

Christoph Schmoeger

ON A CLASS  
OF GENERALIZED FREDHOLM OPERATORS, VI

**Abstract.** Let  $X$  be a complex Banach space and  $T$  a generalized Fredholm operator on  $X$  (see [3], [4], [5], [6] and [7]). In [7] we have shown that  $T$  has a Kato decomposition  $(X_1, X_2)$ . We say that a Kato decomposition  $(X_1, X_2)$  of  $T$  is *non-trivial* if  $X_2 \neq \{0\}$ . The main result of this paper reads as follows:

Let  $T$  be a generalized Fredholm operator with a non-trivial Kato decomposition. Then

- (i) The subspace  $X_2$  of each Kato decomposition of  $T$  is unique if and only if  $T$  has finite ascent.
- (ii) The subspace  $X_1$  of each Kato decomposition of  $T$  is unique if and only if  $T$  has finite descent.
- (iii)  $T$  has a unique Kato decomposition if and only if 0 is a pole of the resolvent  $(T - \lambda I)^{-1}$ .

### 1. Introduction and notations

In this paper  $X$  always denotes a complex, infinite-dimensional Banach space. Notations and definitions not explicitly given are taken from our previous papers [3], [4], [5], [6] and [7].

**DEFINITION.** Let  $T \in \mathcal{L}(X)$ . We say that  $T$  has the *Kato decomposition*  $(X_1, X_2)$  if  $X_1$  and  $X_2$  are closed,  $T$ -invariant subspaces of  $X$  with

- (i)  $X = X_1 \oplus X_2$ ;
- (ii) if  $T_1 = T|_{X_1}$  then  $T_1(X_1)$  is closed and  $N(T_1) \subseteq \bigcap_{n \geq 1} T_1^n(X_1)$ ;
- (iii) if  $T_2 = T|_{X_2}$  then  $T_2$  is nilpotent.

In [7] we have shown that each operator in  $\Phi_g(X)$  has a Kato decomposition.

**PROPOSITION 1.1.** *Let  $T \in \Phi_g(X)$  and  $(X_1, X_2)$  a Kato decomposition of  $T$ . If  $T_1 = T|_{X_1}$ ,  $T_2 = T|_{X_2}$  and  $m \geq 0$  with  $T_2^m = 0$ , then:*

- (1)  $T_1 \in \Phi(X_1)$ ,  $j(T_1) = 0$  and  $T_2 \in \mathcal{F}(X_2)$ .
- (2)  $N(T^k) = N(T_1^k) \oplus X_2$  for each  $k \geq m$ .
- (3)  $T^n(X) = T_1^n(X)$  for  $n \geq m$  and  $\bigcap_{n \geq 1} T^n(X) = \bigcap_{n \geq 1} T_1^n(X_1)$ .

**Proof.** (1) is shown in [7], Proposition 3.6, for a special Kato decomposition. The proof there works for an arbitrary Kato decomposition.

- (2)  $N(T^k) = N(T_1^k) \oplus N(T_2^k) = N(T_1^k) \oplus X_2$  for  $k \geq m$ .
- (3) For  $n \geq m$ ,  $T^n(X) = T^n(X_1 \oplus X_2) = T^n(X_1) = T_1^n(X_1)$ , hence  $\bigcap_{n \geq 1} T_1^n(X_1) = \bigcap_{n \geq m} T_1^n(X_1) = \bigcap_{n \geq m} T^n(X) = \bigcap_{n \geq 1} T^n(X)$ . ■

**NOTATIONS.** By  $X^*$  we denote the dual space of  $X$  and by  $T^*$  the adjoint of  $T \in \mathcal{L}(X)$ . If  $M$  is a subspace of  $X$  then  $M^\perp$  is defined as follows:

$$M^\perp = \{\varphi \in X^* : \varphi(x) = 0 \text{ for all } x \in M\}.$$

For a subspace  $N$  of  $X^*$  we write  ${}^\perp N$  for the subspace

$${}^\perp N = \{x \in X : \varphi(x) = 0 \text{ for all } \varphi \in N\}.$$

If  $T \in \Phi_g(X)$ , then we know from [3] and [5] that

$$T^* \in \Phi_g(X^*) \text{ and } T^n(X) \text{ is closed for each } n \geq 0.$$

Thus we also have that  $(T^*)^n(X^*)$  is closed for all  $n \geq 0$ . We shall make frequent use of this properties (without further reference).

The proof for the following technical result is entirely elementary.

