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ON A CLASS 
OF GENERALIZED FREDHOLM OPERATORS, VI 

A b s t r a c t . Let X be a complex Banach space and Τ a generalized Predholm operator 
on X (see [3], [4], [5], [6] and [7]). In [7] we have shown that Τ has a Kato decomposition 
( Χ ι , X 2 ) · We say that a Kato decomposition ( Χ ι , X 2 ) of Τ is non-trivial if X2 φ {0}. 
The main result of this paper reads as follows: 

Let Τ be a generalized Fredholm operator with a non-trivial Kato decomposition. 
Then 

(i) The subspace Xi of each Kato decomposition of Τ is unique if and only if Τ 
has finite ascent. 

(ii) The subspace X\ of each Kato decomposition of Τ is unique if and only if Τ 
has finite descent. 

(iii) Τ has a unique Kato decomposition if and only if 0 is a pole of the resolvent 
( Γ - λ / Γ 1 . 

1. Introduction and notations 
In this paper X always denotes a complex, infinite-dimensional Banach 

space. Notations and definitions not explicitly given are taken from our 
previous papers [3], [4], [5], [6] and [7]. 

DEFINITION . Let Τ € C(X). We say that Τ has the Kato decomposition 
(Χ\,Χ%) if Xi and X2 are closed, Γ-invariant subspaces of X with 

(i) X = X1®X2\ 
(ii) if Τι = T\Xi then Τχ(Χι) is closed and N{Ti) C η„>ι Γ ^ Χ ι ) ; 

(iii) if T2 = T\X2 then Γ2 is nilpotent. 

In [7] we have shown that each operator in Φ9(Χ) has a Kato decompo-
sition. 
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812 Ch. Schmoeger 

PROPOSITION 1.1. Let Τ e Φ9{Χ) and {Xi,X2) a Kato decomposition ofT. 
IfTi = T\Xi, T2 - T\Xi and m > 0 with Τψ = 0, then: 

(1) T\ G Φ(Χ0, j(Ti) = 0 and T2 € Γ{Χ2). 
(2) N(Tk) = N{Tf) θ X2 for each k>m. 
(3) T»(X) = 1?(X) for η > τη and Π„>ι Γ"(Χ) = Π„>ι ϊ ? ( * ι ) . 

P r o o f . (1) is shown in [7], Proposition 3.6, for a special Kato decomposition. 
The proof there works for an arbitrary Kato decomposition. 

(2) N{Tk) = N(7f) Θ N(Tf) = N(Tf) Θ X2 for k > m. 
(3) For η > m, T"{X) = T"(Xι Θ X2) = T"(Xi) = T?{Xα), hence 

nn>!T?(Xl) = rin>mT?(Xl) = = Πη>1 ^ ( X ) . 

NOTATIONS. By X* we denote the dual space of X and by T* the adjoint 
of Γ € C(X). If Μ is a subspace of X then M 1 is defined as follows: 

Μ1 = {φ € X* : φ{χ) = 0 for all χ € Μ). 

For a subspace Ν of X* we write ±N for the subspace 
λΝ = {χ € Χ : φ(χ) = 0 for all φ G Ν}. 

If Τ e Φρ(Λ"), then we know from [3] and [5] that 

Τ* Ε Φg(X*) and Γ"(A") is closed for each η > 0. 

Thus we also have that (T*)n(X*) is closed for all η > 0. We shall make 
frequent use of this properties (without further reference). 

The proof for the following technical result is entirely elementary. 

PROPOSITION 1.2. Let Τ e C{X). Then 

N(T) C Π T i X ) ( J Ν (Τ") C T(X) 
η>1 n>l 

^ U NiT") C p | Tn{X). 
n> 1 n>l 

REMARK 1.3. Let Τ e C(X). If X\ and X2 are T-invariant subspaces of X 
with X = Χγ φ X2 and if m is an integer > 0 with (T|^ 2)m = 0, then the 
assertions (2) and (3) of Proposition 1.1. remain valid. 

