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ON A CLASS
OF GENERALIZED FREDHOLM OPERATORS, VI

Abstract. Let X be a complex Banach space and T a generalized Fredholm operator
on X (see (3], {4], [5], [6]) and [7]). In [7] we have shown that T has a Kato decomposition
(X1, X2). We say that a Kato decomposition (X1, X2) of T is non-trivial if Xz # {0}.
The main result of this paper reads as follows:

Let T be a generalized Fredholm operator with a non-trivial Kato decomposition.
Then

(i) The subspace X2 of each Kato decomposition of T is unique if and only if T
has finite ascent.

(ii)) The subspace X of each Kato decomposition of T is unique if and only if T
has finite descent.

(iii) T has a unique Kato decomposition if and only if 0 is a pole of the resolvent
(T -an~L.

1. Introduction and notations

In this paper X always denotes a complex, infinite-dimensional Banach
space. Notations and definitions not explicitly given are taken from our
previous papers (3], (4], [5], [6] and [7].

DEFINITION. Let T € L£(X). We say that T has the Kato decomposition
(X1,X73) if X; and X, are closed, T-invariant subspaces of X with

(i) X = X1 @ Xp;
(i) if Th = T|x, then T1(X;) is closed and N(T1) C Np>1 T7(X1);
(iii) if T2 = T'|x, then T3 is nilpotent.

In (7] we have shown that each operator in ®4(X) has a Kato decompo-
sition.
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PROPOSITION 1.1. Let T € ®4(X) and (X1, X2) a Kato decomposition of T
IfTy =T|y,, T, =T|x, and m > 0 with T]* = 0, then:

(1) T € ®(X4), j(T1) = 0 and T € F(X2).
(2) N(T*) = N(TF) ® X; for each k > m.
(3) TH(X) = T{H(X) for n > m and N>, TH(X) = N1 I7(X1)-

Proof. (1) is shown in [7], Proposition 3.6, for a special Kato decomposition.
The proof there works for an arbitrary Kato decomposition.

(2) N(T*) = N(Tf¥) & N(T§) = N(TF) & X, for k > m.

(3) For n > m, TH(X) = T™(X; & X32) = T*(X,) = T{(X1), hence
nnZlT?(Xl) = nanTln(Xl) = nanTn(X) = nnZle(X)' .

NOTATIONS. By X* we denote the dual space of X and by T* the adjoint
of T € L(X). If M is a subspace of X then M? is defined as follows:

Mt ={peX*:p(x)=0 forall € M}.
For a subspace N of X* we write N for the subspace
IN={z€eX:p(z)=0 forall p€ N}.
If T € $,(X), then we know from {3} and [5] that
T* € ,(X*) and T"(X) is closed for each n > 0.

Thus we also have that (T*)"(X"*) is closed for all n > 0. We shall make
frequent use of this properties (without further reference).

The proof for the following technical result is entirely elementary.
PROPOSITION 1.2. Let T € £(X). Then
N(T)C [ TMX) < |J N(T") C T(X)

n>1 n>1
= [J NI C N THX).
n>1 n>1

REMARK 1.3. Let T € £(X). If X; and X are T-invariant subspaces of X
with X = X; @ X2 and if m is an integer > 0 with (Tlxz)"‘ = 0, then the
assertions (2) and (3) of Proposition 1.1. remain valid.

2. On Kato decompositions

In this section we prove some results which are similar to the results
obtained in (2] for Hilbert space operators. Throughout this section let T be
an operator in L£(X).
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PROPOSITION 2.1. Suppose that (Y1,Y2) and (Z1, Z2) are Kato decomposi-
tions of T. Then (Y1, Z2) and (Z,,Y,) are Kato decompositions of T.