**PROPOSITION 1.2.** *Let  $T \in \mathcal{L}(X)$ . Then*

$$\begin{aligned} N(T) \subseteq \bigcap_{n \geq 1} T^n(X) &\iff \bigcup_{n \geq 1} N(T^n) \subseteq T(X) \\ &\iff \bigcup_{n \geq 1} N(T^n) \subseteq \bigcap_{n \geq 1} T^n(X). \end{aligned}$$

**REMARK 1.3.** Let  $T \in \mathcal{L}(X)$ . If  $X_1$  and  $X_2$  are  $T$ -invariant subspaces of  $X$  with  $X = X_1 \oplus X_2$  and if  $m$  is an integer  $\geq 0$  with  $(T|_{X_2})^m = 0$ , then the assertions (2) and (3) of Proposition 1.1. remain valid.

## 2. On Kato decompositions

In this section we prove some results which are similar to the results obtained in [2] for Hilbert space operators. Throughout this section let  $T$  be an operator in  $\mathcal{L}(X)$ .

**PROPOSITION 2.1.** *Suppose that  $(Y_1, Y_2)$  and  $(Z_1, Z_2)$  are Kato decompositions of  $T$ . Then  $(Y_1, Z_2)$  and  $(Z_1, Y_2)$  are Kato decompositions of  $T$ .*

**Proof.** It suffices to show that  $(Y_1, Z_2)$  is a Kato decomposition of  $T$ . If  $X = Y_1 + Z_2$  and  $Y_1 \cap Z_2 = \{0\}$ , then we are done. Put  $R_i = T|_{Y_i}$  ( $i = 1, 2$ ) and  $S_i = T|_{Z_i}$  ( $i = 1, 2$ ). Take integers  $\mu, \nu \geq 0$  with  $R_2^\mu = 0$  and  $S_2^\nu = 0$ . Let  $n = \max\{\mu, \nu\}$ .

Take  $x \in Y_1 \cap Z_2$ . Then  $T^\nu x = S_2^\nu x = 0$ , hence  $S_1^\nu x = T^\nu x = 0$ , thus

$$x \in N(S_1^\nu) \subseteq \bigcap_{k \geq 1} S_1^k(Z_1) \subseteq Z_1.$$

This gives  $x \in Z_1 \cap Z_2 = \{0\}$ . Therefore we have  $Y_1 \cap Z_2 = \{0\}$ .

Now we show that  $X = Y_1 + Z_2$ . Let  $x \in X$ . Then there are  $y_i \in Y_i$  ( $i = 1, 2$ ) and  $z_i \in Z_i$  ( $i = 1, 2$ ) such that  $x = y_1 + y_2 = z_1 + z_2$ . It follows that  $y_1 - z_1 = z_2 - y_2$  and therefore

$$T^n(y_1 - z_1) = T^n(z_2 - y_2) = S_2^n z_2 - R_2^n y_2 = 0,$$

hence

$$y_1 - z_1 \in N(T^n) = N(S_1^n) \oplus Z_2$$

(Proposition 1.1). Thus there are  $\xi_1 \in N(S_1^n)$  and  $\xi_2 \in Z_2$  such that  $y_1 - z_1 = \xi_1 + \xi_2$ . From  $y_1 - z_1 - \xi_2 = \xi_1 \in N(S_1^n)$  and Proposition 1.2 we get

$$y_1 - z_1 - \xi_2 \in \bigcap_{k \geq 1} S_1^k(Z_1) = \bigcap_{k \geq 1} T^k(X) = \bigcap_{k \geq 1} R_1^k(Y_1) \subseteq Y_1.$$

Hence  $z_1 + \xi_2 \in Y_1$ . This gives  $z_1 \in Y_1 + Z_2$ . It results that  $x = z_1 + z_2 \in Y_1 + Z_2 + Z_2 = Y_1 + Z_2$ . ■

**PROPOSITION 2.2.** *Suppose that  $(Y_1, Y_2)$  and  $(Z_1, Z_2)$  are Kato decompositions of  $T$ . Then there is  $A \in \mathcal{L}(X)^{-1}$  with*

$$TA = AT, \quad Z_1 = A(Y_1) \quad \text{and} \quad Z_2 = A(Y_2).$$

**Proof.** Take projections  $P$  and  $Q$  in  $\mathcal{L}(X)$  with

$$P(X) = Y_1, \quad N(P) = Y_2, \quad Q(X) = Z_1, \quad N(Q) = Z_2.$$

Put  $A = QP + (I - Q)(I - P)$ . Since  $TP = PT$  and  $QT = TQ$ , we get  $TA = AT$ .

$A$  is injective. In fact, let  $x \in N(A)$ , then  $QPx = -(I - Q)(I - P)x$ , thus  $QPx \in Q(X) \cap (I - Q)(X) = \{0\}$ , hence  $Px \in N(Q) \cap P(X) = Y_1 \cap Z_2 = \{0\}$  (Proposition 2.1). It follows that  $0 = QPx = -(I - Q)(I - P)x = -x + Qx$ , hence  $x = Qx$ . Since  $x \in N(P)$ , we get  $x \in N(P) \cap Q(X) = Y_2 \cap Z_1 = \{0\}$ , thus  $x = 0$ .

