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NOTE ON A CLASS OF OPERATORS
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1. Introduction
A. Lupag and M. Miiller introduced [5] an integral operator defined by

® n+1
M @)= e () du n=12
where o
gn(z,u) = In! e Tuy"

and f is bounded for z > 0 and locally integrable on the half-line z > 0. We
mention that this Gamma operator differs substantially from the "Gamma”
operator which has already been considered by Feller [4].
Based on (1), S.M. Mazhar (6] defined and studied a new linear operator
which reproduces linear functions, namely:
00 OO
@) (Fa)@) = | | 9n (@, u)gn-1(u, 1) (t)dudt =
00
_ (@2n) T w™!

= ni(n - 1) g oy wedw, >0, n>1,

for any f for which the integral is convergent.

In this paper, by using a probabilistic method, we construct a family of
linear and positive operators which includes (2). Also, we point out some new
properties of the F,, operators such as the preservation of the monotonicity
and convexity and we establish a connection between the local smoothness
of function and the local approximation property.
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2. Probabilistic background

In what follows we denote by I'(-) and B(:,-) Euler’s functions, gamma
respectively beta. Let X,, a > 0, be a random variable so that it has the
gamma distribution with density ga, i.e. go(z) = (['(a))"!z% 'e~% for z > 0
and g,(z) = 0 otherwise. Further on, we present a family of one-dimensional
operators by the formula

( abf E[f a/Xb ]

where f is any real mea.surable function defined on (0,00) such that
E[f(X4/Xb)] < 00, where E stands for the mathematical expectation.
From the properties of the operator E it is obvious that L, is linear
and positive and consequently becomes monotone.
For any independent variables X,, Xy, a > 0 and b > 0, the random
variable X,/X) has the beta distribution g, ;). Indeed, for y > 0 we have

(3) 9at)(¥) = | 1zlga(zy)gb(z)dz =
R
_ y* ! osoza+b—le—(y+1)zd$ — 1 y* !

" T(@T() ;

and g, 4)(¥) = 0 otherwise.

We will indicate some particular cases.

A. Choosinga=mzandb=m+ 1 withz >0and m=1,2,3,... we
obtain

B(a,b) (1 + y)ot?’

1 oo gme— 1

B(mz,m+1) (SJ (1+t)m:z:+m+1f( )

(Lm f)(z) =

where f belongs to B(0, 00), the linear space of all real measurable bounded
functions defined on (0, c0). These operators were investigated in 1995—
see [7].

B. Choosing ¢ = z/a and b = 1/a with £ > 0 and a > 0 we get

(Lz/a,l/af)(z) = (Taf)(z)’ f € B(0,00)

This class of Bernstein-type operators was introduced in 1993 and stud-
ied by J.A. Adell, F.G. Badia, Jestis de la Call and M. San Miguel (see [1],
(2], (3]). If f is defined in z = 0 as well, we set (T*f)(0) = f(0).

C. Firstly, for any £ > 0 and any real function acting on the half line
(0,00) we define ¢f as follows f(u) = f(zu), u > 0.

Now, we choosea=n,b=n+1,n=1,2,3,..., substitute f by (pf and
taking into account (3) we get

n—1

i j_’y)m f(zy)dy.

1
B(n,n+1)

E[<P£(Xn/Xn+1)] =

Cwg
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Using the relation B(n,n + 1) = n!(n — 1)!/(2n)!, we can write (2) as
follows
(Lnn+1f)(z) = (Faf)(z), z>0.
We notice that if f is defined in z = 0 as well, we can take (L, f)(0) =
f(0). Regarding Fy;, n > 1, we recall some usefull formulas [6]
(4) Fa(eo,z) =1, Fyp(e1,z) =z, Fu(ez,z)= :t 1

where ej(z) = 7, j = 0,1, 2, are the so called test-functions.

z?,

3. Results concerning the F,, operators

First we denote by pnm(z) the mth central moment of F, operators,
ie. pnm(z) = Fu((ex — z)™,z). It was already established that pun2(z) =
2z2/(n — 1). Further on we indicate the values of the central moments of all
orders.

THEOREM 1. The m'* central moment of the operators defined by (2) has
the following value

m .

pnm(z)=2™ Z(—l)"‘"‘ (T) %, n > 1, m > 1 integers and z € (0, 00),
i

where (n); and (n); represent the upper-factorials and respectively the lower-

factorials.