2. On Kato decompositions 
In this section we prove some results which are similar to the results 

obtained in [2] for Hilbert space operators. Throughout this section let Τ be 
an operator in C(X). 
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PROPOSITION 2.1. Suppose that (Υι,Υζ) and (Z\,Z2) are Koto decomposi-
tions o f T . Then (Yi , Z2) and (Zi,Y2) are Koto decompositions ofT. 

P r o o f . It suffices to show that (Υι ,Ζί) is a Kato decomposition of T. If 
X = Yi + Z2 and Yi Π Z2 = {0} , then we are done. Put Ri = T\Y. {i = 1,2) 
and Si = T\z. (i = 1,2). Take integers μ, ν > 0 with = 0 and = 0. 
Let η = max {μ, ζ/}. 

Take χ € Yi η Z2. Then T"x = S%χ = 0, hence S\x = Vχ = 0, thus 

χ € Ν ( S i ) C Π 5 f ( Z i ) C Z x . 
fc>l 

This gives χ G Ζχ Π Z2 = {0 } . Therefore we have Yi Π Z2 = {0} . 
Now we show that X — Y\ + Z2. Let χ G X. Then there are yi G Yi 

(i = 1,2) and Zi G Zi (i = 1,2) such that χ = y\ + y2 = z\ + z2. It follows 
that yi — z\ = z2 — y2 and therefore 

T"(yi - zi) = rn(z2 " W) = S%z2 - I%y2 = 0, 

hence 
yi - zi € Ν (Τ") = N{S?) θ Z2 

(Proposition 1.1). Thus there are ξι € N(Si) and ξ2 € Z2 such that y\ —z\ = 
£1 + £2· From yi — z\ — ξ2 = G N(S™) and Proposition 1.2 we get 

in - - 6 e Π S t o ) = f | τ * ρ ο = Π * ϊ ( * ί ) £ 
fc>l fc>l fc>l 

Hence zi + £2 € Yi· This gives z\ e Y\ + Z2- It results that χ = z\ + z2 G 
Yi + Z2 + Z2 = Yi + Z2 . • 

PROPOSITION 2.2. Suppose that ( Y i , Y 2 ) and ( Ζ χ , Ζ 2 ) are Kato decomposi-
tions ofT. Then there is A Ε C{X)~l with 

Τ A = AT, Ζχ = Λ ( Υ ι ) and Z2 = A(Y2). 

P r o o f . Take projections Ρ and Q in C(X) with 

P(X) = Yu N(P) = Y2, Q(X) = Zu N(Q) = Z2. 

Put A = QP + (I - Q)(I - P). Since TP = PT and QT = TQ, we get 
Τ A = AT. 

A is injective. In fact, let χ G Ν (A), then QPx = -(I-Q)(I-P)x, thus 
QPx G Q{X)n{I-Q)(X) = { 0 } , hence Px G N(Q)nP(X) = YXC\Z2 = { 0 } 
(Proposition 2.1). It follows that 0 = QPx = -(/ - Q)(I - P)x = -x + Qx, 
hence χ = Qx. Since χ e N(P), we get χ G N(P) Π Q(X) = Υ2 Π Zi = {0} , 
thus χ = 0. 

A is surjective. In fact, let y G X. Then y = z\+z2 with Zi G Zi (i = 1,2). 
From Proposition 2.1 we derive X = Yi Θ Z2, thus z\ — y\ + w2 for some 
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2/i G Yi and some w2 G Z2· We obtain 

-Pyi = yi, = 21 and Qw2 = 0. 

Thus 
(2 .1 ) QPy\ = Qyi = Q{zi - w2) = zx. 

Since X = Y2 Θ Ζχ, we get z2 = 2/2 + J/2 G and ιυχ € Ζχ. Then 

(2 2) ( / " Q ) ( / " P ) m = { I ~ Q ) V 2 = ( / " Q ) ( Z 2 " W l ) 

= (I - Q)z2 - (/ - Q)u>i = 22. 