$A$  is surjective. In fact, let  $y \in X$ . Then  $y = z_1 + z_2$  with  $z_i \in Z_i$  ( $i = 1, 2$ ). From Proposition 2.1 we derive  $X = Y_1 \oplus Z_2$ , thus  $z_1 = y_1 + w_2$  for some

$y_1 \in Y_1$  and some  $w_2 \in Z_2$ . We obtain

$$Py_1 = y_1, \quad Qz_1 = z_1 \quad \text{and} \quad Qw_2 = 0.$$

Thus

$$(2.1) \quad QPy_1 = Qy_1 = Q(z_1 - w_2) = z_1.$$

Since  $X = Y_2 \oplus Z_1$ , we get  $z_2 = y_2 + w_1$ ,  $y_2 \in Y_2$  and  $w_1 \in Z_1$ . Then

$$(2.2) \quad \begin{aligned} (I - Q)(I - P)y_2 &= (I - Q)y_2 = (I - Q)(z_2 - w_1) \\ &= (I - Q)z_2 - (I - Q)w_1 = z_2. \end{aligned}$$

From (2.1), (2.2),  $(I - Q)(I - P)y_1 = 0$  and  $QPy_2 = 0$  we obtain

$$\begin{aligned} A(y_1 + y_2) &= QPy_1 + (I - Q)(I - P)y_1 + QPy_2 + (I - Q)(I - P)y_2 \\ &= z_1 + z_2 = y. \end{aligned}$$

It remains to show that  $Z_1 = A(Y_1)$  (the proof for  $Z_2 = A(Y_2)$  is similar). Take  $y_1 \in Y_1$ . Then  $Py_1 = y_1$ , thus  $Ay_1 = QPy_1 + (I - Q)(I - P)y_1 = QPy_1 = Qy_1 \in Q(X) = Z_1$ . Hence  $A(Y_1) \subseteq Z_1$ .

Let  $u_1 \in Z_1$ . Since  $X = Y_1 \oplus Z_2$ , there are  $v_1 \in Y_1$  and  $v_2 \in Z_2$  with  $u_1 = v_1 + v_2$ . Then we get

$$u_1 = Qu_1 = Q(v_1 + v_2) = Qv_1 = QPv_1$$

and

$$(I - Q)(I - P)v_1 = 0.$$

Thus  $u_1 = QPv_1 + (I - Q)(I - P)v_1 = Av_1 \in A(Y_1)$ . It follows that  $Z_1 \subseteq A(Y_1)$ . ■

**PROPOSITION 2.3.** *Suppose that  $(Y_1, Y_2)$  is a Kato decomposition of  $T$ ,  $A \in \mathcal{L}(X)^{-1}$  and  $TA = AT$ . Then  $(A(Y_1), A(Y_2))$  is a Kato decomposition of  $T$ .*

**P r o o f.** Since  $A^{-1} \in \mathcal{L}(X)$  and  $TA = AT$ , it is easy to see that  $A(Y_1)$  and  $A(Y_2)$  are closed,  $T$ -invariant subspaces of  $X$ . Furthermore, we have

$$A(Y_1) \cap A(Y_2) = \{0\} \quad \text{and} \quad X = A(Y_1) + A(Y_2).$$

Thus  $X = A(Y_1) \oplus A(Y_2)$ .

Put  $T_i = T|_{Y_i}$  and  $R_i = T|_{A(Y_i)}$  ( $i = 1, 2$ ). Take a convergent sequence  $(y_n)$  in  $R_1(A(Y_1))$  and put  $y_0 = \lim_{n \rightarrow \infty} y_n$ . Then there is a sequence  $(x_n)$  in  $Y_1$  with  $y_n = R_1Ax_n = TAx_n = ATx_n$ . It follows that  $Tx_n = A^{-1}y_n \rightarrow A^{-1}y_0$  ( $n \rightarrow \infty$ ). Since  $T(Y_1)$  is closed, we get  $A^{-1}y_0 \in T(Y_1)$ , thus  $A^{-1}y_0 = Tx_0$  for some  $x_0 \in Y_1$ . This gives  $y_0 = ATx_0 = TAx_0 = R_1Ax_0 \in R_1(A(Y_1))$ . Thus  $R_1(A(Y_1))$  is closed.

