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ASYMPTOTIC BEHAVIOR OF SOLUTIONS 
OF DIFFERENCE EQUATIONS OF SECOND ORDER 

Abstrac t . Asymptotic properties of solutions of difference equation of the form 

Δ2χη = an<p(xn+k)ip{xn+p) + b„ 

are studied. 

Let Ν denote the set of positive integers, let Ζ be the set of integers and 
let R be the set of real numbers. In this paper we consider the difference 
equation of the form 

(-E) Δ2χη = an<p(xn+k)ip(xn+p) + bn, η ξ Ν 
where k,ρ G Ζ, an,bn € R, φ,ψ : R —y R are given. The asymptotic behavior 
of solutions will be investigated. The results obtained here generalize some 
results of A. Drozdowicz, J. Popenda [2], [3] and J. Migda, M. Migda [6]. 

By a solution of equation (Ε) we mean a sequence {xn} if there exists 
q € Ν such that the equation (Ε) is satisfied for all n> q. 

We start our investigations with a useful lemma, given here without 
proof, which is elementary. 

LEMMA 1. Assume the series n l °n | is convergent and let rn = αί· 
Then the series rn is absolutely convergent and ^Z^Li Γ" = ηαη· 

THEOREM 1. Assume that the functions φ, ψ are continuous and the series 
Ση=ι nan> Σ Γ = 1 are absolutely convergent. Then for every c G R there 
exists a solution of (Ε) convergent to c. 

P r o o f . Fix c e i ? . Choose a number a > 0. Let 

X = [c — a, c + a] χ [c — a, c + a]. 
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Then the formula 

d({t, s), (g, h)) = max {|i - g|, |s - /i|} 

defines a metric on X which is equivalent to the standard euclidean metric. 
Hence (X, d) is a compact metric space and the function μ : X —» R defined 
by 

μ(ί,δ) = ψ{ί) rp(s) 
is bounded and uniformly continuous on {X, d). Hence there is a constant 
Μ > 1 such that |<£>(f)V>(s)| < Μ for every t, s G [c — o, c + a]. 

For η G Ν let 
oo oo 

OCn = kn| + |£>n |, = Qn = ^ T j . 
j=n j=n 

By Lemma 1 the series J ^ L i c o n v e r g e n t . Hence ρη < oo for any η € Ν, 
moreover lim ρη = 0. There exists an index q 6 Ν such that Μρη < a for all 
η > q. Let BS denote the Banach space of all bounded sequence χ : Ν —+ R 
equiped with the " sup " norm. Let 

Τ = {χ 6 BS : Χι = . . . = xq = c and |xn — c| > Μρη for η < q}. 

Obviously, Γ is a convex and closed subset of BS. Choose an e > 0. Then 
there exists τη € Ν such that Μρη < ε for any η > m. For η = 1 , . . . , τη let 
Gn denote a finite ε-net for the interval [c - Μρη,β + Μρη) and let 

G = {χ € Τ : x n = c for n>m and x n € Gn for q < η < τη}. 

Then G is a finite ε-net for T. Hence Γ is a complete and totally bounded 
metric space and so Τ is compact. 

If χ £ Τ then x n 6 [c — a,c + a] for any η G N. Hence \<p(xn)ip(xk)\ < Μ 
for all χ € T, n, k G N. 

Assume that χ G Τ. For η € Ν let 
oo 

ßn = a„V?(Xn+fc)^(n+p) + Un = ^ ß j -
j=n 

Then \ßn\ < Man. Thus 
oo oo 

I«ηI < Σ \ßj\ < Σ Maj = Mrn. 
jzzn j=n 

Since the series Σ^ι1"] absolutely convergent, the series ^ j l i uj ab-
solutely convergent, too. Now we define the sequence A(x) by 

A( \( \ I c for n<q 
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If η > q then 
oo oo oo 

|Λ(χ)(π) - c| = I < Σ |uj| < J ] Mr, = Μ ρ η . 
j=n j=n j=n 

fience A ( x ) € Τ and therefore A ( T ) C T . 
Fix ε > 0. Since the function μ is uniformly continuous on X there exists 

> 0 such that for (t, s ) , (g, h ) e X , \t — q\ < δ, |s — h\ < δ we have 

- f ( g M h ) I = |μ(ί, s ) - μ ( 9 } h ) \ < ε . 
Now, let ζ € Τ be such that ||x - z\\ < δ. Then |xn - zn\ < δ for any 

η G N . Denote by 7„ = a n i p ( z n + k ) i p { z n + p ) + b n , and v n - Σ ° ° = η υ · Then 

| |A(x) - A(z)|| = sup J ^ u , · - Σ υ ΐ - Σ \ui ~ v ^ 
n>o' · ' j=n ]=n j=q 

Since 
oo oo oo 

\ u j - = | Σ & - Σ Ή ^ Σ - τ.ι 
j=n s=j 3=j 

and 

\ßs - 7*1 = |as<^(xs+fc)V'(xs+p) - a3ip(z3+k)ip(za+p)\ < ε α 3 , 
then I u j — V j \ < ε τ 3 . Hence 