From (2.1), (2.2), (I - Q)(I - P)yx = 0 and QPy2 = 0 we obtain 

Mvx + y2) = QPyi + (/ - <?)(/ - + <?^s/2 + (/ - Q)(i - P)y2 
= 21 + 22 = y. 

It remains to show that Ζχ = j4(Yi) (the proof for = A(Y2) is similar). 
Take yi G Υ"χ. Then PVl = yu thus Ay 1 = QPVl + (/ - Q)(/ - P)yj = 
QPyi = Qyi € Q(X) = Ζχ. Hence Λ(Υχ) C Ζχ. 

Let ιΐχ € Ζχ. Since X = Y\® Z2, there are v\ G Υχ and v2 G Z2 with 
ux = v\ + v2. Then we get 

ui = Qui - Q(ux + v2) = Qvi ' QPvi 

and 
(.I - <?)(/ - P)v\ = 0. 

Thus ux = QPvi + (I - Q)(I - P)v 1 = Αυχ G Λ(Υι). It follows that Ζχ C 
A(Vx). 

PROPOSITION 2.3. Suppose that (Υχ, Y2) w a Kato decomposition ofT, A € 
C(X)_1 and Γ A = AT. Then (Λ(Υι), A(Y2)) is a Kato decomposition ofT. 

Proof . Since A"1 G C(X) and Τ A = AT, it is easy to see that A(Yi) and 
A(Y2) are closed, T-invariant subspaces of X. Furthermore, we have 

Λ(Υχ)η A(Y2) = {0} and X = A{Y1) + A(Y2). 

Thus X = A(Y1)®A(Y2). 
Put Ti = T\Yi and Ä, = (i = 1,2). Take a convergent sequence 

(yn) in Λχ(Α(Υχ)) and put yo = limn_oo yn. Then there is a sequence 
(i„) in Yi with yn = R\Axn = TAxn = ATxn. It follows that Txn = 
A~lyn —• A~ly$ (η —• oo). Since Τ(Υχ) is closed, we get v4_1yo G T(Yi), 
thus A_1yo = Txo for some xo G Y\. This gives yo = AT χ ο = Τ Αχ ο = 
RiAxq g Λχ(Λ(Υχ)). Thus Ä!(jl(yi)) is closed. 
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Now take u € N(Ri). We have u = Av for some ν e Yi- This gives 
ATv = TAv = Tu = Riu = 0, hence Txv = Tv = 0. From N(T\) C 
ru>i it; results that 

u € Π ΑΤ^Υι) = Π Τ"(Α(Υύ) = Π W O ) · 
Jk>l fc>l fe>l 

It remains to show that is nilpotent. But this is straightforward, since 
T2 is nilpotent. • 

3. Kato decompositions for operators in $g(X) 
Throughout this section we assume that Τ is an operator in Φ9(Χ). Re-

call from Section 1 that Τ and T* have Kato decompositions. 

PROPOSITION 3 . 1 . 

(1) If (Χ\,X2) is a Kato decomposition o f T , then (Χ^,Χι) is a Kato 
decomposition ofT*. 

(2) If(Ni,N2) is a Kato decomposition ofT*, then (-LiV2,-LiV1) is a Kato 
decomposition ofT. 

Proof. (1) It is easy to see that and X £ are closed, TMnvariant sub-
spaces of X* with X* = Χγ Θ • It is also easy to see that T*\x± is nilpo-
tent, since T\x is nilpotent. Let ν be an integer > 1 such that (T*\x±)l/ = 0 
and(T|X 3r = 0 . P u t ^ = T»|xx. 

Since Τ* €Φ σ (Χ*) , it follows from [5], Proposition 1.5, that 
thus Φ(Χ2") is closed. It remains to show that 

λγ(φ) c η 
fc> 1 

By Remark 1.3 and Proposition 1.1 (3) it suffices to show that 

(3.1) N(*)C f | ( r * ) f c ( ^ ) · 
*>1 

Take some integer μ > u and put T\ = Τ\Χχ. From Proposition 1.2 we get 
Ν ( I f ) C ΤΪ{Χχ) = T"{X). 

