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ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF DIFFERENCE EQUATIONS OF SECOND ORDER

Abstract. Asymptotic properties of solutions of difference equation of the form

A%z = an@(Zn gk )P(Zntp) + bn

are studied.

Let N denote the set of positive integers, let Z be the set of integers and
let R be the set of real numbers. In this paper we consider the difference
equation of the form

(E) A%z, = n@(Tntk)P(Tntp) +bn, nEN

where k,p € Z,a,,bp € R, p,% : R — R are given. The asymptotic behavior
of solutions will be investigated. The results obtained here generalize some
results of A. Drozdowicz, J. Popenda [2], [3] and J. Migda, M. Migda [6)].
By a solution of equation (E) we mean a sequence {z,} if there exists
q € N such that the equation (E) is satisfied for all n > gq.
We start our investigations with a useful lemma, given here without
proof, which is elementary.

LEMMA 1. Assume the series Y .- | n|a,| is convergent and letr, =3 oo a;.

Then the series Y . Ty is absolutely convergent and Y oo | Tnh = 3 or | Nax.

THEOREM 1. Assume that the functions ¢, are continuous and the series
Y ooe1NGn, 2 ar, nb, are absolutely convergent. Then for every c € R there
exists a solution of (E) convergent to c.

Proof. Fix ¢ € R. Choose a number a > 0. Let
X =[c—a,c+a] x[c-a,c+al.
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Then the formula
d((tas)) (g) h)) = ma'x{lt - gl’ |S - h|}

defines a metric on X which is equivalent to the standard euclidean metric.
Hence (X, d) is a compact metric space and the function p : X — R defined
by
u(t, s) = o(t) ¥(s)
is bounded and uniformly continuous on (X,d). Hence there is a constant
M > 1 such that |p(t)y(s)] < M for every t,s € [c — a,c + a].
Forn € N let

oo oC
an = |lap| + |bnl, rn=ZaJ~, gn=er.
j:n j=n.

By Lemma 1 the series 3 ., s is convergent. Hence g, < oo for any n € N,
moreover lim g, = 0. There exists an index ¢ € N such that Mg, < a for all
n > q. Let BS denote the Banach space of all bounded sequence x : N — R
equiped with the ” sup” norm. Let

T={zeBS : z1=...=zg=c and |z,—c|>Mp, for n<gq}.
Obviously, T is a convex and closed subset of BS. Choose an ¢ > 0. Then
there exists m € N such that Mp, <eforanyn >m.Forn=1,...,m let
G, denote a finite e-net for the interval [c — Mg,,c + Mg,] and let

G={z€T:zp,=c for n>m and z,€G, for g<n<m}

Then G is a finite ¢-net for T. Hence T is a complete and totally bounded
metric space and so T is compact.

If z € T then z,, € [c—a,c+a] for any n € N. Hence |p(zn)¥(zk)] < M
forallz €T, n,k € N.

Assume that z € T. For n € N let

Bn = an‘p($n+k)¢(n+p) + bn, Un = Z ﬂj-
j=n
Then |5,| < Ma,. Thus
lual < 3181 < S Mo, = Mr,,.
j=n j=n

Since the series 3 37, r; is absolutely convergent, the series 3772, u; is ab-
solutely convergent, too. Now we define the sequence A(z) by

c forn<gq
AW = {15 W tnss
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If n > ¢ then

|A(z)(n —cl—IZuJ|<Z|u,|<ZM1‘J Mo,.

Hence A(z) € T and therefore A(T) C T.
Fix € > 0. Since the function g is uniformly continuous on X there exists
> 0 such that for (¢,s),(g9,h) € X, [t —q| < &, |s— h| < & we have

le(t)¥(s) — p(9)(h)| = |u(t, s) — p(g, h)| < e.

Now, let z € T be such that ||z — z|| < é. Then |z, — z,| < 6 for any
n € N. Denote by 7, = ancp(zn+k)¢(z,,+p) + by, and v, = Z‘;’;n v;j. Then

IAG) ~ AG:)l = sup|§ju, | < 3 huy -
Since o o
-—le—|Zﬂ, Z% Zw, %s|
and ~

1Bs — 73' = las‘p(zs+k)¢(xs+p) - as¢(zs+k)¢(zs+p)| < eay,

then |uj — v;| < er;. Hence

lA(z 2)|l < ZEQq

The latter means that the map A : T — T is continuous. By Schauder’s fixed
point theorem ([4] Theorem 3.6.1), there exists z € T such that A(z) = .