Now take  $u \in N(R_1)$ . We have  $u = Av$  for some  $v \in Y_1$ . This gives  $ATv = TAv = Tu = R_1u = 0$ , hence  $T_1v = Tv = 0$ . From  $N(T_1) \subseteq \bigcap_{k \geq 1} T_1^k(Y_1)$  it results that

$$u \in \bigcap_{k \geq 1} AT_1^k(Y_1) = \bigcap_{k \geq 1} T^k(A(Y_1)) = \bigcap_{k \geq 1} R_1^k(A(Y_1)).$$

It remains to show that  $R_2$  is nilpotent. But this is straightforward, since  $T_2$  is nilpotent.  $\blacksquare$

### 3. Kato decompositions for operators in $\Phi_g(X)$

Throughout this section we assume that  $T$  is an operator in  $\Phi_g(X)$ . Recall from Section 1 that  $T$  and  $T^*$  have Kato decompositions.

PROPOSITION 3.1.

- (1) *If  $(X_1, X_2)$  is a Kato decomposition of  $T$ , then  $(X_2^\perp, X_1^\perp)$  is a Kato decomposition of  $T^*$ .*
- (2) *If  $(N_1, N_2)$  is a Kato decomposition of  $T^*$ , then  $({}^\perp N_2, {}^\perp N_1)$  is a Kato decomposition of  $T$ .*

Proof. (1) It is easy to see that  $X_1^\perp$  and  $X_2^\perp$  are closed,  $T^*$ -invariant subspaces of  $X^*$  with  $X^* = X_1^\perp \oplus X_2^\perp$ . It is also easy to see that  $T^*|_{X_1^\perp}$  is nilpotent, since  $T|_{X_2}$  is nilpotent. Let  $\nu$  be an integer  $\geq 1$  such that  $(T^*|_{X_1^\perp})^\nu = 0$  and  $(T|_{X_2})^\nu = 0$ . Put  $\Psi = T^*|_{X_2^\perp}$ .

Since  $T^* \in \Phi_g(X^*)$ , it follows from [5], Proposition 1.5, that  $\Psi \in \Phi_g(X_2^\perp)$ , thus  $\Psi(X_2^\perp)$  is closed. It remains to show that

$$N(\Psi) \subseteq \bigcap_{k \geq 1} \Psi^k(X_2^\perp).$$

By Remark 1.3 and Proposition 1.1 (3) it suffices to show that

$$(3.1) \quad N(\Psi) \subseteq \bigcap_{k \geq 1} (T^*)^k(X^*).$$

Take some integer  $\mu \geq \nu$  and put  $T_1 = T|_{X_1}$ . From Proposition 1.2 we get

$$N(T_1^\mu) \subseteq T_1^\nu(X_1) = T^\nu(X).$$

Therefore (see Proposition 1.1 (2))

$$N(T^\mu) = N(T_1^\mu) \oplus X_2 \subseteq T^\nu(X) \oplus X_2,$$

thus (since all subspaces are closed)

$$N(\Psi^\mu) = N((T^*)^\mu) \cap X_2^\perp \subseteq (T^*)^\mu(X^*).$$

Hence  $N(\Psi) \subseteq N(\Psi^\mu) \subseteq (T^*)^\mu(X^*)$  for all  $\mu \geq \nu$ . This shows that (3.1) holds.

(2) It is easy to see that  ${}^\perp N_2$  and  ${}^\perp N_1$  are closed,  $T$ -invariant subspaces of  $X$  and that  $X = {}^\perp N_2 \oplus {}^\perp N_1$ . Put  $T_1 = T|_{{}^\perp N_2}$ ,  $T_2 = T|_{{}^\perp N_1}$ ,  $\Psi_1 = T^*|_{N_1}$  and  $\Psi_2 = T^*|_{N_2}$ .

There is some integer  $\nu \geq 1$  such that  $\Psi_2^\nu = 0$ . Then it is easy to check that  $T_2^\nu = 0$ . From [5], Proposition 1.5, we get  $T_1 \in \Phi_g({}^\perp N_2)$ , hence  $T_1({}^\perp N_2)$  is closed. It remains to show that

$$N(T_1) \subseteq \bigcap_{k \geq 1} T_1^k({}^\perp N_2).$$

As above it suffices to show that

$$(3.2) \quad N(T_1) \subseteq \bigcap_{k \geq 1} T^k(X).$$

Take some integer  $\mu \geq \nu$ . Then, by Proposition 1.2,

$$N(\Psi_1^\mu) \subseteq \Psi_1^\nu(N_1) = (T^*)^\nu(X^*).$$

Therefore

$$N((T^*)^\mu) = N(\Psi_1^\mu) \oplus N_2 \subseteq (T^*)^\nu(X^*) \oplus N_2.$$

Since all subspaces are closed, we get

$$N(T_1^\mu) = N(T^\mu) \cap {}^\perp N_2 \subseteq T^\mu(X).$$

Hence  $N(T_1) \subseteq N(T_1^\mu) \subseteq T^\mu(X)$  for each  $\mu \geq 0$ . This shows that (3.2) is valid.  $\blacksquare$

Now we come to the main results of this paper. A Kato decomposition  $(X_1, X_2)$  of  $T$  is called *non-trivial* if  $X_2 \neq \{0\}$ . From Proposition 2.2 we get that *if  $T$  has a non-trivial Kato decomposition, then all Kato decompositions are non-trivial*. It follows that if  $T$  has no non-trivial Kato decomposition, then  $T$  has the *unique* Kato decomposition  $(X, \{0\})$ .