Therefore (see Proposition 1.1 (2)) 
Ν(Τμ) = Ν (Τf) Θ Χ2 C Τ" (Χ) θ Χ2, 

thus (since all subspaces are closed) 
ΛΓ(Ψ"·) = N((T*)") Π X2x C (Τ*)μ(Χ*). 

Hence ΛΓ(Φ) C N{Φ") C ( Γ * ) ^ * * ) for all μ > v. This shows that (3.1) 
holds. 
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(2) It is easy to see that LN2 and are closed, T-invariant subspaces 
λγ2.Γ2 = Γ|ΧΑΓι>Φ1=Γ·|^1 of X and that X = 1N1. Put Ti = 7 W , T2 = Τ|ΧΑΓι, Φι = Γ* 

and = 
There is some integer ν > 1 such that Φ£ — Then it is easy to check 

that T2" = 0. From [5], Proposition 1.5, we get Tx G Φ 9 { λ Ν 2 ) , hence T1{±N2) 
is closed. It remains to show that 

Ν(Ί\) C f ] ΤΪ(λΝ2). 
k> 1 

As above it suffices to show that 

(3.2) Ν(Τ,) C f | Tk(X). 
k> 1 

Take some integer μ > v. Then, by Proposition 1.2, 

N(Φ^) C Φ?(ΛΓι) = (T'YiX*). 

Therefore 
Ν((Τ*)μ) = N{®N2C (T*)U{X*) φ N2. 

Since all subspaces are closed, we get 

N(T?) = n ^ C Τμ(Χ). 

Hence N(Ti) C Ν(T") C Τ*(Χ) for each μ > 0. This shows that (3.2) is 
valid. • 

Now we come to the main results of this paper. A Kato decomposition 
(Xi,X2) of Τ is called non-trivial if X2 φ {0}. From Proposition 2.2 we get 
that if Τ has a non-trivial Kato decomposition, then all Kato decompositions 
are non-trivial. It follows that if Τ has no non-trivial Kato decomposition, 
then Τ has the unique Kato decomposition (X, {0}). 

In what follows we shall investigate the case where Τ has a non-trivial 
Kato decomposition. By m we always denote the smallest integer > 0 such 
that 

N(T) Π 7 7 m (X) = N(T) Π Tm+k(X) for each fc>0 

(see [7], Proposition 1.3). If Τ has a non-trivial Kato decomposition then 
τη > 0. In fact, suppose to the contrary that m = 0. Then N(T) = N(T) Π 
Th(X) for each k > 0, thus N(T) C Tk(X). Since T(X) is closed, we 
get that (X, {0}) is a Kato decomposition. But this is a contradiction, since 
Τ has non-trivial Kato decomposition. Furthermore, we have for the special 
Kato decomposition (Zi, Z2) of Τ constructed in [7]: 

(T\Z2r = ο 
(see [7], Corollary 2.2). 
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^heorem 3.2. Suppose that Τ has a non-trivial Kato decomposition. The 
pllowing conditions are equivalent: 

(1) p(T) < oo. 
(2) Τ has the SVEP in 0. 
(3) For each Kato decomposition (Xi,X2) of Τ we have that T\Xi is left 

invertible. 
(4) For each Kato decomposition {X\,X2) of Τ we have X2 = Ν {Τ™). 
(5) For all Kato decompositions (Χχ,Χ2) and (Υι,Υ^) of Τ we have 

X2 = Y2. 

p r o o f . The equivalence of (1), (2) and (3) follows from [5], Theorem 2.5, 
6], Theorem 2.9, and the remark in Section 4 of [7]. 

Suppose that p{T) < oo. Then, by [5], Proposition 1.2, N ^ n l ^ i X ) = 
{0}. Let (Zi, Z2) be the Kato decomposition of Τ which we have constructed 
in [7], Sections 2 and 3. For the subspaces Y and Nj in Section 2 of [7] we 
then have 
1 Υ = X and Nj = N{Tj) ( j > 0), 

lience 
(3.3) Z2 = NM = NIL™). 