Proof. It suffices to show that (Y3, Z;) is a Kato decomposition of T. If
X =Y1+ Z; and Y1 N Z; = {0}, then we are done. Put R; = Ty, (i =1,2)
and S; = T|, (i = 1,2). Take integers u,v > 0 with Ry = 0 and Sj = 0.
Let n = max {u, v}.
Take z € Y1 N Z3. Then Tz = S5z = 0, hence S{z =Tz = 0, thus
z € N(SY)C () S¥(2) € 2.
k>1
This gives £ € Z; N Z3 = {0}. Therefore we have Y1 N Z; = {0}.
Now we show that X = Yj + Z>. Let £ € X. Then there are y; € ¥;
(1 =1,2) and z; € Z; (i = 1,2) such that z = y; + y2 = 21 + 22. It follows
that y; — 23 = 29 — y2 and therefore
T™(yr — z21) = T"(22 — y2) = S322 — R3y2 = 0,
hence
Y1 — 21 GN(T") =N(S?)@Zg
(Proposition 1.1). Thus there are §; € N(ST) and §2 € Z; such that y1—2z; =
&1 + &2. From y; — 21 — &, = & € N(ST) and Proposition 1.2 we get

yi—zn—&¢€ () S¥2zy) = N THX) = N REM) Cc 1.

k>1 k>1 k>1
Hence z) + & € Yq. This gives z; € Y] + Z,. It results that £ = 2; + 25 €
i+ 22+ 2, =Y+ 2,. [ ]

PROPOSITION 2.2. Suppose that (Y1,Y2) and (Z1,Z;) are Kato decomposi-
tions of T. Then there is A € L(X)™! with

TA= AT, Z1 = A(Yl) and Z2 = A(Yg)
Proof. Take projections P and Q in £(X) with
P(X)=Yl7 N(P)=Y27 Q(X)=Z1, N(Q)=Z2

Put A = QP + (I - Q)(I — P). Since TP = PT and QT = TQ, we get
TA = AT.

A is injective. In fact, let £ € N(A), then QPz = —(I - Q)(I — P)z, thus
QPz € Q(X)N(I-Q)(X) = {0}, hence Pz € N(Q)NP(X) =Y1NnZ; = {0}
(Proposition 2.1). It follows that 0 = QPz = —(I - Q)(I — P)z = —z + Qxz,
hence z = Qz. Since £ € N(P), we get z € N(P)NQ(X) = Yan Z; = {0},
thus z = 0.

A is surjective. In fact, let y € X. Theny = 21+ 2, with z; € Z; (1 = 1, 2).
From Proposition 2.1 we derive X = Y, @ Z3, thus z; = y; + w2 for some
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y1 € Y7 and some w2 € Z3. We obtain
Py =y, Qz1i=2z and Quwz=0.
Thus
(2.1) QPy = Qy1 = Q(z21 —w2) = 21.
Since X =Y, ® Z,, we get zo = yp + wy, y2 € Y2 and w; € Z;. Then
(I-Q)I-Plyz=(I-Qy2=(I - Q)22 — w1)
=(I-Q)zz— (I - Qw1 = 2.
From (2.1), (2.2), (I — Q)({ — P)y1 = 0 and QPy,; = 0 we obtain

A +¥2)=QPyi+ (I -Q)I - Ply1 + QPy2 + (I - Q)(I — Py,
=21t+22=y.

(2.2)

It remains to show that Z; = A(Y]) (the proof for Z; = A(Y2) is similar).
Take y; € Y;. Then Py; = y;, thus Ay; = QPy1 + (I - Q)(I — P)yy =
QPy1 = Q1 € Q(X) = Z;. Hence A(Y1) C Z;.

Let u; € Z,. Since X = Y7 @ Z,, there are v; € Y7 and v9 € Z; with
u; = v1 + v2. Then we get

w1 = Quyp = Q(v1 + v2) = Qui = QPu,
and
(I = Q)(I - P)v; =0.

Thus u; = QPv; + (I — Q)(I — P)u; = Av; € A(Y7). It follows that Z; C
A(Yl) ]

PROPOSITION 2.3. Suppose that (Y1,Y2) is a Kato decomposition of T, A €
L(X) ! and TA = AT. Then (A(Y1), A(Y2)) is a Kato decomposition of T.