In what follows we shall investigate the case where  $T$  has a non-trivial Kato decomposition. By  $m$  we always denote the smallest integer  $\geq 0$  such that

$$N(T) \cap T^m(X) = N(T) \cap T^{m+k}(X) \text{ for each } k \geq 0$$

(see [7], Proposition 1.3). If  $T$  has a non-trivial Kato decomposition then  $m > 0$ . In fact, suppose to the contrary that  $m = 0$ . Then  $N(T) = N(T) \cap T^k(X)$  for each  $k \geq 0$ , thus  $N(T) \subseteq \bigcap_{k=1}^{\infty} T^k(X)$ . Since  $T(X)$  is closed, we get that  $(X, \{0\})$  is a Kato decomposition. But this is a contradiction, since  $T$  has non-trivial Kato decomposition. Furthermore, we have for the special Kato decomposition  $(Z_1, Z_2)$  of  $T$  constructed in [7]:

$$(T|_{Z_2})^m = 0$$

(see [7], Corollary 2.2).

**THEOREM 3.2.** *Suppose that  $T$  has a non-trivial Kato decomposition. The following conditions are equivalent:*

- (1)  $p(T) < \infty$ .
- (2)  $T$  has the SVEP in 0.
- (3) For each Kato decomposition  $(X_1, X_2)$  of  $T$  we have that  $T|_{X_1}$  is left invertible.
- (4) For each Kato decomposition  $(X_1, X_2)$  of  $T$  we have  $X_2 = N(T^m)$ .
- (5) For all Kato decompositions  $(X_1, X_2)$  and  $(Y_1, Y_2)$  of  $T$  we have  $X_2 = Y_2$ .

**Proof.** The equivalence of (1), (2) and (3) follows from [5], Theorem 2.5, [6], Theorem 2.9, and the remark in Section 4 of [7].

Suppose that  $p(T) < \infty$ . Then, by [5], Proposition 1.2,  $N(T) \cap T^m(X) = \{0\}$ . Let  $(Z_1, Z_2)$  be the Kato decomposition of  $T$  which we have constructed in [7], Sections 2 and 3. For the subspaces  $Y$  and  $N_j$  in Section 2 of [7] we then have

$$Y = X \quad \text{and} \quad N_j = N(T^j) \quad (j \geq 0),$$

hence

$$(3.3) \quad Z_2 = N_m = N(T^m).$$

If  $(X_1, X_2)$  is an arbitrary Kato decomposition of  $T$ , take projections  $P$  and  $Q \in \mathcal{L}(X)$  such that

$$P(X) = Z_1, \quad N(P) = Z_2, \quad Q(X) = X_1 \quad \text{and} \quad N(Q) = X_2.$$

Put  $A = QP + (I - Q)(I - P)$ . From (3.3) and Proposition 2.2 it follows that  $X_2 = A(Z_2) = A(N(T^m))$ . Fix some integer  $\nu \geq m$  with  $(T|X_2)^\nu = 0$ . Since  $p(T) = m$  ([5], Proposition 2.1), we get

$$(3.4) \quad X_2 \subseteq N(T^\nu) = N(T^m) = Z_2.$$

Now let  $z_2 \in Z_2$ . Thus  $Pz_2 = 0$ ,  $(I - Q)z_2 \in X_2 \subseteq Z_2 = (I - P)(Z_2)$ , hence  $(I - Q)z_2 = (I - P)(I - Q)z_2$ . This equation gives  $z_2 - Qz_2 = z_2 - Qz_2 - Pz_2 + PQz_2$ , thus  $PQz_2 = 0$ . Hence  $Qz_2 \in Q(X) \cap N(P) = X_1 \cap Z_2 = \{0\}$  (Proposition 2.1). It follows that  $z_2 \in N(Q) = X_2$ . Thus we have shown that  $Z_2 \subseteq X_2$ . From (3.4) and (3.3) we get

$$X_2 = Z_2 = N(T^m).$$

Thus we have shown that (1) implies (4). It is clear that (4) implies (5).