So we have
o0
Ip=c+ E Uj
j=n

for any n > q. Hence

n=cCc+ Z u]—c—ZuJ Up.

j=n+l
for n > q. Therefore, for every n > q we obtam

Azmn = —Up41l +HUn = E ,BJ + Zﬂ] ﬂn = an‘p($n+k)¢($ﬂ+l’) + b,

j=n+1

By the convergence of the series ) u;, it follows that limz, = c.
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THEOREM 2. If the functions ¢,y are uniformly continuous and bounded, the
series 2;‘”:1 na,, Z:‘;l nb, are absolutely convergent, then for all c,d € R
there exists a solution {z,} of (E) such that z,, = cn + d + o(1).

Proof. Let ¢,d € R. Choose M > 1 such that |p(t)¥(s)] < M for every
t,s € R. For n € N, as in the proof of Theorem 1, let

oo oo
an=|an|+|bn|’ Tn=zajv anzrj-
Jj=n j=n

Let SQ denote the space of all sequences z: N — R. Let
T={z€BS : |[z,| < Mp, ne€ N},
S={zeSQ:|zpn—(cn+d)| < Mp,, neN}.

Let F : T — S be defined by F(z)(n) = zn + cn+d. Obviously, the formula
d(z,z) = sup{|zn — z,| : n € N} defines a metric on S such that F is an
isometry of the set T onto S. Since T is compact and convex subset of the
space BS, it follows, from Schauder’s theorem and from the fact that the set
S is homeomorphic to T, that every continuous map A : § — § has a fixed
point.

Forz € S,n € N let B, = an@(Tn4k)¥(Tntp) + b, Un = E;”:n Bj,

Az)(n) =cn+d + Zu,-.

Then
|A2)() — (en+ )] = | Y w;| < lusl < Men
j=n j=n

for any n € N. Hence A(z) € S. Thus A(S) C S.
Similarly as in the proof of Theorem 1 one can show that the mapping A

is continuous. Therefore there exists a sequence z € S such that A(z) = z.
So

I, =cn+d+ Z u;j
j=n
for any n € N. Since A%(cn + d) = 0, therefore we obtain
A2$n = antp(zn-l-k)‘/}(zn'ﬂ»’) + bn

for any n € N. Moreover, by the convergence of the series E;’il u; it follows
that z, = en + d + o(1).

THEOREM 3. Assume there ezists A € R such that the restrictions p|[A, 00),
¥|[A, 00) are uniformly continuous and bounded. If the series 3 .., nan,
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Loy nby are absolutely convergent then, for any c > 0 and alld € R, there
Zists a solution {z,} of (E) such that

Zn =cn+d+o(1).
Proof. Fix ¢ > 0, d € R. Choose M > 0 such that |p(¢)¥(s)] < M for all

,8 € [A,00). For n € N we define the numbers ay,, Tn, g, as in the proof of
Theorem 1. Choose ¢ € N such that cg+d > A+ Mp;. Let

T={zeBS:zy=...=z,=0and |z,] < Mg, for n > ¢},
S={z€SQ:z,=cn+dforn<gqand |z, —cn—d| < Mg, for n > q}.
Similarly as in the proof of Theorem 2, the set S has the fixed point

property (i.e., every continuous map A : S — S has a fixed point).
Ifz € Sand n > q then

Tpn2cn+d—Mon2cq+d—Mon 2 A+ Mgy — Mpn 2 A
Hence zptk, Tniyp € [A,00) forallz € Sandn >q. Forz € Sandn e N
let up = 372 (a50(Zj45)¥(2j+p) + b;) and

cn+d forn<gq
A(z)(n) = {cn+d+ Yieny forn>g
The rest of the proof is similar to those of Theorems 1 and 2.

EXAMPLE. Let ¢(t) = exp(—t), ¥(t) = 1fort € R, ap = n73, b, = 0 for
n € N. Then by Theorem 3 it follows that if ¢ > 0 and d € R then there
exists a solution {z,} of (E) such that z, = cn +d + o(1).