Proof. Since A™! € £(X) and TA = AT, it is easy to see that A(Y7) and
A(Y;) are closed, T-invariant subspaces of X. Furthermore, we have

A(Y1) N A(Yz) = {0} and X = A(V1) + A(Y2).

Thus X = A(Yl) (s} A(Yg)

Put T; = T}y, and R; = Ty, (i = 1,2). Take a convergent sequence
(yn) in R1(A(Y1)) and put yo = limyp_oo yn. Then there is a sequence
(zn) in Y7 with y, = R1Az, = TAz, = ATz,. It follows that Tz, =
A ly, — A 1y (n — o0). Since T(Y)) is closed, we get A~y € T(Y1),
thus A=lyy = Txo for some zo € Y;. This gives yo = ATxo = TAzy =
RyAzy € R1(A(Y1)). Thus Ry(A(Y1)) is closed.



Generalized Fredholm operators 815

Now take u € N(R;). We have u = Av for some v € Y;. This gives
ATv = TAv = Tu = Ryu = 0, hence TYv = Tv = 0. From N(Ty) C
Nk>1 TF(Y1) it results that

ve () ATEY) = () THAM) = ) RE(A(TL))-
k>1 k>1 k>1
It remains to show that R is nilpotent. But this is straightforward, since
T, is nilpotent. ]

3. Kato decompositions for operators in ®,4(X)

Throughout this section we assume that T is an operator in $,(X). Re-
call from Section 1 that T and T* have Kato decompositions.
PROPOSITION 3.1.

(1) If (X1,X>2) is a Kato decomposition of T, then (X5, Xi) is a Kato
decomposition of T*.
(2) If (N1, N2) is a Kato decomposition of T*, then (1 N2, N;) is a Kato
decomposition of T'.
Proof. (1) It is easy to see that Xj- and X3 are closed, T*-invariant sub-
spaces of X* with X* = Xi @ X3 . It is also easy to see that T*|x. is nilpo-
tent, since T'| , is nilpotent. Let v be an integer > 1 such that (T Xt =0
and (T|y,)* =0. Put ¥ = T* IxJ.
Since T* € ®,(X*), it follows from (5], Proposmon 1.5, that ¥ € ®,4(X3),
thus W(X3") is closed. It remains to show that

N(¥) € () T*(X3).

k>1
By Remark 1.3 and Proposition 1.1 (3) it suffices to show that
(3.1) N(®) C () (T*)*(X).
k>1

Take some integer u > v and put Ty = T'|, . From Proposition 1.2 we get
N(T¥) C TH(X,) = T*(X).
Therefore (see Proposition 1.1 (2))
N(T¥)=N(T{)® X CT"(X) ® Xa,
thus (since all subspaces are closed)
N(¥¥) = N((T")*) N X3 C (T*)*(X*).

Hence N(¥) C N(¥¥) C (T*)#(X*) for all u > v. This shows that (3.1)
holds.
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(2) 1t is easy to see that * N and 1 N are closed, T-invariant subspaces
of X and that X = LNy @ L1 N;. Put Ty = Tlinyp T2 =Tlay, Y1 =Ty,
and ¥2 = T"|,.

There is some integer v > 1 such that ¥j = 0. Then it is easy to check
that T} = 0. From [5], Proposition 1.5, we get T; € ®,(* N2), hence T1(* N2)
is closed. It remains to show that

N(T1) € () TE( Vo).
k>1
As above it suffices to show that
(32) N(TY) € () TH(X).
k>1

Take some integer y > v. Then, by Proposition 1.2,

N(TY) C P{(N) = (T*)"(X*).
Therefore

N((T*)*) = N(¥]) ® N2 C (T*)"(X"*) @ Na.

Since all subspaces are closed, we get

N(TY) = N(T*)n ‘N, C T#(X).

Hence N(T1) C N(T}) C TH#(X) for each u > 0. This shows that (3.2) is
valid. (]

Now we come to the main results of this paper. A Kato decomposition
(X1,X2) of T is called non-trivial if X # {0}. From Proposition 2.2 we get
that ¢f T has a non-trivial Kato decomposition, then all Kato decompositions
are non-trivial. It follows that if T has no non-trivial Kato decomposition,
then T has the unique Kato decomposition (X, {0}).