(4) implies (1): Let  $(Z_1, Z_2)$  be the Kato decomposition as above. Corollary 2.2 (4) in [7] gives  $\{0\} = T^m(X) \cap Z_2$ , hence

$$T^m(X) \cap N(T) \subseteq T^m(X) \cap N(T^m) = T^m(X) \cap Z_2 = \{0\}.$$

Now use [6], Proposition 2.1, to obtain  $p(T) < \infty$ .

(5) implies (1): Again let  $(Z_1, Z_2)$  be the special Kato decomposition from [7]. Our hypothesis says that

$$(3.5) \quad Y_2 = Z_2 \text{ for each Kato decompositon } (Y_1, Y_2) \text{ of } T.$$

Assume to the contrary that  $p(T) = \infty$ . Then

$$N(T) \cap \bigcap_{k \geq 1} T^k(X) \neq \{0\}$$

([5], Proposition 2.5). Put  $X_0 = \bigcap_{k \geq 1} T^k(X)$ . By Theorem 4.8 in [3] we have  $T(X_0) = X_0$ . Take  $x_0 \in N(T) \cap X_0$  with  $x_0 \neq 0$ . Then we get  $x_1, \dots, x_{m-1} \in X_0$  such that

$$(3.6) \quad Tx_j = x_{j-1} \quad (j = 1, \dots, m-1) \quad \text{and} \quad Tx_0 = 0.$$

Furthermore, we have from Proposition 1.1

$$(3.7) \quad x_0, \dots, x_{m-1} \in Z_1,$$

since  $Z_2 \neq \{0\}$ ,  $Z_1^\perp \neq \{0\}$ . Hence there is a functional  $\varphi \in Z_1^\perp$  with

$$(3.8) \quad \varphi \neq 0.$$

Take a projection  $P \in \mathcal{L}(X)$  with  $P(X) = Z_1$  and  $(I - P)(X) = N(P) = Z_2$ . Define the operator  $R \in \mathcal{L}(X)$  by

$$Rx = (I - P)x + \sum_{n=0}^{m-1} \varphi(T^n(I - P)x)x_n \quad (x \in X).$$

Since  $R$  is the sum of an operator with closed range and a finite-dimensional operator,  $R$  has closed range. Put  $Y_2 = R(X)$ .

Since  $TP = PT$ , we obtain from (3.7) that for  $x \in X$

$$\begin{aligned} (3.9) \quad TRx &= (I - P)Tx + \sum_{n=0}^{m-1} \varphi(T^n(I - P)x)Tx_n \\ &= (I - P)Tx + \sum_{n=1}^{m-1} \varphi(T^{n-1}(I - P)Tx)x_{n-1} \\ &= (I - P)Tx + \sum_{n=0}^{m-2} \varphi(T^n(I - P)Tx)x_n. \end{aligned}$$

Because of  $Z_2 = (I - P)(X)$  and  $(T|_{Z_2})^m = 0$ , it follows that

$$\varphi(T^{m-1}(I - P)Tx)x_{m-1} = \varphi(T^m(I - P)x)x_{m-1} = 0,$$

thus, by (3.9),  $TRx = RTx$ . This shows that  $T(Y_2) \subseteq Y_2$ . From  $(T|_{(I - P)(X)})^m = 0$  and  $T^m x_j = 0$  ( $j = 0, \dots, m-1$ ) we derive  $T^m(Rx) = 0$  for all  $x \in X$ . Hence  $T|_{Y_2}$  is nilpotent.

Next we show that  $Z_1 \cap Y_2 = \{0\}$ . Let  $x \in Z_1 \cap Y_2$ , then  $x = Rx$  for some  $\in X$ , thus

$$x = (I - P)x + \sum_{n=0}^{m-1} \varphi(T^n(I - P)x)x_n,$$

hence

$$x - \sum_{n=0}^{m-1} \varphi(T^n(I - P)x)x_n = (I - P)x.$$

This and (3.7) show that  $(I - P)x \in Z_1 \cap Z_2 = \{0\}$ , therefore  $(I - P)x = 0$ , thus  $x = 0$ .

Now we show that  $X = Z_1 + Y_2$ . Let  $x \in X$ , then  $x = z_1 + z_2$  with  $z_1 = Px$  and  $z_2 = (I - P)x$ . It follows that

$$x = \underbrace{\left( z_1 - \sum_{n=0}^{m-1} \varphi(T^n z_2)x_n \right)}_{\in Z_1} + \underbrace{\left( z_2 + \sum_{n=0}^{m-1} \varphi(T^n z_2)x_n \right)}_{\in Y_2},$$

hence  $x \in Z_1 + Y_2$ .

