), such that s, ¢
H, there ezists j < 3 such that fo g is a composition of j transformations
from the class ©(n). ]

In the theorems presented below we show that number seven can be
diminished to three for every harmonic homology f, u.

THEOREM 2. For every harmonic homology fa,n of P*(F), such that a ¢
Z(az,a3,...,a,) and sy € H, there exists j < 3 such that f, u is a compo-
sition of j transformations from the class ©(n).

Proof. Assume that f, y ¢ ©(n). Let a be a point such that a € Z(sl,a)_,
a # s; and @ # a. Let H be a hyperplane such that Z(as,a3,...,a,) C H
and h; g(s1) = a. Let @41 € H be a point such that points a3, a3, ..., an,
Gn+1 are projectively independent and H = Z(a2,as,...,an,8n+1). Then
HNH = Z(a3,a4,...,8n,8n41)
for some points a3, a,,...,ad, such that az,aq,...,an,8n4) are projectively
independent. Let f, ;(a) = @’. The homology h; g is defined as follows
h’&,}_l : (a2a 63, s )dn-{-la Sl,a,d,) — (a2a 6‘31 E va'n-}»l) a, s, &/)
Let us define a harmonic homology g,, x, as follows
Gs, ,H, : (slv d3a ceey a’n+1)a'aal) — (sla&37 v ,&n+1,d/,d).
Then
fa, i = ha ggs,, 1 ha -
]

THEOREM 3. For every harmonic homology fo u of P"(F), such that a €
Zlas,a3,...,a,) and s, € H, there exists j < 2 such that fo u is a compo-
sition of j transformations from the class ©(n).

Proof. There is no loss of generality in assuming that a = @2. Let Gpy1 € H
be a point such that the points a3, a3, ...,an,@n41 are projectively indepen-
dent. Let H = Z(a,as,...,an,51) and Hy = Z(a2,a3,...,8n,3n41). Then

Hl NH = Z((_13,(-14,.. "anvaﬂ+l)
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and

HNH = Z(as,aq, . ..,an, 81)
or some points as,daq, - - -,a, such that @s,aq,...,an,38,4+1 are projectively
ndependent.

- Let y € Z(s1,a2) be a point such that y # s; and y # a2. Let y =
fa,1(y); note that 3’ belongs to the line Z(s;,az). Let us define homologies
%, ... 7 and g, #, as follows:

- - ! - - !
9sy,H,y - (81,03,-'-,an+1,¢12,y,y ) — (s1,83,...,8n41,a2,¥ ,y)

pnd

- = 1 - - !

h'&,“',l_}-{ : (31,03,- <yQ@n4+1,02,T,T ) — (31,0.3, +++90n41,02,T 12;),

where r is a choosen point such that z € Z(s1,8n+1) and z # s; and
I # Gn41 and g, H, (z) = z’'. We have

- - 7 - - !

fa;,H : ((13,. - 0ndL Y, Y ,.’E) — ((13,. <3y 8ny1, Y ,y’z)

thus

fa = h&n+1.ﬁ981.H1 = g’lv”lh&n+l|f{'

=

Theorems 2, 3 and Corollary 1 show that for every harmonic homology
of the space P™(F) there exists j < 3 such that the harmonic homology
is a composition of 7 homologies belonging to the class ©(n). The theorem
below shows that the number three cannot be diminished in the case of the
space P?(F). First we will show two lemmas about matrices of harmonic
homologies with a fixed point.

LEMMA 1. Let s, = (0,0,1). Then a harmonic homology h of P%(F) such
that h(s,) = s1, has in some coordinate system one of the matrices

+1 0 0 +1 0 0 Fl1 O 0
Gi=| 0 £1 0 Ghi=| 0 F1 0 G'=| 0 £1 o0
0 0 F1 0 0 =1 0 0 =F1

1 0 0 1 0 O

Go=|01 0 Gz=|01 0

z 0 -1 0 y -1

1 0 O 1 0 O

Gsy=101 O Gs=|z -1 0

z y -1 0 0 1

0 0 1 =z



826 W. Boratynski

2

1 =z 0 z 1': 0
Gsg=|0 -1 0 Gg = T -z 01,
y 3 -1 — y t

wheret = x1, z,y,z € F and for the matriz Gy, z # —t and z # 0.