In what follows we shall investigate the case where T has a non-trivial
Kato decomposition. By m we always denote the smallest integer > 0 such
that

N(T)NT™(X) = N(T)NT™**(X) for each k >0
(see [7], Proposition 1.3). If T has a non-trivial Kato decomposition then
m > 0. In fact, suppose to the contrary that m = 0. Then N(T) = N(T)N
T*(X) for each k > 0, thus N(T) C N2, T*(X). Since T(X) is closed, we
get that (X, {0}) is a Kato decomposition. But this is a contradiction, since

T has non-trivial Kato decomposition. Furthermore, we have for the special
Kato decomposition (Z7, Z2) of T constructed in [7):

(T1z,)™ =0
(see [7], Corollary 2.2).
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THEOREM 3.2. Suppose that T has a non-trivial Kato decomposition. The
Pllowing conditions are equivalent:

(1) p(T) < o.
(2) T has the SVEP in 0.
(3) For each Kato decomposition (X1, X2) of T we have that Ty, is left
invertible.
(4) For each Kato decomposition (X1, X2) of T we have Xo = N(T™).
(5) For all Kato decompositions (X1, X2) and (Y1,Y2) of T we have
X, =Y.
Proof. The equivalence of (1), (2) and (3) follows from [5], Theorem 2.5,
6], Theorem 2.9, and the remark in Section 4 of [7].
Suppose that p(T') < co. Then, by [5], Proposition 1.2, N(T)NT™(X) =
0}. Let (21, Z;) be the Kato decomposition of T which we have constructed

[7], Sections 2 and 3. For the subspaces Y and N; in Section 2 of 7] we
kthen have
| Y=X and N;=N(T?) (j2>0),
hence
(3.3) Zy = Ny, = N(T™).

If (X, X2) is an arbitrary Kato decomposition of T', take projections P and
Q € L(X) such that

P(X) =2, N(P) =23, Q(X) = X1 and N(Q)= Xa.
Put A = QP+ (I — Q)(I — P). From (3.3) and Proposition 2.2 it follows
that X, = A(Z;) = A(N(T™)). Fix some integer v > m with (T|X;)" = 0.
Since p(T) = m ([5], Proposition 2.1), we get
(3.4) X, CN(T) = N(T™) = 2,.

Now let 2 € Z3. Thus P2, =0, (I — Q)22 € X2 C Z; = (I — P)(Zy),
hence (I -Q)z2 = (I— P)(I—Q)z2. This equation gives zo—Qz2 = 20— Q22—
Pzy + PQzz, thus PQz; = 0. Hence Q2 € Q(X)NN(P) = X;N Zy; = {0}
(Proposition 2.1). It follows that 20 € N(Q) = X2. Thus we have shown
that Z; C X3. From (3.4) and (3.3) we get

Xy =2, =N(T™).
Thus we have shown that (1) implies (4). It is clear that (4) implies (5).

(4) implies (1): Let (Z;, Z2) be the Kato decomposition as above. Corol-
lary 2.2 (4) in (7] gives {0} = T™(X) N Z3, hence

THX)AONT)CTHX)NN(T™) =T™(X)N Z; = {0}.
Now use [6], Proposition 2.1, to obtain p(T) < oo.
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(5) implies (1): Again let (Z;,Z2) be the special Kato decomposition
from [7]. Our hypothesis says that ‘

(3.5) Y2 = Z, for each Kato decompositon (Y1,Y3) of T.
Assume to the contrary that p(T') = co. Then

N(T)n () T*(X) # {0}
k>1
([5], Proposition 2.5). Put Xo = (>, T*(X). By Theorem 4.8 in [3] we have
T(Xo) = Xo. Take zg € N(T)NXp with g # 0. Then we get z3,...,Z;m-1 €
Xo such that

(3.6) Trj=zj-1 (j=1,...,m—1) and Tzo=0.
Furthermore, we have from Proposition 1.1

(3.7 Zo,...,Tm-1 € Z1,

since Z» # {0}, Zi+ # {0}. Hence there is a functional ¢ € Z{- with
(3.8) w #0.