We summarize:  $Y_2$  is a closed,  $T$ -invariant subspace,  $T|_{Y_2}$  is nilpotent, and  $X = Z_1 \oplus Y_2$ . Therefore,  $(Z_1, Y_2)$  is a Kato decomposition of  $T$ . From (3.5) we obtain  $Z_2 = Y_2$ . The definition of  $R$  and (3.7) show then that

$$\sum_{n=0}^{m-1} \varphi(T^n(I - P)x)x_n \in Z_1 \cap Z_2 = \{0\} \text{ for all } x \in X.$$

Hence  $\sum_{n=0}^{m-1} \varphi(T^n v)x_n = 0$  for all  $v \in Z_2$ . Since  $T^{m-1}x_j = 0$  for  $j = 0, \dots, m-2$  and  $T^{m-1}x_{m-1} = x_0$ , we get

$$0 = T^{m-1} \left( \sum_{n=0}^{m-1} \varphi(T^n v)x_n \right) = \varphi(T^{m-1}v)x_0 \text{ for all } v \in Z_2.$$

Thus  $\sum_{n=0}^{m-2} \varphi(T^n v)x_n = 0$  for each  $v \in Z_2$ . Applying  $T^{m-2}$  to this equation, we get  $\varphi(T^{m-2}v)x_0 = 0$ . Similar arguments give

$$\varphi(T^j v)x_0 = 0 \text{ for } j = m-3, \dots, 1, 0.$$

Hence  $\varphi(v)x_0 = 0$ . Since  $x_0 \neq 0$ , we get

$$\varphi(v) = 0 \text{ for all } v \in Z_2,$$

thus  $\varphi \in Z_2^\perp$ . Since  $\varphi \in Z_1^\perp$ , we obtain  $\varphi = 0$ . But this contradicts (3.8). ■

The next theorem follows from Proposition 3.1 and Theorem 3.2 by duality. Recall that

$$q(T) = p(T^*), \quad p(T) = q(T^*) \quad ([5], Proposition 2.2),$$

$T^*$  has the SVEP in  $0 \iff q(T) < \infty$  ([5], Proposition 2.5)

and

$q(T) < \infty \iff T|_{X_1}$  is right invertible  
for each Kato decomposition  $(X_1, X_2)$  of  $T$

([6], Theorem 2.9, and [7], Remark in Section 4).

**THEOREM 3.3.** *Suppose that  $T$  has a non-trivial Kato decomposition. The following assertions are equivalent:*

- (1)  $q(T) < \infty$ .
- (2)  $T^*$  has the SVEP in 0.
- (3) For each Kato decomposition  $(X_1, X_2)$  of  $T$  we have  $X_1 = T^m(X)$ .
- (4) For each Kato decomposition  $(X_1, X_2)$  of  $T$  we have that  $T|_{X_1}$  is right invertible.
- (5) For all Kato decompositions  $(X_1, X_2)$  and  $(Y_1, Y_2)$  of  $T$  we have  $X_1 = Y_1$ .

The following theorem characterizes operators in  $\Phi_g(X)$  which have a non-trivial *unique* Kato decomposition.

**THEOREM 3.4.** *If  $T$  has a non-trivial Kato decomposition, then following conditions are equivalent:*

- (1)  $0 < p(T) = q(T) < \infty$ .
- (2)  $(T - \lambda I)^{-1}$  has a pole at  $\lambda = 0$ .
- (3) 0 is an isolated point of  $\sigma(T)$ .
- (4) 0 is a boundary point of  $\sigma(T)$ .
- (5)  $T$  has a unique Kato decomposition.
- (6)  $T$  and  $T^*$  have the SVEP in 0.
- (7) For each Kato decomposition  $(X_1, X_2)$  of  $T$  we have  $T|_{X_1} \in \mathcal{L}(X_1)^{-1}$ .
- (8)  $X = T^m(X) \oplus N(T^m)$ .
- (9) For each Kato decomposition  $(X_1, X_2)$  of  $T$  we have  $X_1 = T^m(X)$  and  $X_2 = N(T^m)$ .

**P r o o f.** The equivalence of (1) and (2) follows from [1], Satz 101.2. From [3], Theorem 4.8 (f), we get the equivalence of (2), (3), and (4). The equivalence of (1) and (5) follows from Theorem 3.2, Theorem 3.3 and [1], Satz 72.3. Use [1], Satz 72.3, and [5], Theorem 2.5, to obtain the equivalence of (6) and (1). From Theorems 3.2 and 3.3 we get that (6) and (7) are equivalent. Satz 72.4 in [1] gives the equivalence of (8) and (1). (5) and (9) are equivalent by Theorem 3.2 and Theorem 3.3. ■

In [3], Theorem 4.4, we have shown that if  $A \in \mathcal{L}(X)$  and  $0 < p(A) = q(A) < \infty$ , then  $A^p \in \Phi_g(X)$ , where  $p = p(A)$ . But, in general, it does not follow that  $A \in \Phi_g(X)$ . By [3], Example 1.7 (b), there is an operator

$A \in \mathcal{L}(X)$  with  $A^2 = 0$ , but  $A \notin \Phi_g(X)$  (observe that  $p(A) = q(A) = 2$ ). This example also shows that a nilpotent operator need not belong to  $\Phi_g(X)$ .