\ \ A ( x ) - A { z ) \ \ < f ^ e e q . 
.7 = 9 

The latter means that the map A : Τ —> Τ is continuous. By Schauder's fixed 
point theorem ([4] Theorem 3.6.1), there exists χ € Τ such that A{x) = x. 
So we have 

oo 
Xrt = C + ^ U j 

j=n 

for any η > q. Hence 
oo oo 

Δχη = C + U j - C - ^ Uj = - t i n • 
j=n+l j=Ti 

for η > q. Therefore, for every n > q we obtain 
oo oo 

Δ2Χη = ~ U n + 1 + U n = - Σ βί + Σ , β ] = ßn = a,n<P(xn+k)ll>(xn+p) + *>n 

J=n+1 j=n 
By the convergence of the series Σ uj> ^ follows that limxn = c. 
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THEOREM 2. If the functions φ, ψ are uniformly continuous and bounded, the 
series Σ^ι ηαη, ore absolutely convergent, then for all c,d G R 
there exists a solution {xn} of (Ε) such that xn = cn + d + o(l). 

P r o o f . Let c,d G R. Choose Μ > 1 such that ^ ( t ) ^ ^ ) ! < Μ for every 
t,s £ R. For η G N, as in the proof of Theorem 1, let 

oo oo 
<*„ = |a„| + |6„|, r n = ^ a ^ , ρ„ = ^ T ^ · . 

j=n j=n 

Let SQ denote the space of all sequences χ : Ν —• R. Let 

Γ = { i 6 BS : | ι„ | < Μ ρ , n € N } , 
S = {xeSQ:\xn-(cn + d)\<Mßn, n£N}. 

Let F : Τ —> 5 be defined by F(x)(n) — χn + cn + d. Obviously, the formula 
d(x,z) = sup{|i„ — zn\ : η € Ν} defines a metric on S such that F is an 
isometry of the set Τ onto 5. Since Τ is compact and convex subset of the 
space BS, it follows, from Schauder's theorem and from the fact that the set 
S is homeomorphic to T, that every continuous map A : S —• 5 has a fixed 
point. 

For χ € 5, η € Ν let ßn = an<p{xn+k)ip(xn+p) + bn, un = Σ™=η ßj> 
oo 

A(x)(n) = cn + d + ^ u j. 
j=n 

Then 
oo oo 

|A(x) (n) - (cn + d)| = < < Μρη 
j=n j=n 

for any η G N. Hence A(x) G S. Thus C S. 
Similarly as in the proof of Theorem 1 one can show that the mapping A 

is continuous. Therefore there exists a sequence χ G 5 such that A(x) = x. 
So 

oo 
xn = cn + d + ^ uj 

j=n 

for any η G Ν. Since Δ2 (cn + d) = 0, therefore we obtain 

Δ2χη = an<p(xn+k)ip{xn+p) + bn 

for any η G N. Moreover, by the convergence of the series X^ta Uj it follows 
that xn = cn + d + o(l). 

THEOREM 3. Assume there exists λ G R such that the restrictions <£>|[λ,οο), 
τ/Ί[λ, oo) are uniformly continuous and bounded. If the series Σ^ΊχΤ ία η , 
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nbn are absolutely convergent then, for any c > 0 and all d € R, there 
aists α solution {x n } of (E) such that 

xn — cn + d + o( 1). 

Proof. Fix c > 0, d 6 R. Choose Μ > 0 such that \<p(t)ip(s)\ < Μ for all 
, s € [λ, oo). For η € Ν we define the numbers a„, rn, ρη as in the proof of 

theorem 1. Choose q 6 Ν such that cq + d > A + Μρχ. Let 
Τ = {χ e BS : i i = . . . = xq = 0 and |x„| < Μρη for η > q}, 

S = {x € SQ : xn = en + d for η < q and \xn — en — d\ < Μρη for η > q}. 
Similarly as in the proof of Theorem 2, the set 5 has the fixed point 

property (i.e., every continuous map A : S —* S has a fixed point). 
If χ 6 5 and η > q then 

xn > cn + d - Μρη >cq + d — Μρη > λ + Μ ρ ι — Μρη > Α. 
Hence xn+fc, xn+p G [λ,οο) for all χ 6 S and η > q. For χ 6 5 and η e Ν 
let un = n(aj(p{xj+k)ip{xj+p) + bj) and 

The rest of the proof is similar to those of Theorems 1 and 2. 
EXAMPLE. Let <p{t) = exp(-t), ·ψ(ί) = 1 for t e R, an = n~3, bn = 0 for 
η G N. Then by Theorem 3 it follows that if c > 0 and d € R then there 
exists a solution {x n } of (Ε) such that xn = cn + d + o(l). 