Take a projection P € £(X) with P(X) = Z; and (- P)(X) = N(P) = 2.
Define the operator R € £(X) by
m-1
Rz =(I-P)z+ z o(T*(I - P)z)zn, (z € X).
n=0
Since R is the sum of an operator with closed range and a finite-dimensional
operator, R has closed range. Put Y; = R(X).
Since TP = PT, we obtain from (3.7) that for z € X
m-1
(3.9) TRz = (I - P)Tz+ Y o(T™(I - P)z)Tzn
n=0
m-1
= -P)Tz+ Y ¢TI - P)Tz)zn-1
n=1
m-2
=(I-P)Tz+ Y o(T*(I - P)Tz)z,.
n=0

Because of Z; = (I — P)(X) and (T|;,)™ = 0, it follows that
(T I = P)Tz)zm-1 = ¢(T™(I = P)z)zm-1 =0,

thus, by (3.9), TRz = RTz. This shows that T(Y2) C Y;. From
(Tlr-pyx))™ =0and T™z; =0 (j = 0,...,m — 1) we derive T™(Rz) =0
for all z € X. Hence Ty, is nilpotent.
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Next we show that Z1NY; = {0}. Let z € Z;NY>, then z = Rz for some
€ X, thus

z=I-P)z+ "‘z—:l e(T™(I — P)z)z,,
n=0
hence .
z- Y @(T"(I-P)z)=(I- P)z.
n=0

his and (3.7) show that (I — P)z € Z, N Z; = {0}, therefore (I — P)z = 0,
thus £ = 0.
~ Now we show that X = Z; + Y;. Let z € X, then z = z, + 2; with
z1 = Pz and 23 = (I — P)z. It follows that

= (zl — mz_l (p(1m22).’l:n) + (22 + mz_:l (p(TnZQ):Z:n),

n=0 n=0

) ~

621 E‘)”z
hence z € Z; + Ys.
We summarize: Y, is a closed, T-invariant subspace, Tle is nilpotent,
and X = Z; @ Ya2. Therefore, (Z;,Y>) is a Kato decomposition of T'. From
(3.5) we obtain Z; = Y;. The definition of R and (3.7) show then that

m-1

Z e(T™(I — P)x)z, € Z1 N Z = {0} forall z € X.

n=0
Hence Z:,":_ol ¢(T"v)z, = 0 for all v € Z5. Since T™ 1z; = 0 for j =
0,...,m—2and T™ 1z,,_; = 79, we get

m-1
0= T""l( E gp(T"v):c,,) = o(T™ w)zg for all v € Zs.

n=0

Thus ™2 o(T™v)z, = 0 for each v € Z;. Applying T™ 2 to this equation,

n=0
we get o(T™ 2v)zo = 0. Similar arguments give

o(T?v)zo=0 for j=m-—3,...,1,0.
Hence ¢(v)zp = 0. Since z¢ # 0, we get
e(v) =0 for all v € 2y,
thus ¢ € Z3. Since ¢ € Zi, we obtain ¢ = 0. But this contradicts (3.8). »

The next theorem follows from Proposition 3.1 and Theorem 3.2 by
duality. Recall that

q(T) =p(T*), p(T)=q(T*) ([5], Proposition 2.2),
T* has the SVEP in 0 <= ¢(T) < oo ([5), Proposition 2.5)
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and
q(T) < oo <= Ty, is right invertible

for each Kato decomposition (X1, X3) of T
([6], Theorem 2.9, and [7], Remark in Section 4).

THEOREM 3.3. Suppose that T has a non-trivial Kato decomposition. The
following assertions are equivalent:

(1) ¢(T) < oo.

(2) T* has the SVEP in 0.

(3) For each Kato decomposition (X1, X2) of T we have X; = T™(X).