Now we are in a position to characterize chain-finite operators which belong to  $\Phi_g(X)$ .

**COROLLARY 3.5.** *Let  $A \in \mathcal{L}(X)$  and  $0 < p(A) = q(A) < \infty$ . Put  $p = p(A)$ . Then the following conditions are equivalent:*

- (1)  $A \in \Phi_g(X)$ .
- (2)  $\dim(A(X) \cap N(A^{p-1})) < \infty$ .

**Proof.** Put  $X_1 = A^p(X)$ ,  $X_2 = N(A^p)$ . Then, by [1], Satz 101.2,  $X = X_1 \oplus X_2$ . Furthermore, we have

$$(3.10) \quad A(X_1) = A^{p+1}(X) = A^p(X) = X_1 \text{ is closed,}$$

$$(3.11) \quad A(X_2) = A(X) \cap N(A^{p-1}) \subseteq X_2$$

and

$$(3.12) \quad A|_{X_1} \subseteq \mathcal{L}(X_1)^{-1}.$$

Put  $A_1 = A|_{X_1}$  and  $A_2 = A|_{X_2}$ .

(1)  $\implies$  (2): Since  $p > 0$  and  $X = X_1 \oplus X_2$ , we get from (3.10) and (3.11) that  $(X_1, X_2)$  is the (unique) non-trivial Kato decomposition of  $A$ . Proposition 1.1 shows that  $A_2 \in \mathcal{F}(X_2)$ , thus (2) follows from (3.11).

(2)  $\implies$  (1): From (3.10) and (3.11) we see that  $X_1$  and  $X_2$  are closed,  $A$ -invariant subspaces of  $X$ . (3.12) gives  $A_1 \in \Phi_g(X_1)$ . Since (2) holds, we obtain from (3.11) that  $A_2 \in \mathcal{F}(X_2) \subseteq \Phi_g(X_2)$ . Now use Proposition 1.5 in [5] to obtain  $A \in \Phi_g(X)$ . ■

**COROLLARY 3.6.** *Suppose that  $A \in \mathcal{L}(X)$  is nilpotent,  $A \neq 0$ ,  $n \in \mathbb{N}$ ,  $A^n = 0$  and  $A^{n-1} \neq 0$ . Then the following conditions are equivalent:*

- (1)  $A \in \Phi_g(X)$ .
- (2)  $\dim(A(X) \cap N(A^{n-1})) < \infty$ .
- (3)  $A \in \mathcal{F}(X)$ .

**Proof.** Since  $X = A^n(X) \oplus N(A^n)$  and  $A^{n-1} \neq 0$ , we have  $p(A) = q(A) = n > 0$ . Corollary 3.5 shows that (1) and (2) are equivalent. Because of  $\mathcal{F}(X) \subseteq \Phi_g(X)$ , (3) implies (1). It remains to show that (1) implies (3). Since  $A$  is nilpotent,  $\sigma_{\Phi}(A) = \sigma(A) = \{0\}$ , hence  $A$  is a Riesz operator. If (1) holds, then it follows from [4], Theorem 3.7, that  $A \in \mathcal{F}(X)$ . ■

## References

- [1] H. Heuser, *Funktionalanalysis*, 3rd ed. Teubner (1991).
- [2] M. Mbekhta, *Sur l'unicité de la décomposition de Kato généralisée*. Acta Sci. Math. 54 (1990), 367–377.

- [3] Ch. Schmoeger, *On a class of generalized Fredholm operators*, I. *Demonstratio Math.* 30 (1997), 829–842.
- [4] Ch. Schmoeger, *On a class of generalized Fredholm operators*, II. *Demonstratio Math.* 31 (1998), 705–722.
- [5] Ch. Schmoeger, *On a class of generalized Fredholm operators*, III. *Demonstratio Math.* 31 (1998) 723–733.
- [6] Ch. Schmoeger, *On a class of generalized Fredholm operators*, IV. *Demonstratio Math.* 32 (1999), 581–594.
- [7] Ch. Schmoeger, *On a class of generalized Fredholm operators*, V. *Demonstratio Math.* 32 (1999), 595–604.

MATHEMATISCHES INSTITUT I  
UNIVERSITÄT KARLSRUHE  
D-76128 KARLSRUHE, GERMANY  
E-mail: [Christoph.schmoeger@math.uni-karlsruhe.de](mailto:Christoph.schmoeger@math.uni-karlsruhe.de)

*Received July 18, 1997.*