Assume now that c <C 0, d € Ä and xn = cn -J— —o(l) is a solution of 
(E). Then 

Δ2(χη) = η - 3 exp(—xn+k) = n~3 exp(-(cn + ck + d + o(l))) oo. 
On the other hand 

From this it follows that {x„} is not a solution of (E). 
The proof of the following theorem is similar to that of Theorem 3 and 

hence it is omitted. 
THEOREM 4 . Assume that ψ\{—oo, A], i>\{—οο,λ] are uniformly continuous 
and bounded for some A 6 R. If the series J^^Li nan, ore abso-
lutely convergent then for any c < 0 and alld € R there exists solution {x„} 
of (Ε) such that 

LEMMA 2. If { x n } " A sequence such that the sequence {Δχη} is bounded 
then {xn/n} is also bounded. 

for η < q 
for n> q. 

Δ2(χη) = Δ2{αη + d + o(l)) = 42(o(l)) = o(l). 

xn = cn + d + o( 1). 
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P r o o f . Assume \Δχη\ < Μ for any η e N. Let zn = xn - x\. Then z\ = 0 
and Δζη = Δχη. Since z\ € [—Μ, M] and \z2 — z\ | < Μ, it follows that z2 6 
[ - 2M, 2M]. Similarly, from \z3 - z2\ < Μ it follows that z3 6 [ -3M.3M]. 
Analogously zn 6 [—ηΜ,ηΜ} for all τι Ε N. Hence \zn\ < nM for any 
η € Ν. Thus the sequence {z„ /n} is bounded. Therefore the sequence 

χ n/n = zn/n + χι/η 

is bounded, too. 

THEOREM 5. Assume that the functions ψ, ψ are bounded, the series 
is absolutely convergent, and let a sequence { x n } be a solution 

of (E). Then 

(a) if the sequence of partial sums of the series Σ ^ ι bn is bounded then 
the sequence { x „ / n } is bounded, 

(b) if the series Σ^-ibn is convergent, then {xn/n} is convergent, 
(c) ifY^=1 bn = 00, then l im(i n /n) = 00, 
(d) t / J ^ L i bn = —00, then l im(i n /n) = —00. 

P r o o f . For η Ε Ν let un = antp(xn+k)ip(xn+p)· Since the functions φ, ψ 
are bounded and the series an is absolutely convergent, then the series 
Σ ^ ΐ ι UJI is absolutely convergent. Since Δ2χη = un + bn, we obtain 

Δχη - Δχχ = Δ2χι + Δ2χ2 + ... + Δ2χη-ι 
= (ui + 6χ) + . . . + (u„_i + 6 η - ι ) 
= («ι + . . . + U„_i) + (&! + . . . + 6η_ι). 

Now, if the sequence of partial sums of the series is bounded 
then the sequence {Δχη} is bounded and, by Lemma 3 it follows that the 
sequence { i „ / n } is also bounded. Moreover, if the series bn is conver-
gent then the sequence {Δχη} is convergent, too. If lim Δχη = c then 

lim(/l χη/Δη) = l imArn = c 

and lim(xn/n) = c by the Stolz theorem ([5] p. 55 or [1] Theorem 1.7.9). 
Analogously, if bn = 00 then lim(AEn) - co, hence lim(x„/n) = 00 by 
the Stolz theorem. Analogously, if bn = - 0 0 then lim(x„/n) = —00. 

THEOREM 6. Assume that the functions φ,-ψ are bounded, q £ N, an — 
o(nq), and let a sequence { x n } be a solution of(E). Then 

(a) if the sequence {bn/nq} is convergent then {xn/nq+2} is also conver-
gent, 

(b) ifbn = o(nq) then xn = o(nq+2). 
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P r o o f . Since Δ2χη = o„v?(xn+fc)V'(xn+p) + bn, the sequence {A2xn/nq} is 
convergent. If l i m ( A 2 x n / n q ) = c, then 

.. Δ2χη Δ2χη c 
lim — = lim ; ; 7777 = . 

Δ η « + 1 n«(s + l + o(l)) g + 1 

B y the Stolz theorem we obtain l i m ( ^ i „ / n ' + 1 ) = ^ y . Hence 

Δ2χη _ Δχη _ c 
i m Δη"+2 ~ i m n*+l(g + 2 + o( 1)) ~ (g + 1 )(q + 2)" 

B y the Stolz theorem it follows that the sequence { x „ / n 9 + 2 } is convergent. 
Obviously, if bn = o(ng), then c = 0 and xn = o(nq+2). 
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