If (Xi, X2) is an arbitrary Kato decomposition of T, take projections Ρ and 
Q € C(X) such that 

P ( X ) = ZU Ν (Ρ) = Z2, Q{X) = XX and N(Q) = X2. 

Put A = QP + (I - Q)(I - P). From (3.3) and Proposition 2.2 it follows 
that X2 = A(Z2) = A(N(T™)). Fix some integer u>m with {T\X2)V = 0. 
Since p(T) = m ([5], Proposition 2.1), we get 

(3.4) X2 C N ( V ) = N(TM) = Z2. 

Now let z2 G Z2. Thus Pz2 = 0, (I - Q)z2 e X2 C Z2 = (I - P)(Z2), 
hence (I-Q)z2 = (I-P)(I-Q)z2. This equation gives z2-Qz2 = z2-Qz2-
Pz2 + PQz2, thus PQZ2 = 0. Hence Qz2 G Q{X) Π Ν (Ρ) = X1n Z2 = {0} 
(Proposition 2.1). It follows that z2 € N(Q) — X2. Thus we have shown 
that Z2 C X2. From (3.4) and (3.3) we get 

X2 = Z2 = N(TM). 

Thus we have shown that (1) implies (4). It is clear that (4) implies (5). 
(4) implies (1): Let (Z\, Z2) be the Kato decomposition as above. Corol-

lary 2.2 (4) in [7] gives {0} = ^ ( X ) η Z2, hence 

T M ( X ) Η N(T) C T ^ I X ) Η N(TM) = T M ( X ) Η Z2 = {O}. 

Now use [6], Proposition 2.1, to obtain p(T) < 00. 
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(5) implies (1): Again let (Ζχ, Z2) be the special Kato decomposition 
from [7]. Our hypothesis says that 

(3.5) Y2 = for each Kato decompositon (Yi,Y2) of T. 

Assume to the contrary that p{T) = 00. Then 

N(T) η Π Tk{X) φ {0} 
fc>l 

([5], Proposition 2.5). Put X0 = f|FC>i T K { X ) . By Theorem 4.8 in [3] we have 
T{X0) = X0- Take x0 € Ν{Τ)Γ\Χ0 with x0 φ 0. Then we get x i , . . . , xm_i € 
XQ such that 

(3.6) Tij = Xj-i ( j = 1 , . . . , τη — 1) and Tx0 = 0. 

Furthermore, we have from Proposition 1.1 

(3.7) xo, · · · , x m - i € Zi, 

since Z2 φ {0}, Ζγ φ {0}. Hence there is a functional φ G with 

(3.8) φ φ 0. 

Take a projection Ρ G C(X) with P ( X ) = ZX and ( I - P ) ( X ) = N{P) = Z2. 
Define the operator R G C{X) by 

m - l 
Rx = (I — P)x + ^ φ(Τη(Ι — P)x)xn (x G X). 

n = 0 

Since R is the sum of an operator with closed range and a finite-dimensional 
operator, R has closed range. Put Y2 = R(X). 

Since TP = PT, we obtain from (3.7) that for χ G X 
m - l 

(3.9) TRx = ( i - P)Tx + φίΤ1^ ~ P)x)Txn 
n=0 
m - l 

= (I - P)Tx + Σ φ(Τ-\ΐ - Ρ)Γχ)χη_! 
η=1 
m - 2 

= {I- P)Tx + £ φ(Τ(Ι - Ρ)Τχ)χη. 
η=0 

Because of Ζ2 = (I - Ρ)(Χ) and (T|Z 2)m = 0, it follows that 
φ { τ τ η - 1 ( / _ p ) T a . ) X m _ 1 = ^ ( 7 ^ ( 7 _ P ) x ) i m _ 1 = 0, 