Proof. Taking into account both the identity B(p,q) = {3° tP~1(1—t)~P~%dt
and the relation (2) we have

1=0

m oo n-—1

z w ma.
m,m(x) = B(n,n+1) (S) (1 + w)2nt+l (w-1)"dw =
_omy~(_qym-i (M) B(ntintl 1)
=7 ﬁzo(—l) (z) B(n,n+1)

which lead us to the desired results. O
Concerning the remainder of the approximation formula
(5) f(z) = (Faf)(z) + (Raf)(z),

which has the degree of exactness N = 1, we can give an integral represen-
tation.

THEOREM 2. If the function f has a continuous second derivative then the
remainder of the formula (5) has the following integral form

(Buf)() = | Knlt,2)f"(B)dt,
0
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where K(t,z) = (Rn0;)(t) and 6:(t) = (z —t)4 = (z —t + |z — t|)/2. Also
it results the identity

z2

[s o}
(5) Kn(t,z)dt = -

Proof. The first relation follows directly from the well-known theorem of
Peano.

Since for any fixed point £ > 0 we have K,(t,z) < 0, then the mean
value theorem of the integral calculus and (5) implies f(z) = (Fnf)(z) +
(&) §5° Kn(t,z)dt, where £ € (0,00). Choose f = ez. The above identity
with (4) allows us to obtain the integral of Peano’s kernel that is the second
identity of our theorem. O

In the following, we establish two new properties of the F;, operators.

THEOREM 3. Let (F,)n>1 be defined by (2) and f be a function defined on
(0,00) such as Fp(|f|,z) < oo for allz > 0.

(¢) If f is an increasing function then every F,f is increasing as well,
n=12,...

(3¢) If f is a convex function then every F,f is conver as well, n =
1,2,...

Proof. If f is increasing then gp£ is also increasing and the first statement
of the theorem can be easily checked. Therefore we omit it. In order to prove
the second statement we observe that the operator (2) is given by

Fn(f,.’l:) = E[f(IYn)]v z >0,

where Yy, is the random variable with density g, n11) given by (3). Let f
be convex, let 0 < a < 1 and z; # z2. Then

f((az1 + (1 — a)z2)Ya) < af(z1Ys) + (1 — a) f(z2Yn),
and taking the expectation one obtains
Fi((azy + (1 — a)z2)Yyn) < aFp(f,z1) + (1 — a)Fa(f, z2),
and the convexity of F,, f is established. O

From the above theorem it follows directly that:

(i) if f is decreasing then F, f are decreasing;

(ii) if f is concave then F, f are concave.

The previous results about F;, were concerned the global smoothness
of functions and the global approximation property. Now we are going to
discuss a connection between local smoothness of functions and local con-
vergence of F,. For this purpose we recall that a continuous function f is
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cally Lipa (0 < a < 1) on E C (0,00) if it satisfies the condition
6) |f(m)_f(y)|SMf|$—y|a’ 1:>0’ yEE’
here My is a constant depending only on « and f.

"THEOREM 4. Let F,, be given by (2), 0 < a <1 and E be a subset so that
E C (0,00) (E stands for the closure). If f € C(0,0) is locally Lipa on E
and F,(|fl,z) < oo for all z > 0 then we have

n

22 of?
[(Fnf)(2) = f(2)] < Mj (( — 1) +2d°(w,E)) )

where d(z, E) := inf{|z — y|: y € E}.

Proof. If f is continuous then (6) holds for any > 0 and y € E.Fixz>0
and let zg € E be such that |z — z¢| = d(z, E). Using the properties of the
linear positive operator F;, we deduce that

(7 |(Frnf)(z) = f(z)| £ Fu(lf = f(zo)l, z) + | f(z) — f(z0)| <
< My{Fy(ler — zo|* z) + |z — z0|*}.

The well-known inequality (a + b)* < a* + b*, ¢ € (0,1],a >0, b > 0,
implies |t — zg|* < |t —z|* + |z — 29|®, t > 0, and further F,,(|e; — zo|%, z) <
u:,/22(:c) + |z — z0|® = (22%/(n — 1))® + |z — zo|*. We have used the Holder’s
inequality (r := 2/a, s > 0,1/r+1/s = 1) and the fact that (Fnep)(z) = 1.
Returning to (7) one can check that the conclusion follows. O

In particular, if we assume that f is defined in z = 0 then, setting
(Fnf)(0) = £(0) and choosing E = [0, 00), we can infer:

If f € Cl0,00), Fa(|f],z) < 00, z 2 0, and wy(f,t) = O(t*), o € (0,1],
then there exists a constant M independent of n and z so that |(F,, f)(z) —
f(z)| < Ms(222?/(n —1))*/2, z > 0. Here wi(f,t) = supgep<i{lf(z + h) —
f(z)|: =z >0}
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