Proof. Matrix G of a harmonic homology h such that h(s;) = s;, satisfies
the conditions:

0 0
G|0})=cl|O and GG =dI
1 1
for some constants c¢,d, with cd # 0, where I denotes the identity matrix.
Solving above equations we obtain the assertion. [

LEMMA 2. Let s; = (0,0,1). Then the harmonic homology of P*(F) with
the centre sy has one of the matrices

1 0 O 1 0 0
G,=| 0 £1 0 G,=]10 1 0
0 0 F1 z 0 -1
1 0 0 1 0 O
G3 = 0 1 0 G4 = 0 1 0 L]
0y -1 z y -1
where z,y € F.

Proof. The matrix M of a harmonic homology with the centre s; satisfies
the conditions mentioned in the proof of Lemma 1. Moreover

Ms; = cs)

and for every point a, a # dsy, where d € F — {0}

Ma # ca,
where ¢ # 0. An easy computation shows that only matrices G;, G2, Gs,
G, from those mentioned in Lemma 1 have these properties. [

THEOREM 4. There ezsists a harmonic homology fo,u & ©(2) of the space

P2%(F), which is not a composition of two harmonic homologies belonging to
the class ©(2).

Proof. Consider three cases.

I. Consider two transformations g,; 4, and g, x, belonging to the class
®(2). Let f,, g be a harmonic homology such that a # s; and s; ¢ H.
Then fo,n # gs,,H, - 9s,,H, independently on a choice of fundamental lines
Hy, H, C P¥(F).
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II. Consider two transformations h., gz, and h, g, belonging to the
plass ¥(2), thus a; € Hz i a; € H,. Let f, g be a harmonic homology such
bhat a # a; and a2 ¢ H. Then fou # h. g, h., g, independently on a
rhoice of points ¢;, ¢c; and fundamental straight lines H; and H» such that
B, € Hy N H,.

ITI. The only case remaining concerns the compositions of the form
9s:, H he, g, and hg, g,9s, H,, Where g, g, € ®(2) and h,, g, € ¥(2).

Take the coordinate system in F3 such that s; = (0,0,1) and a; =
(1,0,0) and H, = Z((1,0,0),(0,1,0)). Then the matrix of the homology
h., g, has the form

1 0 v
H=[{0 1 w
0 0 -1

for some v,w € F. In this case we do not consider the homologies with
fundamental line Z((1,0,0),(0,0,1)) because if H, = Z((1,0,0),(0,0,1)),
then g, u, ., g,(51) = h¢, g,9s,,H,(51) = 51. Hence we cannot obtain a
homology fs i such that s; #a and s, € H.

Consider the products HG; and G;H, ¢ = 2,3,4 (since the homology g
with the matrix G; belongs to ®(2)N¥(2), and the compositions hg and gh,
where h € ¥(2), were considered in the case II, we can ommit the matrix
G1). Let M € {HG;|i = 2,3,4} U {G;H]|i = 2,3,4}; then M is a matrix of
a harmonic homology if and only if MM = cI for some ¢ € F and ¢ # 0.
Calculations show that then

HG;,=GH=1 =234

By the cases I, II and III, we infer that if the harmonic homology f, # is
such that a # s; and a # a3 and s; € H and a; € H, then there do not
exist hy, hy € ©(2) such that fo g = hihs. [ ]

3. Decomposition of a projective collineations in P*(F) into har-
monic homologies belonging to the class ©(n)

Let us recall some theorems on generating of the group of projective
collineations by harmonic homologies.

THEOREM 5 (Witczynski [4]). For every projective collineation in P%(F)
there exists j < 3 such that this projective collineation is a composition of j
harmonic homologies. s

THEOREM 6 (Witczynski [5]). For every projective collineation in P3(C)
there exists j < 4 such that this projective collineation is a composition of j
harmonic homologies. [
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THEOREM 7 (Witczynski [3]). For every projective collineation in P™(F)
there ezists j < 6E(%t!) + 1, where E(a) denotes the integer part of a, such
that this projective collineation is a composition of 7 harmonic homologies.

(]

By Theorems 2, 3, 5, 6 and 7 and Corollary 1 we obtain the corollaries.

COROLLARY 2. The group of projective collineations of P2(F) is generated
by the class ©(2). The rank of generation is not greater than 9. ]

COROLLARY 3. The group of projective collineations of P3(C) is generated
by the class ©(3). The rank of generation is not greater than 12. [ ]

COROLLARY 4. The group of projective collineations of P*(F), n > 2, is

generated by the class ©(n). The rank of generation is not greater than
18E(241) + 3. .
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