thus, by (3.9), TRx = RTx. This shows that T(Y2) C Y2. From 
(T l(/-p)(X))m = 0 and T^xj = 0 ( j = 0 , . . . ,m - 1) we derive T^iRx) = 0 
for all χ G X. Hence T\Y is nilpotent. 
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Next we show that Ζ χ Π Y2 = {0}. Let χ Ε Ζ\ Π Υ ,̂ then χ = Rz for some 
€ Χ, thus 

m—1 

x = ( / - p ) z + Σ v i r v - ρ ) Φ η , 
n = 0 

(lence 
m - l 

χ - Σ φ(Τ"(Ι - Ρ)ζ) = ( Ι - Ρ)ζ. 
η = 0 e'his and (3.7) show that (I - P)z Ε Ζχ Π Z2 = {0}, therefore ( / - P)z = 0, 

hus χ = 0. 
Now we show that X = Z\ + Υί>· Let χ Ε X, then χ = z\ + ζ-ι with 

Z\ = Px and z^ = (I — P)x. It follows that 
m—1 m—1 

1 = ( Z 1 - Σ <Ρ(ΤηΖ2)Χη) + ( Ζ 2 + Σ lP(TnZ2)Xn), 
n = 0 n=0 

> ν ' » ν ' 
ezi ev2 

hence χ Ε Z\ + Y .̂ 
We summarize: Yj is a closed, T-invariant subspace, T\Yj is nilpotent, 

and X = Z\ Θ >2· Therefore, (Zi, Y2) is a Kato decomposition of T. From 
(3.5) we obtain Z2 = Y2· The definition of R and (3.7) show then that 

m - l 

Σ v i ^ i l - Ρ)Φη € Ζι Π Z2 = {0} for all χ e x . 
n=0 

Hence Σ ^ ψ{Τηυ)χη = 0 for all ν 6 Z2. Since T ^ ^ x j = 0 for j = 
0 , . . . , m - 2 and r m _ 1 x m _ 1 = xo, we get 

m - l 
0 = Γ" 1 - 1 ^ Σ ψ ί ^ ^ Χ η ) = φ(Τηι-1ν)χο for all υ 6 Z2. 

n=0 
Thus Ση=ο2 φ(Την)χη = 0 for each ν Ε Z2. Applying Τ™-2 to this equation, 
we get φ(Ττη~2ν)χο = 0. Similar arguments give 

<p{Tjv)x0 = 0 for j = m - 3 , . . . , 1,0. 
Hence φ(ν)χο = 0. Since xo φ 0, we get 

ψ{ν) = 0 for all ν Ε Z2, 

thus φ Ε Z2· Since φ Ε Ζγ, we obtain φ = 0. But this contradicts (3.8). • 
The next theorem follows from Proposition 3.1 and Theorem 3.2 by 

duality. Recall that 
q(T)=p(T*), p(T) = q(T*) ([5], Proposition 2.2), 

T* has the SVEP in 0 <i=> q(T) < 0 0 ([5], Proposition 2.5) 
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and 
q(T) < oo <=>· Τ\χ is right invertible 

for each Kato decomposition (Αχ, X2) of Τ 

([6], Theorem 2.9, and [7], Remark in Section 4). 
THEOREM 3 .3 . Suppose that Τ has a non-trivial Kato decomposition. The 
following assertions are equivalent: 

(1) q(T) < 00. 

(2) T* has the SVEP in 0. 
(3) For each Kato decomposition (Χχ,Χ^) of Τ we have X\ = Tm{X). 
(4) For each Kato decomposition (Χχ,Χ^) of Τ we have that is right 

invertible. 
(5) For all Kato decompositions (Χχ,Λ^) o-nd (Υχ,Υ^) of Τ we have 

Χχ = Υχ· 
The following theorem characterizes operators in Φ9(Χ) which have a 

non-trivial unique Kato decompostion. 

THEOREM 3 .4 . If Τ has a non-trivial Kato decomposition, then following 
conditions are equivalent: 

(1) 0 < p(T) = q(T) < 00. 