Assume now that ¢ < 0, d € R and z, = cn +d + o(1) is a solution of
(E). Then

A¥(z,) = n 3 exp(—zZnsk) = n 3 exp(—(cn + ck + d + o(1))) — oo.
On the other hand
A%(z,) = A%(en +d + o(1)) = A%(o(1)) = o(1).
From this it follows that {z,} is not a solution of (E).

The proof of the following theorem is similar to that of Theorem 3 and
hence it is omitted.

THEOREM 4. Assume that p|(—00, A], ¥|(—00, ] are uniformly continuous
and bounded for some X € R. If the series 3 oo | NGn, Y ney Nbn are abso-
lutely convergent then for any c < 0 and all d € R there ezists solution {z,}
of (E) such that

Zn =cn+d+ o(1).
LEMMA 2. If {z,} is a sequence such that the sequence {Az,} is bounded
then {z,/n} is also bounded.



772 M. Migda, J. Migda

Proof. Assume |Az,| < M for any n € N. Let 2, = £, — ;. Then z; =0
and Az, = Az,. Since z; € [-M, M] and |z; — ;| < M, it follows that 2, €
[-2M,2M]. Similarly, from |23 — z2| < M it follows that 23 € [-3M, 3M].
Analogously z, € [-nM,nM] for all n € N. Hence |z,| < nM for any
n € N. Thus the sequence {z,/n} is bounded. Therefore the sequence

Tn/n = zn/n+ 31/n
is bounded, too.

THEOREM 5. Assume that the functions ¢, ¥ are bounded, the series

S o 1an is absolutely convergent, and let a sequence {z,} be a solution
of (E). Then

(a) if the sequence of partial sums of the series Y oo | bn is bounded then
the sequence {z,/n} is bounded,

(b) if the series Y .., bn is convergent, then {zn/n} is convergent,
(€) if 307, by = oo, then lim(z,/n) = oo,
(d) if 302, bn = —00, then lim(z,/n) = —oo0.

Proof For n € N let 4, = an@(Tntk)¥(Tn4p). Since the functions ¢, ¥
are bounded and the series Zf;l a, is absolutely convergent, then the series
E:°= 1 Un is absolutely convergent. Since A%z, = up, + b,, we obtain
Az, — Azy = A%y + A%z + ...+ A%z,
=(u1 +b1)+ ...+ (a1 +bn-1)

=(ur+...+up_1)+ (b1 +...+boy).

Now, if the sequence of partial sums of the series )~ , b, is bounded
then the sequence {Az,} is bounded and, by Lemma 3 it follows that the
sequence {z,/n} is also bounded. Moreover, if the series 3 o | b, is conver-
gent then the sequence {Az,} is convergent, too. If lim Az, = c then

lim(Az,/An) = lim Az, = ¢

and lim(z,/n) = c by the Stolz theorem ([5] p. 55 or [1] Theorem 1.7.9).
Analogously, if Y7 | b, = oo then lim(Az,) = oo, hence lim(z,/n) = oo by
the Stolz theorem. Analogously, if ¥ o. , bn = —00 then lim(z,/n) = —cc.

THEOREM 6. Assume that the functions ¢,y are bounded, ¢ € N, a, =
o(n?), and let a sequence {z,} be a solution of (E). Then

(a) if the sequence {b,/n?} is convergent then {z,/n9%?} is also conver-
gent,
(b) if bp = o(n?) then z, = o(n?+2).



Solutions of difference equations 773

Proof. Since A%z, = an@(Tnk)¥(Tntp) + bn, the sequence {A%z,/n?} is
convergent. If lim(A2%z,/n%) = c, then

A2z, ) Az, c

—— =1lim = .

Anatl ni(g+1+0(1)) g+1

By the Stolz theorem we obtain lim(Az, /n7t!) = 741 Hence

Ag . Az, c

n
Anst? ~ U natl(g1 2+ 0(1)  (9+ 1)@+ 2)

By the Stolz theorem it follows that the sequence {z,/n9%2} is convergent.
Obviously, if b, = o(n9), then ¢ = 0 and z,, = o(n?*2).

lim

lim
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