(4) For each Kato decomposition (X1, X2) of T we have that Ty is right
invertible.

(5) For all Kato decompositions (X,X2) and (Y1,Y2) of T we have
X1 = Yl-

The following theorem characterizes operators in ®4(X) which have a
non-trivial unique Kato decompostion.

THEOREM 3.4. If T has a non-trivial Kato decomposition, then following
conditions are equivalent:

) 0 < p(T) =q(T) < oo.

) (T = AI)7! has a pole at A = 0.
)} 0 is an isolated point of o(T).

) 0 is a boundary point of o(T).

) T has a unique Kato decomposition.

(1
(2
(3
(4
(5
(6) T and T* have the SVEP in 0.
(7
(8
(9

) For each Kato decomposition (X1, X2) of T we have T|y, € L(X1)™ 1

) X =T™(X)® N(T™).

) For each Kato decomposition (X1, X2) of T we have X; = T™(X) and
Xo = N(T™).

Proof. The equivalence of (1) and (2) follows from [1], Satz 101.2. From [3],
Theorem 4.8 (f), we get the equivalence of (2), (3), and (4). The equivalence
of (1) and (5) follows from Theorem 3.2, Theorem 3.3 and [1], Satz 72.3.
Use [1], Satz 72.3, and [5], Theorem 2.5, to obtain the equivalence of (6) and
(1). From Theorems 3.2 and 3.3 we get that (6) and (7) are equivalent. Satz
72.4 in [1] gives the equivalence of (8) and (1). (5) and (9) are equivalent by
Theorem 3.2 and Theorem 3.3. .

In [3], Theorem 4.4, we have shown that if A € £(X) and 0 < p(A) =
g(A) < oo, then AP € ®4(X), where p = p(A). But, in general, it does
not follow that A € &,(X). By {3], Example 1.7 (b), there is an operator
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A € L(X) with A%2 = 0, but A & ®,(X) (observe that p(4) = g(4) = 2).
This example also shows that a nilpotent operator need not belong to ®4(X).

Now we are in a position to characterize chain-finite operators which
belong to ®4(X).

COROLLARY 3.5. Let A € L(X) and 0 < p(A) = q(A) < co. Put p = p(A).
Then the following conditions are equivalent:

(1) A€ ®y(X).

(2) dim (A(X) N N(AP~1)) < oco.
Proof. Put X; = AP(X), X2 = N(AP). Then, by [1], Satz 101.2, X =
X1 & Xo. Furthermore, we have

(3.10) A(X1) = APY(X) = AP(X) = X, is closed,
(3.11) A(X7) = A(X)NN(APY) C X,

and

(3.12) Alx, € L(X1)7L

Put A; = Alx, and A, = A|x2-

(1) = (2): Since p > 0 and X = X; & X, we get from (3.10) and
(3.11) that (X, X2) is the (unique) non-trivial Kato decomposition of A.
Proposition 1.1 shows that A; € F(X3), thus (2) follows from (3.11).

(2) = (1): From (3.10) and (3.11) we see that X; and X3 are closed,
A-invariant subspaces of X. (3.12) gives A; € ®4(X1). Since (2) holds, we
obtain from (3.11) that A; € F(X3) C ®4(X2). Now use Proposition 1.5 in
[5] to obtain A € ®4(X). n

COROLLARY 3.6. Suppose that A € L(X) is nilpotent, A#£0,n €N, A" =0
and A1 # 0. Then the following conditions are equivalent:

(1) A€ y(X).

(2) dim (A(X)NN(A™ 1)) < oo.

(3) A € F(X).
Proof. Since X = A™(X) ® N(A™) and A""! # 0, we have p(A) = q(4) =
n > 0. Corollary 3.5 shows that (1) and (2) are equivalent. Because of
F(X) C ®4(X), (3) implies (1). It remains to show that (1) implies (3).
Since A is nilpotent, 04(A) = 0(A) = {0}, hence A is a Riesz operator. If
(1) holds, then it follows from [4], Theorem 3.7, that A € F(X). n
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