(2) (Τ - XI)-1 has a pole at λ = 0. 
(3) 0 is an isolated point of σ{Τ). 
(4) 0 T5 Α boundary point of σ(Τ). 
(5) Τ has a unique Kato decomposition. 
(6) Τ and T* have the SVEP in 0. 
(7) For each Kato decomposition (Λχ, X2) 
(8) X = Tm(X)®N{TTn). 
(9) For each Kato decomposition (X\,X2) 

X2 = N(T™). 

P r o o f . The equivalence of (1) and (2) follows from [1], Satz 101.2. From [3], 
Theorem 4.8 (f), we get the equivalence of (2), (3), and (4). The equivalence 
of (1) and (5) follows from Theorem 3.2, Theorem 3.3 and [1], Satz 72.3. 
Use [1], Satz 72.3, and [5], Theorem 2.5, to obtain the equivalence of (6) and 
(1). From Theorems 3.2 and 3.3 we get that (6) and (7) are equivalent. Satz 
72.4 in [1] gives the equivalence of (8) and (1). (5) and (9) are equivalent by 
Theorem 3.2 and Theorem 3.3. • 

In [3], Theorem 4.4, we have shown that if A € C(X) and 0 < p(A) = 
q(A) < 00, then Ap 6 Φ9(Χ), where ρ = p{A). But, in general, it does 
not follow that A e Φ 9(Χ). By [3], Example 1.7 (b), there is an operator 

of Τ we have Τ\Χχ € £(Λ"χ)_1. 

of Τ we have Xx = Tm(X) and 
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A € £(X) with A2 = 0, but A & Φ9(Χ) (observe that p(A) = g(A) = 2). 
This example also shows that a nilpotent operator need not belong to Φ9(Χ). 

Now we are in a position to characterize chain-finite operators which 
belong to 
COROLLARY 3 . 5 . Let A e C(X) and 0 < p{A) = q(A) < oo. Put ρ = p(A). 
Then the following conditions are equivalent: 
(1) x e i s ( 4 
(2) dim {A(X) η ΝζΑ" ' 1 ) ) < oo. 

Proof . Put X\ = AP(X), X2 = N(AP). Then, by [1], Satz 101.2, X = 
X\ Θ Χ2· Furthermore, we have 
(3.10) A(X1) = Ap+l(X) = Ap(X) = X1 is closed, 
(3.11) A(X2) = A(X) Π Ν (A'-1) C X2 

and 
(3.12) A\Xl C C(X1)~\ 
Put Αι = Α\Χχ and A2 = A\x . 

(1) (2): Since ρ > 0 and X = ΧΎ Θ X 2 , we get from (3.10) and 
(3.11) that (X\,X 2 ) is the (unique) non-trivial Kato decomposition of A. 
Proposition 1.1 shows that A2 € !F{X2), thus (2) follows from (3.11). 

(2) = > (1): From (3.10) and (3.11) we see that X\ and X2 are closed, 
I4-invariant subspaces of X. (3.12) gives A\ € Φρ(Λ"ι). Since (2) holds, we 
obtain from (3.11) that A2 € T { X 2 ) C Φ3(Α"2)· Now use Proposition 1.5 in 
[5] to obtain A e Φ9(Χ)· • 

COROLLARY 3 . 6 . Suppose that A e C(X) is nilpotent, Α φ 0 , η € Ν, An = 0 
and An~l ψ 0. Then the following conditions are equivalent: 

(1) Ae*g{X). 
(2) dim (A(X) ΓΊ N(An~1)) < oo. 
(3) Ae?(X). 

Proof . Since X = An(X) φ N(An) and Αη~λ φ 0, we have p(A) = q{A) = 
η > 0. Corollary 3.5 shows that (1) and (2) are equivalent. Because of 
F{X) C Φ9(Χ), (3) implies (1). It remains to show that (1) implies (3). 
Since A is nilpotent, σφ(Α) = σ(Α) = {0} , hence A is a Riesz operator. If 
(1) holds, then it follows from [4], Theorem 3.7, that A € f(X). • 
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